1/*
2 * Copyright (c) 2010, 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : MemObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent(this), doL2DescEvent(this),
68 doL0LongDescEvent(this), doL1LongDescEvent(this), doL2LongDescEvent(this),
69 doL3LongDescEvent(this),
70 doProcessEvent(this)
71{
72 sctlr = 0;
73
74 // Cache system-level properties
75 if (FullSystem) {
76 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
77 assert(armSys);
78 haveSecurity = armSys->haveSecurity();
79 _haveLPAE = armSys->haveLPAE();
80 _haveVirtualization = armSys->haveVirtualization();
81 physAddrRange = armSys->physAddrRange();
82 _haveLargeAsid64 = armSys->haveLargeAsid64();
83 } else {
84 haveSecurity = _haveLPAE = _haveVirtualization = false;
85 _haveLargeAsid64 = false;
86 physAddrRange = 32;
87 }
88
89}
90
91TableWalker::~TableWalker()
92{
93 ;
94}
95
96void
97TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
98{
99 stage2Mmu = m;
100 port = &m->getPort();
101 masterId = master_id;
102}
103
104void
105TableWalker::init()
106{
107 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
108 fatal_if(!port, "Table walker must have a valid port\n");
109 fatal_if(!tlb, "Table walker must have a valid TLB\n");
110}
111
112BaseMasterPort&
113TableWalker::getMasterPort(const std::string &if_name, PortID idx)
114{
115 if (if_name == "port") {
116 if (!isStage2) {
117 return *port;
118 } else {
119 fatal("Cannot access table walker port through stage-two walker\n");
120 }
121 }
122 return MemObject::getMasterPort(if_name, idx);
123}
124
125TableWalker::WalkerState::WalkerState() :
126 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
127 asid(0), vmid(0), isHyp(false), transState(nullptr),
128 vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
129 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
130 pxnTable(false), stage2Req(false), doingStage2(false),
131 stage2Tran(nullptr), timing(false), functional(false),
132 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
133 delayed(false), tableWalker(nullptr)
134{
135}
136
137void
138TableWalker::completeDrain()
139{
140 if (drainState() == DrainState::Draining &&
141 stateQueues[L1].empty() && stateQueues[L2].empty() &&
142 pendingQueue.empty()) {
143
144 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
145 signalDrainDone();
146 }
147}
148
149DrainState
150TableWalker::drain()
151{
152 bool state_queues_not_empty = false;
153
154 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
155 if (!stateQueues[i].empty()) {
156 state_queues_not_empty = true;
157 break;
158 }
159 }
160
161 if (state_queues_not_empty || pendingQueue.size()) {
162 DPRINTF(Drain, "TableWalker not drained\n");
163 return DrainState::Draining;
164 } else {
165 DPRINTF(Drain, "TableWalker free, no need to drain\n");
166 return DrainState::Drained;
167 }
168}
169
170void
171TableWalker::drainResume()
172{
173 if (params()->sys->isTimingMode() && currState) {
174 delete currState;
175 currState = NULL;
176 pendingChange();
177 }
178}
179
180Fault
181TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
182 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
183 TLB::Translation *_trans, bool _timing, bool _functional,
184 bool secure, TLB::ArmTranslationType tranType)
185{
186 assert(!(_functional && _timing));
187 ++statWalks;
188
189 WalkerState *savedCurrState = NULL;
190
191 if (!currState && !_functional) {
192 // For atomic mode, a new WalkerState instance should be only created
193 // once per TLB. For timing mode, a new instance is generated for every
194 // TLB miss.
195 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
196
197 currState = new WalkerState();
198 currState->tableWalker = this;
199 } else if (_functional) {
200 // If we are mixing functional mode with timing (or even
201 // atomic), we need to to be careful and clean up after
202 // ourselves to not risk getting into an inconsistent state.
203 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
204 savedCurrState = currState;
205 currState = new WalkerState();
206 currState->tableWalker = this;
207 } else if (_timing) {
208 // This is a translation that was completed and then faulted again
209 // because some underlying parameters that affect the translation
210 // changed out from under us (e.g. asid). It will either be a
211 // misprediction, in which case nothing will happen or we'll use
212 // this fault to re-execute the faulting instruction which should clean
213 // up everything.
214 if (currState->vaddr_tainted == _req->getVaddr()) {
215 ++statSquashedBefore;
216 return std::make_shared<ReExec>();
217 }
218 }
219 pendingChange();
220
221 currState->startTime = curTick();
222 currState->tc = _tc;
223 currState->aarch64 = opModeIs64(currOpMode(_tc));
223 // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
224 // aarch32/translation/translation/AArch32.TranslateAddress dictates
225 // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
226 currState->aarch64 = opModeIs64(currOpMode(_tc)) ||
227 ((currEL(_tc) == EL0) && ELIs64(_tc, EL1));
228 currState->el = currEL(_tc);
229 currState->transState = _trans;
230 currState->req = _req;
231 currState->fault = NoFault;
232 currState->asid = _asid;
233 currState->vmid = _vmid;
234 currState->isHyp = _isHyp;
235 currState->timing = _timing;
236 currState->functional = _functional;
237 currState->mode = _mode;
238 currState->tranType = tranType;
239 currState->isSecure = secure;
240 currState->physAddrRange = physAddrRange;
241
242 /** @todo These should be cached or grabbed from cached copies in
243 the TLB, all these miscreg reads are expensive */
244 currState->vaddr_tainted = currState->req->getVaddr();
245 if (currState->aarch64)
246 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
247 currState->tc, currState->el);
248 else
249 currState->vaddr = currState->vaddr_tainted;
250
251 if (currState->aarch64) {
252 switch (currState->el) {
253 case EL0:
254 case EL1:
255 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
256 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
257 break;
258 // @todo: uncomment this to enable Virtualization
259 // case EL2:
260 // assert(haveVirtualization);
261 // currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
262 // currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
263 // break;
264 case EL3:
265 assert(haveSecurity);
266 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
267 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
268 break;
269 default:
270 panic("Invalid exception level");
271 break;
272 }
273 } else {
274 currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
275 MISCREG_SCTLR, currState->tc, !currState->isSecure));
276 currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
277 MISCREG_TTBCR, currState->tc, !currState->isSecure));
278 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
279 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
280 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
281 }
282 sctlr = currState->sctlr;
283
284 currState->isFetch = (currState->mode == TLB::Execute);
285 currState->isWrite = (currState->mode == TLB::Write);
286
287 statRequestOrigin[REQUESTED][currState->isFetch]++;
288
289 // We only do a second stage of translation if we're not secure, or in
290 // hyp mode, the second stage MMU is enabled, and this table walker
291 // instance is the first stage.
292 currState->doingStage2 = false;
293 // @todo: for now disable this in AArch64 (HCR is not set)
294 currState->stage2Req = !currState->aarch64 && currState->hcr.vm &&
295 !isStage2 && !currState->isSecure && !currState->isHyp;
296
293 bool long_desc_format = currState->aarch64 ||
294 (_haveLPAE && currState->ttbcr.eae) ||
295 _isHyp || isStage2;
297 bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
298 longDescFormatInUse(currState->tc);
299
300 if (long_desc_format) {
301 // Helper variables used for hierarchical permissions
302 currState->secureLookup = currState->isSecure;
303 currState->rwTable = true;
304 currState->userTable = true;
305 currState->xnTable = false;
306 currState->pxnTable = false;
307
308 ++statWalksLongDescriptor;
309 } else {
310 ++statWalksShortDescriptor;
311 }
312
313 if (!currState->timing) {
314 Fault fault = NoFault;
315 if (currState->aarch64)
316 fault = processWalkAArch64();
317 else if (long_desc_format)
318 fault = processWalkLPAE();
319 else
320 fault = processWalk();
321
322 // If this was a functional non-timing access restore state to
323 // how we found it.
