table_walker.cc (14088:8de55a7aa53b) table_walker.cc (14093:5fbd7d00b58e)
1/*
2 * Copyright (c) 2010, 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : ClockedObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent([this]{ doL1DescriptorWrapper(); }, name()),
68 doL2DescEvent([this]{ doL2DescriptorWrapper(); }, name()),
69 doL0LongDescEvent([this]{ doL0LongDescriptorWrapper(); }, name()),
70 doL1LongDescEvent([this]{ doL1LongDescriptorWrapper(); }, name()),
71 doL2LongDescEvent([this]{ doL2LongDescriptorWrapper(); }, name()),
72 doL3LongDescEvent([this]{ doL3LongDescriptorWrapper(); }, name()),
73 LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
74 &doL2LongDescEvent, &doL3LongDescEvent },
75 doProcessEvent([this]{ processWalkWrapper(); }, name())
76{
77 sctlr = 0;
78
79 // Cache system-level properties
80 if (FullSystem) {
81 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
82 assert(armSys);
83 haveSecurity = armSys->haveSecurity();
84 _haveLPAE = armSys->haveLPAE();
85 _haveVirtualization = armSys->haveVirtualization();
86 physAddrRange = armSys->physAddrRange();
87 _haveLargeAsid64 = armSys->haveLargeAsid64();
88 } else {
89 haveSecurity = _haveLPAE = _haveVirtualization = false;
90 _haveLargeAsid64 = false;
91 physAddrRange = 32;
92 }
93
94}
95
96TableWalker::~TableWalker()
97{
98 ;
99}
100
101void
102TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
103{
104 stage2Mmu = m;
105 port = &m->getDMAPort();
106 masterId = master_id;
107}
108
109void
110TableWalker::init()
111{
112 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
113 fatal_if(!port, "Table walker must have a valid port\n");
114 fatal_if(!tlb, "Table walker must have a valid TLB\n");
115}
116
117Port &
118TableWalker::getPort(const std::string &if_name, PortID idx)
119{
120 if (if_name == "port") {
121 if (!isStage2) {
122 return *port;
123 } else {
124 fatal("Cannot access table walker port through stage-two walker\n");
125 }
126 }
127 return ClockedObject::getPort(if_name, idx);
128}
129
130TableWalker::WalkerState::WalkerState() :
131 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
132 asid(0), vmid(0), isHyp(false), transState(nullptr),
133 vaddr(0), vaddr_tainted(0),
134 sctlr(0), scr(0), cpsr(0), tcr(0),
135 htcr(0), hcr(0), vtcr(0),
136 isWrite(false), isFetch(false), isSecure(false),
137 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
138 pxnTable(false), stage2Req(false),
139 stage2Tran(nullptr), timing(false), functional(false),
140 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
141 delayed(false), tableWalker(nullptr)
142{
143}
144
145void
146TableWalker::completeDrain()
147{
148 if (drainState() == DrainState::Draining &&
149 stateQueues[L0].empty() && stateQueues[L1].empty() &&
150 stateQueues[L2].empty() && stateQueues[L3].empty() &&
151 pendingQueue.empty()) {
152
153 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
154 signalDrainDone();
155 }
156}
157
158DrainState
159TableWalker::drain()
160{
161 bool state_queues_not_empty = false;
162
163 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
164 if (!stateQueues[i].empty()) {
165 state_queues_not_empty = true;
166 break;
167 }
168 }
169
170 if (state_queues_not_empty || pendingQueue.size()) {
171 DPRINTF(Drain, "TableWalker not drained\n");
172 return DrainState::Draining;
173 } else {
174 DPRINTF(Drain, "TableWalker free, no need to drain\n");
175 return DrainState::Drained;
176 }
177}
178
179void
180TableWalker::drainResume()
181{
182 if (params()->sys->isTimingMode() && currState) {
183 delete currState;
184 currState = NULL;
185 pendingChange();
186 }
187}
188
189Fault
190TableWalker::walk(const RequestPtr &_req, ThreadContext *_tc, uint16_t _asid,
191 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
192 TLB::Translation *_trans, bool _timing, bool _functional,
193 bool secure, TLB::ArmTranslationType tranType,
194 bool _stage2Req)
195{
196 assert(!(_functional && _timing));
197 ++statWalks;
198
199 WalkerState *savedCurrState = NULL;
200
201 if (!currState && !_functional) {
202 // For atomic mode, a new WalkerState instance should be only created
203 // once per TLB. For timing mode, a new instance is generated for every
204 // TLB miss.