324 if (currState->functional) {
325 delete currState;
326 currState = savedCurrState;
327 }
328 return fault;
329 }
330
331 if (pending || pendingQueue.size()) {
332 pendingQueue.push_back(currState);
333 currState = NULL;
334 pendingChange();
335 } else {
336 pending = true;
337 pendingChange();
338 if (currState->aarch64)
339 return processWalkAArch64();
340 else if (long_desc_format)
341 return processWalkLPAE();
342 else
343 return processWalk();
344 }
345
346 return NoFault;
347}
348
349void
350TableWalker::processWalkWrapper()
351{
352 assert(!currState);
353 assert(pendingQueue.size());
354 pendingChange();
355 currState = pendingQueue.front();
356
357 ExceptionLevel target_el = EL0;
358 if (currState->aarch64)
359 target_el = currEL(currState->tc);
360 else
361 target_el = EL1;
362
363 // Check if a previous walk filled this request already
364 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
365 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
366 currState->vmid, currState->isHyp, currState->isSecure, true, false,
367 target_el);
368
369 // Check if we still need to have a walk for this request. If the requesting
370 // instruction has been squashed, or a previous walk has filled the TLB with
371 // a match, we just want to get rid of the walk. The latter could happen
372 // when there are multiple outstanding misses to a single page and a
373 // previous request has been successfully translated.
374 if (!currState->transState->squashed() && !te) {
375 // We've got a valid request, lets process it
376 pending = true;
377 pendingQueue.pop_front();
378 // Keep currState in case one of the processWalk... calls NULLs it
379 WalkerState *curr_state_copy = currState;
380 Fault f;
381 if (currState->aarch64)
382 f = processWalkAArch64();
380 else if ((_haveLPAE && currState->ttbcr.eae) || currState->isHyp || isStage2)
383 else if (longDescFormatInUse(currState->tc) ||
384 currState->isHyp || isStage2)
385 f = processWalkLPAE();
386 else
387 f = processWalk();
388
389 if (f != NoFault) {
390 curr_state_copy->transState->finish(f, curr_state_copy->req,
391 curr_state_copy->tc, curr_state_copy->mode);
392
393 delete curr_state_copy;
394 }
395 return;
396 }
397
398
399 // If the instruction that we were translating for has been
400 // squashed we shouldn't bother.
401 unsigned num_squashed = 0;
402 ThreadContext *tc = currState->tc;
403 while ((num_squashed < numSquashable) && currState &&
404 (currState->transState->squashed() || te)) {
405 pendingQueue.pop_front();
406 num_squashed++;
407 statSquashedBefore++;
408
409 DPRINTF(TLB, "Squashing table walk for address %#x\n",
410 currState->vaddr_tainted);
411
412 if (currState->transState->squashed()) {
413 // finish the translation which will delete the translation object
414 currState->transState->finish(
415 std::make_shared<UnimpFault>("Squashed Inst"),
416 currState->req, currState->tc, currState->mode);
417 } else {
418 // translate the request now that we know it will work
419 statWalkServiceTime.sample(curTick() - currState->startTime);
420 tlb->translateTiming(currState->req, currState->tc,
421 currState->transState, currState->mode);
422
423 }
424
425 // delete the current request
426 delete currState;
427
428 // peak at the next one
429 if (pendingQueue.size()) {
430 currState = pendingQueue.front();
431 te = tlb->lookup(currState->vaddr, currState->asid,
432 currState->vmid, currState->isHyp, currState->isSecure, true,
433 false, target_el);
434 } else {
435 // Terminate the loop, nothing more to do
436 currState = NULL;
437 }
438 }
439 pendingChange();
440
441 // if we still have pending translations, schedule more work
442 nextWalk(tc);
443 currState = NULL;
444}
445
446Fault
447TableWalker::processWalk()
448{
449 Addr ttbr = 0;
450
451 // If translation isn't enabled, we shouldn't be here
452 assert(currState->sctlr.m || isStage2);
453
454 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
455 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
456 32 - currState->ttbcr.n));
457
458 statWalkWaitTime.sample(curTick() - currState->startTime);
459
460 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
461 32 - currState->ttbcr.n)) {
462 DPRINTF(TLB, " - Selecting TTBR0\n");
463 // Check if table walk is allowed when Security Extensions are enabled
464 if (haveSecurity && currState->ttbcr.pd0) {
465 if (currState->isFetch)
466 return std::make_shared<PrefetchAbort>(
467 currState->vaddr_tainted,
468 ArmFault::TranslationLL + L1,
469 isStage2,
470 ArmFault::VmsaTran);
471 else
472 return std::make_shared<DataAbort>(
473 currState->vaddr_tainted,
474 TlbEntry::DomainType::NoAccess, currState->isWrite,
475 ArmFault::TranslationLL + L1, isStage2,
476 ArmFault::VmsaTran);
477 }
478 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
479 MISCREG_TTBR0, currState->tc, !currState->isSecure));
480 } else {
481 DPRINTF(TLB, " - Selecting TTBR1\n");
482 // Check if table walk is allowed when Security Extensions are enabled
483 if (haveSecurity && currState->ttbcr.pd1) {
484 if (currState->isFetch)
485 return std::make_shared<PrefetchAbort>(
486 currState->vaddr_tainted,
487 ArmFault::TranslationLL + L1,
488 isStage2,
489 ArmFault::VmsaTran);
490 else
491 return std::make_shared<DataAbort>(
492 currState->vaddr_tainted,
493 TlbEntry::DomainType::NoAccess, currState->isWrite,
494 ArmFault::TranslationLL + L1, isStage2,
495 ArmFault::VmsaTran);
496 }
497 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
498 MISCREG_TTBR1, currState->tc, !currState->isSecure));
499 currState->ttbcr.n = 0;
500 }
501
502 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
503 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
504 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
505 currState->isSecure ? "s" : "ns");
506
507 // Trickbox address check
508 Fault f;
509 f = testWalk(l1desc_addr, sizeof(uint32_t),
510 TlbEntry::DomainType::NoAccess, L1);
511 if (f) {
512 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
513 if (currState->timing) {
514 pending = false;
515 nextWalk(currState->tc);
516 currState = NULL;
517 } else {
518 currState->tc = NULL;
519 currState->req = NULL;
520 }
521 return f;
522 }
523
524 Request::Flags flag = Request::PT_WALK;
525 if (currState->sctlr.c == 0) {
526 flag.set(Request::UNCACHEABLE);
527 }
528
529 if (currState->isSecure) {
530 flag.set(Request::SECURE);
531 }
532
533 bool delayed;
534 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
535 sizeof(uint32_t), flag, L1, &doL1DescEvent,
536 &TableWalker::doL1Descriptor);
537 if (!delayed) {
538 f = currState->fault;
539 }
540
541 return f;
542}
543
544Fault
545TableWalker::processWalkLPAE()
546{
547 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
548 int tsz, n;
549 LookupLevel start_lookup_level = L1;
550
551 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
552 currState->vaddr_tainted, currState->ttbcr);
553
554 statWalkWaitTime.sample(curTick() - currState->startTime);
555
556 Request::Flags flag = Request::PT_WALK;
557 if (currState->isSecure)
558 flag.set(Request::SECURE);
559
560 // work out which base address register to use, if in hyp mode we always
561 // use HTTBR
562 if (isStage2) {
563 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
564 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
565 tsz = sext<4>(currState->vtcr.t0sz);
566 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
567 } else if (currState->isHyp) {
568 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
569 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
570 tsz = currState->htcr.t0sz;
571 } else {
568 assert(_haveLPAE && currState->ttbcr.eae);
572 assert(longDescFormatInUse(currState->tc));
573
574 // Determine boundaries of TTBR0/1 regions
575 if (currState->ttbcr.t0sz)
576 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
577 else if (currState->ttbcr.t1sz)
578 ttbr0_max = (1ULL << 32) -
579 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
580 else
581 ttbr0_max = (1ULL << 32) - 1;
582 if (currState->ttbcr.t1sz)
583 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
584 else
585 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
586
587 // The following code snippet selects the appropriate translation table base
588 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
589 // depending on the address range supported by the translation table (ARM
590 // ARM issue C B3.6.4)
591 if (currState->vaddr <= ttbr0_max) {
592 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
593 // Check if table walk is allowed
594 if (currState->ttbcr.epd0) {
595 if (currState->isFetch)
596 return std::make_shared<PrefetchAbort>(
597 currState->vaddr_tainted,
598 ArmFault::TranslationLL + L1,
599 isStage2,
600 ArmFault::LpaeTran);
601 else
602 return std::make_shared<DataAbort>(
603 currState->vaddr_tainted,
604 TlbEntry::DomainType::NoAccess,
605 currState->isWrite,
606 ArmFault::TranslationLL + L1,
607 isStage2,
608 ArmFault::LpaeTran);
609 }
610 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
611 MISCREG_TTBR0, currState->tc, !currState->isSecure));
612 tsz = currState->ttbcr.t0sz;
613 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
614 start_lookup_level = L2;
615 } else if (currState->vaddr >= ttbr1_min) {
616 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
617 // Check if table walk is allowed
618 if (currState->ttbcr.epd1) {
619 if (currState->isFetch)
620 return std::make_shared<PrefetchAbort>(
621 currState->vaddr_tainted,
622 ArmFault::TranslationLL + L1,
623 isStage2,
624 ArmFault::LpaeTran);
625 else
626 return std::make_shared<DataAbort>(
627 currState->vaddr_tainted,
628 TlbEntry::DomainType::NoAccess,
629 currState->isWrite,
630 ArmFault::TranslationLL + L1,
631 isStage2,
632 ArmFault::LpaeTran);
633 }
634 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
635 MISCREG_TTBR1, currState->tc, !currState->isSecure));
636 tsz = currState->ttbcr.t1sz;
637 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
638 start_lookup_level = L2;
639 } else {
640 // Out of boundaries -> translation fault
641 if (currState->isFetch)
642 return std::make_shared<PrefetchAbort>(
643 currState->vaddr_tainted,
644 ArmFault::TranslationLL + L1,
645 isStage2,
646 ArmFault::LpaeTran);
647 else
648 return std::make_shared<DataAbort>(
649 currState->vaddr_tainted,
650 TlbEntry::DomainType::NoAccess,
651 currState->isWrite, ArmFault::TranslationLL + L1,
652 isStage2, ArmFault::LpaeTran);
653 }
654
655 }
656
657 // Perform lookup (ARM ARM issue C B3.6.6)
658 if (start_lookup_level == L1) {
659 n = 5 - tsz;
660 desc_addr = mbits(ttbr, 39, n) |
661 (bits(currState->vaddr, n + 26, 30) << 3);
662 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
663 desc_addr, currState->isSecure ? "s" : "ns");
664 } else {
665 // Skip first-level lookup
666 n = (tsz >= 2 ? 14 - tsz : 12);
667 desc_addr = mbits(ttbr, 39, n) |
668 (bits(currState->vaddr, n + 17, 21) << 3);
669 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
670 desc_addr, currState->isSecure ? "s" : "ns");
671 }
672
673 // Trickbox address check
674 Fault f = testWalk(desc_addr, sizeof(uint64_t),
675 TlbEntry::DomainType::NoAccess, start_lookup_level);
676 if (f) {
677 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
678 if (currState->timing) {
679 pending = false;
680 nextWalk(currState->tc);
681 currState = NULL;
682 } else {
683 currState->tc = NULL;
684 currState->req = NULL;
685 }
686 return f;
687 }
688
689 if (currState->sctlr.c == 0) {
690 flag.set(Request::UNCACHEABLE);
691 }
692
693 currState->longDesc.lookupLevel = start_lookup_level;
694 currState->longDesc.aarch64 = false;
695 currState->longDesc.grainSize = Grain4KB;
696
697 Event *event = start_lookup_level == L1 ? (Event *) &doL1LongDescEvent
698 : (Event *) &doL2LongDescEvent;
699
700 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
701 sizeof(uint64_t), flag, start_lookup_level,
702 event, &TableWalker::doLongDescriptor);
703 if (!delayed) {
704 f = currState->fault;
705 }
706
707 return f;
708}
709
710unsigned
711TableWalker::adjustTableSizeAArch64(unsigned tsz)
712{
713 if (tsz < 25)
714 return 25;
715 if (tsz > 48)
716 return 48;
717 return tsz;
718}
719
720bool
721TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
722{
723 return (currPhysAddrRange != MaxPhysAddrRange &&
724 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
725}
726
727Fault
728TableWalker::processWalkAArch64()
729{
730 assert(currState->aarch64);
731
732 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
733 currState->vaddr_tainted, currState->tcr);
734
735 static const GrainSize GrainMapDefault[] =
736 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
737 static const GrainSize GrainMap_EL1_tg1[] =
738 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
739
740 statWalkWaitTime.sample(curTick() - currState->startTime);
741
742 // Determine TTBR, table size, granule size and phys. address range
743 Addr ttbr = 0;
744 int tsz = 0, ps = 0;
745 GrainSize tg = Grain4KB; // grain size computed from tg* field
746 bool fault = false;
747 switch (currState->el) {
748 case EL0:
749 case EL1:
750 switch (bits(currState->vaddr, 63,48)) {
751 case 0:
752 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
753 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
754 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
755 tg = GrainMapDefault[currState->tcr.tg0];
756 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
757 currState->tcr.epd0)
758 fault = true;
759 break;
760 case 0xffff:
761 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
762 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
763 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
764 tg = GrainMap_EL1_tg1[currState->tcr.tg1];
765 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
766 currState->tcr.epd1)
767 fault = true;
768 break;
769 default:
770 // top two bytes must be all 0s or all 1s, else invalid addr
771 fault = true;
772 }
773 ps = currState->tcr.ips;
774 break;
775 case EL2:
776 case EL3:
777 switch(bits(currState->vaddr, 63,48)) {
778 case 0:
779 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
780 if (currState->el == EL2)
781 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
782 else
783 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
784 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
785 tg = GrainMapDefault[currState->tcr.tg0];
786 break;
787 default:
788 // invalid addr if top two bytes are not all 0s
789 fault = true;
790 }
791 ps = currState->tcr.ips;
792 break;
793 }
794
795 if (fault) {
796 Fault f;
797 if (currState->isFetch)
798 f = std::make_shared<PrefetchAbort>(
799 currState->vaddr_tainted,
800 ArmFault::TranslationLL + L0, isStage2,
801 ArmFault::LpaeTran);
802 else
803 f = std::make_shared<DataAbort>(
804 currState->vaddr_tainted,
805 TlbEntry::DomainType::NoAccess,
806 currState->isWrite,
807 ArmFault::TranslationLL + L0,
808 isStage2, ArmFault::LpaeTran);
809
810 if (currState->timing) {
811 pending = false;
812 nextWalk(currState->tc);
813 currState = NULL;
814 } else {
815 currState->tc = NULL;
816 currState->req = NULL;
817 }
818 return f;
819
820 }
821
822 if (tg == ReservedGrain) {
823 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
824 "DEFINED behavior takes this to mean 4KB granules\n");
825 tg = Grain4KB;
826 }
827
828 int stride = tg - 3;
829 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
830
831 // Determine starting lookup level
832 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
833 // in ARM DDI 0487A. These table values correspond to the cascading tests
834 // to compute the lookup level and are of the form
835 // (grain_size + N*stride), for N = {1, 2, 3}.
836 // A value of 64 will never succeed and a value of 0 will always succeed.
837 {
838 struct GrainMap {
839 GrainSize grain_size;
840 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
841 };
842 static const GrainMap GM[] = {
843 { Grain4KB, { 39, 30, 0, 0 } },
844 { Grain16KB, { 47, 36, 25, 0 } },
845 { Grain64KB, { 64, 42, 29, 0 } }
846 };
847
848 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
849
850 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
851 if (tg == GM[i].grain_size) {
852 lookup = GM[i].lookup_level_cutoff;
853 break;
854 }
855 }
856 assert(lookup);
857
858 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
859 if (tsz > lookup[L]) {
860 start_lookup_level = (LookupLevel) L;
861 break;
862 }
863 }
864 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
865 "Table walker couldn't find lookup level\n");
866 }
867
868 // Determine table base address
869 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
870 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
871
872 // Determine physical address size and raise an Address Size Fault if
873 // necessary
874 int pa_range = decodePhysAddrRange64(ps);
875 // Clamp to lower limit
876 if (pa_range > physAddrRange)
877 currState->physAddrRange = physAddrRange;
878 else
879 currState->physAddrRange = pa_range;
880 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
881 DPRINTF(TLB, "Address size fault before any lookup\n");
882 Fault f;
883 if (currState->isFetch)
884 f = std::make_shared<PrefetchAbort>(
885 currState->vaddr_tainted,
886 ArmFault::AddressSizeLL + start_lookup_level,
887 isStage2,
888 ArmFault::LpaeTran);
889 else
890 f = std::make_shared<DataAbort>(
891 currState->vaddr_tainted,
892 TlbEntry::DomainType::NoAccess,
893 currState->isWrite,
894 ArmFault::AddressSizeLL + start_lookup_level,
895 isStage2,
896 ArmFault::LpaeTran);
897
898
899 if (currState->timing) {
900 pending = false;
901 nextWalk(currState->tc);
902 currState = NULL;
903 } else {
904 currState->tc = NULL;
905 currState->req = NULL;
906 }
907 return f;
908
909 }
910
911 // Determine descriptor address
912 Addr desc_addr = base_addr |
913 (bits(currState->vaddr, tsz - 1,
914 stride * (3 - start_lookup_level) + tg) << 3);
915
916 // Trickbox address check
917 Fault f = testWalk(desc_addr, sizeof(uint64_t),
918 TlbEntry::DomainType::NoAccess, start_lookup_level);
919 if (f) {
920 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
921 if (currState->timing) {
922 pending = false;
923 nextWalk(currState->tc);
924 currState = NULL;
925 } else {
926 currState->tc = NULL;
927 currState->req = NULL;
928 }
929 return f;
930 }
931
932 Request::Flags flag = Request::PT_WALK;
933 if (currState->sctlr.c == 0) {
934 flag.set(Request::UNCACHEABLE);
935 }
936
937 if (currState->isSecure) {
938 flag.set(Request::SECURE);
939 }
940
941 currState->longDesc.lookupLevel = start_lookup_level;
942 currState->longDesc.aarch64 = true;
943 currState->longDesc.grainSize = tg;
944
945 if (currState->timing) {
946 Event *event;
947 switch (start_lookup_level) {
948 case L0:
949 event = (Event *) &doL0LongDescEvent;
950 break;
951 case L1:
952 event = (Event *) &doL1LongDescEvent;
953 break;
954 case L2:
955 event = (Event *) &doL2LongDescEvent;
956 break;
957 case L3:
958 event = (Event *) &doL3LongDescEvent;
959 break;
960 default:
961 panic("Invalid table lookup level");
962 break;
963 }
964 port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
965 event, (uint8_t*) &currState->longDesc.data,
966 currState->tc->getCpuPtr()->clockPeriod(), flag);
967 DPRINTF(TLBVerbose,
968 "Adding to walker fifo: queue size before adding: %d\n",
969 stateQueues[start_lookup_level].size());
970 stateQueues[start_lookup_level].push_back(currState);
971 currState = NULL;
972 } else if (!currState->functional) {
973 port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
974 NULL, (uint8_t*) &currState->longDesc.data,
975 currState->tc->getCpuPtr()->clockPeriod(), flag);
976 doLongDescriptor();
977 f = currState->fault;
978 } else {
979 RequestPtr req = new Request(desc_addr, sizeof(uint64_t), flag,
980 masterId);
981 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
982 pkt->dataStatic((uint8_t*) &currState->longDesc.data);
983 port->sendFunctional(pkt);
984 doLongDescriptor();
985 delete req;
986 delete pkt;
987 f = currState->fault;
988 }
989
990 return f;
991}
992
993void
994TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
995 uint8_t texcb, bool s)
996{
997 // Note: tc and sctlr local variables are hiding tc and sctrl class
998 // variables
999 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1000 te.shareable = false; // default value
1001 te.nonCacheable = false;
1002 te.outerShareable = false;
1003 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1004 switch(texcb) {
1005 case 0: // Stongly-ordered
1006 te.nonCacheable = true;
1007 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1008 te.shareable = true;
1009 te.innerAttrs = 1;
1010 te.outerAttrs = 0;
1011 break;
1012 case 1: // Shareable Device
1013 te.nonCacheable = true;
1014 te.mtype = TlbEntry::MemoryType::Device;
1015 te.shareable = true;
1016 te.innerAttrs = 3;
1017 te.outerAttrs = 0;
1018 break;
1019 case 2: // Outer and Inner Write-Through, no Write-Allocate
1020 te.mtype = TlbEntry::MemoryType::Normal;
1021 te.shareable = s;
1022 te.innerAttrs = 6;
1023 te.outerAttrs = bits(texcb, 1, 0);
1024 break;
1025 case 3: // Outer and Inner Write-Back, no Write-Allocate
1026 te.mtype = TlbEntry::MemoryType::Normal;
1027 te.shareable = s;
1028 te.innerAttrs = 7;
1029 te.outerAttrs = bits(texcb, 1, 0);
1030 break;
1031 case 4: // Outer and Inner Non-cacheable
1032 te.nonCacheable = true;
1033 te.mtype = TlbEntry::MemoryType::Normal;
1034 te.shareable = s;
1035 te.innerAttrs = 0;
1036 te.outerAttrs = bits(texcb, 1, 0);
1037 break;
1038 case 5: // Reserved
1039 panic("Reserved texcb value!\n");
1040 break;
1041 case 6: // Implementation Defined
1042 panic("Implementation-defined texcb value!\n");
1043 break;
1044 case 7: // Outer and Inner Write-Back, Write-Allocate
1045 te.mtype = TlbEntry::MemoryType::Normal;
1046 te.shareable = s;
1047 te.innerAttrs = 5;
1048 te.outerAttrs = 1;
1049 break;
1050 case 8: // Non-shareable Device
1051 te.nonCacheable = true;
1052 te.mtype = TlbEntry::MemoryType::Device;
1053 te.shareable = false;
1054 te.innerAttrs = 3;
1055 te.outerAttrs = 0;
1056 break;
1057 case 9 ... 15: // Reserved
1058 panic("Reserved texcb value!\n");
1059 break;
1060 case 16 ... 31: // Cacheable Memory
1061 te.mtype = TlbEntry::MemoryType::Normal;
1062 te.shareable = s;
1063 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1064 te.nonCacheable = true;
1065 te.innerAttrs = bits(texcb, 1, 0);
1066 te.outerAttrs = bits(texcb, 3, 2);
1067 break;
1068 default:
1069 panic("More than 32 states for 5 bits?\n");
1070 }
1071 } else {
1072 assert(tc);
1073 PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1074 currState->tc, !currState->isSecure));
1075 NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1076 currState->tc, !currState->isSecure));
1077 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1078 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1079 switch(bits(texcb, 2,0)) {
1080 case 0:
1081 curr_tr = prrr.tr0;
1082 curr_ir = nmrr.ir0;
1083 curr_or = nmrr.or0;
1084 te.outerShareable = (prrr.nos0 == 0);
1085 break;
1086 case 1:
1087 curr_tr = prrr.tr1;
1088 curr_ir = nmrr.ir1;
1089 curr_or = nmrr.or1;
1090 te.outerShareable = (prrr.nos1 == 0);
1091 break;
1092 case 2:
1093 curr_tr = prrr.tr2;
1094 curr_ir = nmrr.ir2;
1095 curr_or = nmrr.or2;
1096 te.outerShareable = (prrr.nos2 == 0);
1097 break;
1098 case 3:
1099 curr_tr = prrr.tr3;
1100 curr_ir = nmrr.ir3;
1101 curr_or = nmrr.or3;
1102 te.outerShareable = (prrr.nos3 == 0);
1103 break;
1104 case 4:
1105 curr_tr = prrr.tr4;
1106 curr_ir = nmrr.ir4;
1107 curr_or = nmrr.or4;
1108 te.outerShareable = (prrr.nos4 == 0);
1109 break;
1110 case 5:
1111 curr_tr = prrr.tr5;
1112 curr_ir = nmrr.ir5;
1113 curr_or = nmrr.or5;
1114 te.outerShareable = (prrr.nos5 == 0);
1115 break;
1116 case 6:
1117 panic("Imp defined type\n");
1118 case 7:
1119 curr_tr = prrr.tr7;
1120 curr_ir = nmrr.ir7;
1121 curr_or = nmrr.or7;
1122 te.outerShareable = (prrr.nos7 == 0);
1123 break;
1124 }
1125
1126 switch(curr_tr) {
1127 case 0:
1128 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1129 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1130 te.nonCacheable = true;
1131 te.innerAttrs = 1;
1132 te.outerAttrs = 0;
1133 te.shareable = true;
1134 break;
1135 case 1:
1136 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1137 prrr.ds1, prrr.ds0, s);
1138 te.mtype = TlbEntry::MemoryType::Device;
1139 te.nonCacheable = true;
1140 te.innerAttrs = 3;
1141 te.outerAttrs = 0;
1142 if (prrr.ds1 && s)
1143 te.shareable = true;
1144 if (prrr.ds0 && !s)
1145 te.shareable = true;
1146 break;
1147 case 2:
1148 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1149 prrr.ns1, prrr.ns0, s);
1150 te.mtype = TlbEntry::MemoryType::Normal;
1151 if (prrr.ns1 && s)
1152 te.shareable = true;
1153 if (prrr.ns0 && !s)
1154 te.shareable = true;
1155 break;
1156 case 3:
1157 panic("Reserved type");
1158 }
1159
1160 if (te.mtype == TlbEntry::MemoryType::Normal){
1161 switch(curr_ir) {
1162 case 0:
1163 te.nonCacheable = true;
1164 te.innerAttrs = 0;
1165 break;
1166 case 1:
1167 te.innerAttrs = 5;
1168 break;
1169 case 2:
1170 te.innerAttrs = 6;
1171 break;
1172 case 3:
1173 te.innerAttrs = 7;
1174 break;
1175 }
1176
1177 switch(curr_or) {
1178 case 0:
1179 te.nonCacheable = true;
1180 te.outerAttrs = 0;
1181 break;
1182 case 1:
1183 te.outerAttrs = 1;
1184 break;
1185 case 2:
1186 te.outerAttrs = 2;
1187 break;
1188 case 3:
1189 te.outerAttrs = 3;
1190 break;
1191 }
1192 }
1193 }
1194 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1195 "outerAttrs: %d\n",
1196 te.shareable, te.innerAttrs, te.outerAttrs);
1197 te.setAttributes(false);
1198}
1199
1200void
1201TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1202 LongDescriptor &lDescriptor)
1203{
1204 assert(_haveLPAE);
1205
1206 uint8_t attr;
1207 uint8_t sh = lDescriptor.sh();
1208 // Different format and source of attributes if this is a stage 2
1209 // translation
1210 if (isStage2) {
1211 attr = lDescriptor.memAttr();
1212 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1213 uint8_t attr_1_0 = attr & 0x3;
1214
1215 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1216
1217 if (attr_3_2 == 0) {
1218 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1219 : TlbEntry::MemoryType::Device;
1220 te.outerAttrs = 0;
1221 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1222 te.nonCacheable = true;
1223 } else {
1224 te.mtype = TlbEntry::MemoryType::Normal;
1225 te.outerAttrs = attr_3_2 == 1 ? 0 :
1226 attr_3_2 == 2 ? 2 : 1;
1227 te.innerAttrs = attr_1_0 == 1 ? 0 :
1228 attr_1_0 == 2 ? 6 : 5;
1229 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1230 }
1231 } else {
1232 uint8_t attrIndx = lDescriptor.attrIndx();
1233
1234 // LPAE always uses remapping of memory attributes, irrespective of the
1235 // value of SCTLR.TRE
1236 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1237 int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1238 !currState->isSecure);
1239 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1240 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1241 uint8_t attr_7_4 = bits(attr, 7, 4);
1242 uint8_t attr_3_0 = bits(attr, 3, 0);
1243 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1244
1245 // Note: the memory subsystem only cares about the 'cacheable' memory
1246 // attribute. The other attributes are only used to fill the PAR register
1247 // accordingly to provide the illusion of full support
1248 te.nonCacheable = false;
1249
1250 switch (attr_7_4) {
1251 case 0x0:
1252 // Strongly-ordered or Device memory
1253 if (attr_3_0 == 0x0)
1254 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1255 else if (attr_3_0 == 0x4)
1256 te.mtype = TlbEntry::MemoryType::Device;
1257 else
1258 panic("Unpredictable behavior\n");
1259 te.nonCacheable = true;
1260 te.outerAttrs = 0;
1261 break;
1262 case 0x4:
1263 // Normal memory, Outer Non-cacheable
1264 te.mtype = TlbEntry::MemoryType::Normal;
1265 te.outerAttrs = 0;
1266 if (attr_3_0 == 0x4)
1267 // Inner Non-cacheable
1268 te.nonCacheable = true;
1269 else if (attr_3_0 < 0x8)
1270 panic("Unpredictable behavior\n");
1271 break;
1272 case 0x8:
1273 case 0x9:
1274 case 0xa:
1275 case 0xb:
1276 case 0xc:
1277 case 0xd:
1278 case 0xe:
1279 case 0xf:
1280 if (attr_7_4 & 0x4) {
1281 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1282 } else {
1283 te.outerAttrs = 0x2;
1284 }
1285 // Normal memory, Outer Cacheable
1286 te.mtype = TlbEntry::MemoryType::Normal;
1287 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1288 panic("Unpredictable behavior\n");
1289 break;
1290 default:
1291 panic("Unpredictable behavior\n");
1292 break;
1293 }
1294
1295 switch (attr_3_0) {
1296 case 0x0:
1297 te.innerAttrs = 0x1;
1298 break;
1299 case 0x4:
1300 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1301 break;
1302 case 0x8:
1303 case 0x9:
1304 case 0xA:
1305 case 0xB:
1306 te.innerAttrs = 6;
1307 break;
1308 case 0xC:
1309 case 0xD:
1310 case 0xE:
1311 case 0xF:
1312 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1313 break;
1314 default:
1315 panic("Unpredictable behavior\n");
1316 break;
1317 }
1318 }
1319
1320 te.outerShareable = sh == 2;
1321 te.shareable = (sh & 0x2) ? true : false;
1322 te.setAttributes(true);
1323 te.attributes |= (uint64_t) attr << 56;
1324}
1325
1326void
1327TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te, uint8_t attrIndx,
1328 uint8_t sh)
1329{
1330 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1331
1332 // Select MAIR
1333 uint64_t mair;
1334 switch (currState->el) {
1335 case EL0:
1336 case EL1:
1337 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1338 break;
1339 case EL2:
1340 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1341 break;
1342 case EL3:
1343 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1344 break;
1345 default:
1346 panic("Invalid exception level");
1347 break;
1348 }
1349
1350 // Select attributes
1351 uint8_t attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1352 uint8_t attr_lo = bits(attr, 3, 0);
1353 uint8_t attr_hi = bits(attr, 7, 4);
1354
1355 // Memory type
1356 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1357
1358 // Cacheability
1359 te.nonCacheable = false;
1360 if (te.mtype == TlbEntry::MemoryType::Device || // Device memory
1361 attr_hi == 0x8 || // Normal memory, Outer Non-cacheable
1362 attr_lo == 0x8) { // Normal memory, Inner Non-cacheable
1363 te.nonCacheable = true;
1364 }
1365
1366 te.shareable = sh == 2;
1367 te.outerShareable = (sh & 0x2) ? true : false;
1368 // Attributes formatted according to the 64-bit PAR
1369 te.attributes = ((uint64_t) attr << 56) |
1370 (1 << 11) | // LPAE bit
1371 (te.ns << 9) | // NS bit
1372 (sh << 7);
1373}
1374
1375void
1376TableWalker::doL1Descriptor()
1377{
1378 if (currState->fault != NoFault) {
1379 return;
1380 }
1381
1382 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1383 currState->vaddr_tainted, currState->l1Desc.data);
1384 TlbEntry te;
1385
1386 switch (currState->l1Desc.type()) {
1387 case L1Descriptor::Ignore:
1388 case L1Descriptor::Reserved:
1389 if (!currState->timing) {
1390 currState->tc = NULL;
1391 currState->req = NULL;
1392 }
1393 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1394 if (currState->isFetch)
1395 currState->fault =
1396 std::make_shared<PrefetchAbort>(
1397 currState->vaddr_tainted,
1398 ArmFault::TranslationLL + L1,
1399 isStage2,
1400 ArmFault::VmsaTran);
1401 else
1402 currState->fault =
1403 std::make_shared<DataAbort>(
1404 currState->vaddr_tainted,
1405 TlbEntry::DomainType::NoAccess,
1406 currState->isWrite,
1407 ArmFault::TranslationLL + L1, isStage2,
1408 ArmFault::VmsaTran);
1409 return;
1410 case L1Descriptor::Section:
1411 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1412 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1413 * enabled if set, do l1.Desc.setAp0() instead of generating
1414 * AccessFlag0
1415 */
1416
1417 currState->fault = std::make_shared<DataAbort>(
1418 currState->vaddr_tainted,
1419 currState->l1Desc.domain(),
1420 currState->isWrite,
1421 ArmFault::AccessFlagLL + L1,
1422 isStage2,
1423 ArmFault::VmsaTran);
1424 }
1425 if (currState->l1Desc.supersection()) {
1426 panic("Haven't implemented supersections\n");
1427 }
1428 insertTableEntry(currState->l1Desc, false);
1429 return;
1430 case L1Descriptor::PageTable:
1431 {
1432 Addr l2desc_addr;
1433 l2desc_addr = currState->l1Desc.l2Addr() |
1434 (bits(currState->vaddr, 19, 12) << 2);
1435 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1436 l2desc_addr, currState->isSecure ? "s" : "ns");
1437
1438 // Trickbox address check
1439 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1440 currState->l1Desc.domain(), L2);
1441
1442 if (currState->fault) {
1443 if (!currState->timing) {
1444 currState->tc = NULL;
1445 currState->req = NULL;
1446 }
1447 return;
1448 }
1449
1450 Request::Flags flag = Request::PT_WALK;
1451 if (currState->isSecure)
1452 flag.set(Request::SECURE);
1453
1454 bool delayed;
1455 delayed = fetchDescriptor(l2desc_addr,
1456 (uint8_t*)&currState->l2Desc.data,
1457 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1458 &TableWalker::doL2Descriptor);
1459 if (delayed) {
1460 currState->delayed = true;
1461 }
1462
1463 return;
1464 }
1465 default:
1466 panic("A new type in a 2 bit field?\n");
1467 }
1468}
1469
1470void
1471TableWalker::doLongDescriptor()
1472{
1473 if (currState->fault != NoFault) {
1474 return;
1475 }
1476
1477 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1478 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1479 currState->longDesc.data,
1480 currState->aarch64 ? "AArch64" : "long-desc.");
1481
1482 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1483 (currState->longDesc.type() == LongDescriptor::Page)) {
1484 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1485 "xn: %d, ap: %d, af: %d, type: %d\n",
1486 currState->longDesc.lookupLevel,
1487 currState->longDesc.data,
1488 currState->longDesc.pxn(),
1489 currState->longDesc.xn(),
1490 currState->longDesc.ap(),
1491 currState->longDesc.af(),
1492 currState->longDesc.type());
1493 } else {
1494 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1495 currState->longDesc.lookupLevel,
1496 currState->longDesc.data,
1497 currState->longDesc.type());
1498 }
1499
1500 TlbEntry te;
1501
1502 switch (currState->longDesc.type()) {
1503 case LongDescriptor::Invalid:
1504 if (!currState->timing) {
1505 currState->tc = NULL;
1506 currState->req = NULL;
1507 }
1508
1509 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1510 currState->longDesc.lookupLevel,
1511 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1512 if (currState->isFetch)
1513 currState->fault = std::make_shared<PrefetchAbort>(
1514 currState->vaddr_tainted,
1515 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1516 isStage2,
1517 ArmFault::LpaeTran);
1518 else
1519 currState->fault = std::make_shared<DataAbort>(
1520 currState->vaddr_tainted,
1521 TlbEntry::DomainType::NoAccess,
1522 currState->isWrite,
1523 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1524 isStage2,
1525 ArmFault::LpaeTran);
1526 return;
1527 case LongDescriptor::Block:
1528 case LongDescriptor::Page:
1529 {
1530 bool fault = false;
1531 bool aff = false;
1532 // Check for address size fault
1533 if (checkAddrSizeFaultAArch64(
1534 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1535 currState->longDesc.offsetBits()),
1536 currState->physAddrRange)) {
1537 fault = true;
1538 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1539 currState->longDesc.lookupLevel);
1540 // Check for access fault
1541 } else if (currState->longDesc.af() == 0) {
1542 fault = true;
1543 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1544 currState->longDesc.lookupLevel);
1545 aff = true;
1546 }
1547 if (fault) {
1548 if (currState->isFetch)
1549 currState->fault = std::make_shared<PrefetchAbort>(
1550 currState->vaddr_tainted,
1551 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1552 currState->longDesc.lookupLevel,
1553 isStage2,
1554 ArmFault::LpaeTran);
1555 else
1556 currState->fault = std::make_shared<DataAbort>(
1557 currState->vaddr_tainted,
1558 TlbEntry::DomainType::NoAccess, currState->isWrite,
1559 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1560 currState->longDesc.lookupLevel,
1561 isStage2,
1562 ArmFault::LpaeTran);
1563 } else {
1564 insertTableEntry(currState->longDesc, true);
1565 }
1566 }
1567 return;
1568 case LongDescriptor::Table:
1569 {
1570 // Set hierarchical permission flags
1571 currState->secureLookup = currState->secureLookup &&
1572 currState->longDesc.secureTable();
1573 currState->rwTable = currState->rwTable &&
1574 currState->longDesc.rwTable();
1575 currState->userTable = currState->userTable &&
1576 currState->longDesc.userTable();
1577 currState->xnTable = currState->xnTable ||
1578 currState->longDesc.xnTable();
1579 currState->pxnTable = currState->pxnTable ||
1580 currState->longDesc.pxnTable();
1581
1582 // Set up next level lookup
1583 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1584 currState->vaddr);
1585
1586 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1587 currState->longDesc.lookupLevel,
1588 currState->longDesc.lookupLevel + 1,
1589 next_desc_addr,
1590 currState->secureLookup ? "s" : "ns");
1591
1592 // Check for address size fault
1593 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1594 next_desc_addr, currState->physAddrRange)) {
1595 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1596 currState->longDesc.lookupLevel);
1597 if (currState->isFetch)
1598 currState->fault = std::make_shared<PrefetchAbort>(
1599 currState->vaddr_tainted,
1600 ArmFault::AddressSizeLL
1601 + currState->longDesc.lookupLevel,
1602 isStage2,
1603 ArmFault::LpaeTran);
1604 else
1605 currState->fault = std::make_shared<DataAbort>(
1606 currState->vaddr_tainted,
1607 TlbEntry::DomainType::NoAccess, currState->isWrite,
1608 ArmFault::AddressSizeLL
1609 + currState->longDesc.lookupLevel,
1610 isStage2,
1611 ArmFault::LpaeTran);
1612 return;
1613 }
1614
1615 // Trickbox address check
1616 currState->fault = testWalk(
1617 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1618 toLookupLevel(currState->longDesc.lookupLevel +1));
1619
1620 if (currState->fault) {
1621 if (!currState->timing) {
1622 currState->tc = NULL;
1623 currState->req = NULL;
1624 }
1625 return;
1626 }
1627
1628 Request::Flags flag = Request::PT_WALK;
1629 if (currState->secureLookup)
1630 flag.set(Request::SECURE);
1631
1632 currState->longDesc.lookupLevel =
1633 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1634 Event *event = NULL;
1635 switch (currState->longDesc.lookupLevel) {
1636 case L1:
1637 assert(currState->aarch64);
1638 event = &doL1LongDescEvent;
1639 break;
1640 case L2:
1641 event = &doL2LongDescEvent;
1642 break;
1643 case L3:
1644 event = &doL3LongDescEvent;
1645 break;
1646 default:
1647 panic("Wrong lookup level in table walk\n");
1648 break;
1649 }
1650
1651 bool delayed;
1652 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1653 sizeof(uint64_t), flag, -1, event,
1654 &TableWalker::doLongDescriptor);
1655 if (delayed) {
1656 currState->delayed = true;
1657 }
1658 }
1659 return;
1660 default:
1661 panic("A new type in a 2 bit field?\n");
1662 }
1663}
1664
1665void
1666TableWalker::doL2Descriptor()
1667{
1668 if (currState->fault != NoFault) {
1669 return;
1670 }
1671
1672 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1673 currState->vaddr_tainted, currState->l2Desc.data);
1674 TlbEntry te;
1675
1676 if (currState->l2Desc.invalid()) {
1677 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1678 if (!currState->timing) {
1679 currState->tc = NULL;
1680 currState->req = NULL;
1681 }
1682 if (currState->isFetch)
1683 currState->fault = std::make_shared<PrefetchAbort>(
1684 currState->vaddr_tainted,
1685 ArmFault::TranslationLL + L2,
1686 isStage2,
1687 ArmFault::VmsaTran);
1688 else
1689 currState->fault = std::make_shared<DataAbort>(
1690 currState->vaddr_tainted, currState->l1Desc.domain(),
1691 currState->isWrite, ArmFault::TranslationLL + L2,
1692 isStage2,
1693 ArmFault::VmsaTran);
1694 return;
1695 }
1696
1697 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1698 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1699 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1700 */
1701 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1702 currState->sctlr.afe, currState->l2Desc.ap());
1703
1704 currState->fault = std::make_shared<DataAbort>(
1705 currState->vaddr_tainted,
1706 TlbEntry::DomainType::NoAccess, currState->isWrite,
1707 ArmFault::AccessFlagLL + L2, isStage2,
1708 ArmFault::VmsaTran);
1709 }
1710
1711 insertTableEntry(currState->l2Desc, false);
1712}
1713
1714void
1715TableWalker::doL1DescriptorWrapper()
1716{
1717 currState = stateQueues[L1].front();
1718 currState->delayed = false;
1719 // if there's a stage2 translation object we don't need it any more
1720 if (currState->stage2Tran) {
1721 delete currState->stage2Tran;
1722 currState->stage2Tran = NULL;
1723 }
1724
1725
1726 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1727 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1728
1729 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1730 doL1Descriptor();
1731
1732 stateQueues[L1].pop_front();
1733 // Check if fault was generated
1734 if (currState->fault != NoFault) {
1735 currState->transState->finish(currState->fault, currState->req,
1736 currState->tc, currState->mode);
1737 statWalksShortTerminatedAtLevel[0]++;
1738
1739 pending = false;
1740 nextWalk(currState->tc);
1741
1742 currState->req = NULL;
1743 currState->tc = NULL;
1744 currState->delayed = false;
1745 delete currState;
1746 }
1747 else if (!currState->delayed) {
1748 // delay is not set so there is no L2 to do
1749 // Don't finish the translation if a stage 2 look up is underway
1750 if (!currState->doingStage2) {
1751 statWalkServiceTime.sample(curTick() - currState->startTime);
1752 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1753 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1754 currState->transState, currState->mode);
1755 statWalksShortTerminatedAtLevel[0]++;
1756 }
1757
1758 pending = false;
1759 nextWalk(currState->tc);
1760
1761 currState->req = NULL;
1762 currState->tc = NULL;
1763 currState->delayed = false;
1764 delete currState;
1765 } else {
1766 // need to do L2 descriptor
1767 stateQueues[L2].push_back(currState);
1768 }
1769 currState = NULL;
1770}
1771
1772void
1773TableWalker::doL2DescriptorWrapper()
1774{
1775 currState = stateQueues[L2].front();
1776 assert(currState->delayed);
1777 // if there's a stage2 translation object we don't need it any more
1778 if (currState->stage2Tran) {
1779 delete currState->stage2Tran;
1780 currState->stage2Tran = NULL;
1781 }
1782
1783 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1784 currState->vaddr_tainted);
1785 doL2Descriptor();
1786
1787 // Check if fault was generated
1788 if (currState->fault != NoFault) {
1789 currState->transState->finish(currState->fault, currState->req,
1790 currState->tc, currState->mode);
1791 statWalksShortTerminatedAtLevel[1]++;
1792 }
1793 else {
1794 // Don't finish the translation if a stage 2 look up is underway
1795 if (!currState->doingStage2) {
1796 statWalkServiceTime.sample(curTick() - currState->startTime);
1797 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1798 currState->fault = tlb->translateTiming(currState->req,
1799 currState->tc, currState->transState, currState->mode);
1800 statWalksShortTerminatedAtLevel[1]++;
1801 }
1802 }
1803
1804
1805 stateQueues[L2].pop_front();
1806 pending = false;
1807 nextWalk(currState->tc);
1808
1809 currState->req = NULL;
1810 currState->tc = NULL;
1811 currState->delayed = false;
1812
1813 delete currState;
1814 currState = NULL;
1815}
1816
1817void
1818TableWalker::doL0LongDescriptorWrapper()
1819{
1820 doLongDescriptorWrapper(L0);
1821}
1822
1823void
1824TableWalker::doL1LongDescriptorWrapper()
1825{
1826 doLongDescriptorWrapper(L1);
1827}
1828
1829void
1830TableWalker::doL2LongDescriptorWrapper()
1831{
1832 doLongDescriptorWrapper(L2);
1833}
1834
1835void
1836TableWalker::doL3LongDescriptorWrapper()
1837{
1838 doLongDescriptorWrapper(L3);
1839}
1840
1841void
1842TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1843{
1844 currState = stateQueues[curr_lookup_level].front();
1845 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1846 currState->delayed = false;
1847
1848 // if there's a stage2 translation object we don't need it any more
1849 if (currState->stage2Tran) {
1850 delete currState->stage2Tran;
1851 currState->stage2Tran = NULL;
1852 }
1853
1854 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1855 currState->vaddr_tainted);
1856 doLongDescriptor();
1857
1858 stateQueues[curr_lookup_level].pop_front();
1859
1860 if (currState->fault != NoFault) {
1861 // A fault was generated
1862 currState->transState->finish(currState->fault, currState->req,
1863 currState->tc, currState->mode);
1864
1865 pending = false;
1866 nextWalk(currState->tc);
1867
1868 currState->req = NULL;
1869 currState->tc = NULL;
1870 currState->delayed = false;
1871 delete currState;
1872 } else if (!currState->delayed) {
1873 // No additional lookups required
1874 // Don't finish the translation if a stage 2 look up is underway
1875 if (!currState->doingStage2) {
1876 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1877 statWalkServiceTime.sample(curTick() - currState->startTime);
1878 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1879 currState->transState,
1880 currState->mode);
1881 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1882 }
1883
1884 pending = false;
1885 nextWalk(currState->tc);
1886
1887 currState->req = NULL;
1888 currState->tc = NULL;
1889 currState->delayed = false;
1890 delete currState;
1891 } else {
1892 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1893 panic("Max. number of lookups already reached in table walk\n");
1894 // Need to perform additional lookups
1895 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1896 }
1897 currState = NULL;
1898}
1899
1900
1901void
1902TableWalker::nextWalk(ThreadContext *tc)
1903{
1904 if (pendingQueue.size())
1905 schedule(doProcessEvent, clockEdge(Cycles(1)));
1906 else
1907 completeDrain();
1908}
1909
1910bool
1911TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1912 Request::Flags flags, int queueIndex, Event *event,
1913 void (TableWalker::*doDescriptor)())
1914{
1915 bool isTiming = currState->timing;
1916
1917 // do the requests for the page table descriptors have to go through the
1918 // second stage MMU
1919 if (currState->stage2Req) {
1920 Fault fault;
1921 flags = flags | TLB::MustBeOne;
1922
1923 if (isTiming) {
1924 Stage2MMU::Stage2Translation *tran = new
1925 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1926 currState->vaddr);
1927 currState->stage2Tran = tran;
1928 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1929 flags);
1930 fault = tran->fault;
1931 } else {
1932 fault = stage2Mmu->readDataUntimed(currState->tc,
1933 currState->vaddr, descAddr, data, numBytes, flags,
1934 currState->functional);
1935 }
1936
1937 if (fault != NoFault) {
1938 currState->fault = fault;
1939 }
1940 if (isTiming) {
1941 if (queueIndex >= 0) {
1942 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1943 stateQueues[queueIndex].size());
1944 stateQueues[queueIndex].push_back(currState);
1945 currState = NULL;
1946 }
1947 } else {
1948 (this->*doDescriptor)();
1949 }
1950 } else {
1951 if (isTiming) {
1952 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1953 currState->tc->getCpuPtr()->clockPeriod(),flags);
1954 if (queueIndex >= 0) {
1955 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1956 stateQueues[queueIndex].size());
1957 stateQueues[queueIndex].push_back(currState);
1958 currState = NULL;
1959 }
1960 } else if (!currState->functional) {
1961 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
1962 currState->tc->getCpuPtr()->clockPeriod(), flags);
1963 (this->*doDescriptor)();
1964 } else {
1965 RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
1966 req->taskId(ContextSwitchTaskId::DMA);
1967 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
1968 pkt->dataStatic(data);
1969 port->sendFunctional(pkt);
1970 (this->*doDescriptor)();
1971 delete req;
1972 delete pkt;
1973 }
1974 }
1975 return (isTiming);
1976}
1977
1978void
1979TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
1980{
1981 TlbEntry te;
1982
1983 // Create and fill a new page table entry
1984 te.valid = true;
1985 te.longDescFormat = longDescriptor;
1986 te.isHyp = currState->isHyp;
1987 te.asid = currState->asid;
1988 te.vmid = currState->vmid;
1989 te.N = descriptor.offsetBits();
1990 te.vpn = currState->vaddr >> te.N;
1991 te.size = (1<<te.N) - 1;
1992 te.pfn = descriptor.pfn();
1993 te.domain = descriptor.domain();
1994 te.lookupLevel = descriptor.lookupLevel;
1995 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
1996 te.nstid = !currState->isSecure;
1997 te.xn = descriptor.xn();
1998 if (currState->aarch64)
1999 te.el = currState->el;
2000 else
2001 te.el = 1;
2002
2003 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2004 statRequestOrigin[COMPLETED][currState->isFetch]++;
2005
2006 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2007 // as global
2008 te.global = descriptor.global(currState) || isStage2;
2009 if (longDescriptor) {
2010 LongDescriptor lDescriptor =
2011 dynamic_cast<LongDescriptor &>(descriptor);
2012
2013 te.xn |= currState->xnTable;
2014 te.pxn = currState->pxnTable || lDescriptor.pxn();
2015 if (isStage2) {
2016 // this is actually the HAP field, but its stored in the same bit
2017 // possitions as the AP field in a stage 1 translation.
2018 te.hap = lDescriptor.ap();
2019 } else {
2020 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2021 (currState->userTable && (descriptor.ap() & 0x1));
2022 }
2023 if (currState->aarch64)
2024 memAttrsAArch64(currState->tc, te, currState->longDesc.attrIndx(),
2025 currState->longDesc.sh());
2026 else
2027 memAttrsLPAE(currState->tc, te, lDescriptor);
2028 } else {
2029 te.ap = descriptor.ap();
2030 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2031 descriptor.shareable());
2032 }
2033
2034 // Debug output
2035 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2036 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2037 te.N, te.pfn, te.size, te.global, te.valid);
2038 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2039 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2040 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2041 te.nonCacheable, te.ns);
2042 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2043 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2044 descriptor.getRawData());
2045
2046 // Insert the entry into the TLB
2047 tlb->insert(currState->vaddr, te);
2048 if (!currState->timing) {
2049 currState->tc = NULL;
2050 currState->req = NULL;
2051 }
2052}
2053
2054ArmISA::TableWalker *
2055ArmTableWalkerParams::create()
2056{
2057 return new ArmISA::TableWalker(this);
2058}
2059
2060LookupLevel
2061TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2062{
2063 switch (lookup_level_as_int) {
2064 case L1:
2065 return L1;
2066 case L2:
2067 return L2;
2068 case L3:
2069 return L3;
2070 default:
2071 panic("Invalid lookup level conversion");
2072 }
2073}
2074
2075/* this method keeps track of the table walker queue's residency, so
2076 * needs to be called whenever requests start and complete. */
2077void
2078TableWalker::pendingChange()
2079{
2080 unsigned n = pendingQueue.size();
2081 if ((currState != NULL) && (currState != pendingQueue.front())) {
2082 ++n;
2083 }
2084
2085 if (n != pendingReqs) {
2086 Tick now = curTick();
2087 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2088 pendingReqs = n;
2089 pendingChangeTick = now;
2090 }
2091}
2092
2093Fault
2094TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2095 LookupLevel lookup_level)
2096{
2097 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2098 currState->mode, domain, lookup_level);
2099}
2100
2101
2102uint8_t
2103TableWalker::pageSizeNtoStatBin(uint8_t N)
2104{
2105 /* for statPageSizes */
2106 switch(N) {
2107 case 12: return 0; // 4K
2108 case 14: return 1; // 16K (using 16K granule in v8-64)
2109 case 16: return 2; // 64K
2110 case 20: return 3; // 1M
2111 case 21: return 4; // 2M-LPAE
2112 case 24: return 5; // 16M
2113 case 25: return 6; // 32M (using 16K granule in v8-64)
2114 case 29: return 7; // 512M (using 64K granule in v8-64)
2115 case 30: return 8; // 1G-LPAE
2116 default:
2117 panic("unknown page size");
2118 return 255;
2119 }
2120}
2121
2122void
2123TableWalker::regStats()
2124{
2125 statWalks
2126 .name(name() + ".walks")
2127 .desc("Table walker walks requested")
2128 ;
2129
2130 statWalksShortDescriptor
2131 .name(name() + ".walksShort")
2132 .desc("Table walker walks initiated with short descriptors")
2133 .flags(Stats::nozero)
2134 ;
2135
2136 statWalksLongDescriptor
2137 .name(name() + ".walksLong")
2138 .desc("Table walker walks initiated with long descriptors")
2139 .flags(Stats::nozero)
2140 ;
2141
2142 statWalksShortTerminatedAtLevel
2143 .init(2)
2144 .name(name() + ".walksShortTerminationLevel")
2145 .desc("Level at which table walker walks "
2146 "with short descriptors terminate")
2147 .flags(Stats::nozero)
2148 ;
2149 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2150 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2151
2152 statWalksLongTerminatedAtLevel
2153 .init(4)
2154 .name(name() + ".walksLongTerminationLevel")
2155 .desc("Level at which table walker walks "
2156 "with long descriptors terminate")
2157 .flags(Stats::nozero)
2158 ;
2159 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2160 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2161 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2162 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2163
2164 statSquashedBefore
2165 .name(name() + ".walksSquashedBefore")
2166 .desc("Table walks squashed before starting")
2167 .flags(Stats::nozero)
2168 ;
2169
2170 statSquashedAfter
2171 .name(name() + ".walksSquashedAfter")
2172 .desc("Table walks squashed after completion")
2173 .flags(Stats::nozero)
2174 ;
2175
2176 statWalkWaitTime
2177 .init(16)
2178 .name(name() + ".walkWaitTime")
2179 .desc("Table walker wait (enqueue to first request) latency")
2180 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2181 ;
2182
2183 statWalkServiceTime
2184 .init(16)
2185 .name(name() + ".walkCompletionTime")
2186 .desc("Table walker service (enqueue to completion) latency")
2187 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2188 ;
2189
2190 statPendingWalks
2191 .init(16)
2192 .name(name() + ".walksPending")
2193 .desc("Table walker pending requests distribution")
2194 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2195 ;
2196
2197 statPageSizes // see DDI 0487A D4-1661
2198 .init(9)
2199 .name(name() + ".walkPageSizes")
2200 .desc("Table walker page sizes translated")
2201 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2202 ;
2203 statPageSizes.subname(0, "4K");
2204 statPageSizes.subname(1, "16K");
2205 statPageSizes.subname(2, "64K");
2206 statPageSizes.subname(3, "1M");
2207 statPageSizes.subname(4, "2M");
2208 statPageSizes.subname(5, "16M");
2209 statPageSizes.subname(6, "32M");
2210 statPageSizes.subname(7, "512M");
2211 statPageSizes.subname(8, "1G");
2212
2213 statRequestOrigin
2214 .init(2,2) // Instruction/Data, requests/completed
2215 .name(name() + ".walkRequestOrigin")
2216 .desc("Table walker requests started/completed, data/inst")
2217 .flags(Stats::total)
2218 ;
2219 statRequestOrigin.subname(0,"Requested");
2220 statRequestOrigin.subname(1,"Completed");
2221 statRequestOrigin.ysubname(0,"Data");
2222 statRequestOrigin.ysubname(1,"Inst");
2223}