205 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
206
207 currState = new WalkerState();
208 currState->tableWalker = this;
209 } else if (_functional) {
210 // If we are mixing functional mode with timing (or even
211 // atomic), we need to to be careful and clean up after
212 // ourselves to not risk getting into an inconsistent state.
213 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
214 savedCurrState = currState;
215 currState = new WalkerState();
216 currState->tableWalker = this;
217 } else if (_timing) {
218 // This is a translation that was completed and then faulted again
219 // because some underlying parameters that affect the translation
220 // changed out from under us (e.g. asid). It will either be a
221 // misprediction, in which case nothing will happen or we'll use
222 // this fault to re-execute the faulting instruction which should clean
223 // up everything.
224 if (currState->vaddr_tainted == _req->getVaddr()) {
225 ++statSquashedBefore;
226 return std::make_shared<ReExec>();
227 }
228 }
229 pendingChange();
230
231 currState->startTime = curTick();
232 currState->tc = _tc;
233 // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
234 // aarch32/translation/translation/AArch32.TranslateAddress dictates
235 // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
236 if (isStage2) {
237 currState->el = EL1;
238 currState->aarch64 = ELIs64(_tc, EL2);
239 } else {
240 currState->el =
241 TLB::tranTypeEL(_tc->readMiscReg(MISCREG_CPSR), tranType);
242 currState->aarch64 =
243 ELIs64(_tc, currState->el == EL0 ? EL1 : currState->el);
244 }
245 currState->transState = _trans;
246 currState->req = _req;
247 currState->fault = NoFault;
248 currState->asid = _asid;
249 currState->vmid = _vmid;
250 currState->isHyp = _isHyp;
251 currState->timing = _timing;
252 currState->functional = _functional;
253 currState->mode = _mode;
254 currState->tranType = tranType;
255 currState->isSecure = secure;
256 currState->physAddrRange = physAddrRange;
257
258 /** @todo These should be cached or grabbed from cached copies in
259 the TLB, all these miscreg reads are expensive */
260 currState->vaddr_tainted = currState->req->getVaddr();
261 if (currState->aarch64)
262 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
263 currState->tc, currState->el);
264 else
265 currState->vaddr = currState->vaddr_tainted;
266
267 if (currState->aarch64) {
268 if (isStage2) {
269 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
270 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
271 } else switch (currState->el) {
272 case EL0:
273 case EL1:
274 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
275 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
276 break;
277 case EL2:
278 assert(_haveVirtualization);
279 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
280 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
281 break;
282 case EL3:
283 assert(haveSecurity);
284 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
285 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
286 break;
287 default:
288 panic("Invalid exception level");
289 break;
290 }
291 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
292 } else {
293 currState->sctlr = currState->tc->readMiscReg(snsBankedIndex(
294 MISCREG_SCTLR, currState->tc, !currState->isSecure));
295 currState->ttbcr = currState->tc->readMiscReg(snsBankedIndex(
296 MISCREG_TTBCR, currState->tc, !currState->isSecure));
297 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
298 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
299 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
300 }
301 sctlr = currState->sctlr;
302
303 currState->isFetch = (currState->mode == TLB::Execute);
304 currState->isWrite = (currState->mode == TLB::Write);
305
306 statRequestOrigin[REQUESTED][currState->isFetch]++;
307
308 currState->stage2Req = _stage2Req && !isStage2;
309
310 bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
311 longDescFormatInUse(currState->tc);
312
313 if (long_desc_format) {
314 // Helper variables used for hierarchical permissions
315 currState->secureLookup = currState->isSecure;
316 currState->rwTable = true;
317 currState->userTable = true;
318 currState->xnTable = false;
319 currState->pxnTable = false;
320
321 ++statWalksLongDescriptor;
322 } else {
323 ++statWalksShortDescriptor;
324 }
325
326 if (!currState->timing) {
327 Fault fault = NoFault;
328 if (currState->aarch64)
329 fault = processWalkAArch64();
330 else if (long_desc_format)
331 fault = processWalkLPAE();
332 else
333 fault = processWalk();
334
335 // If this was a functional non-timing access restore state to
336 // how we found it.
337 if (currState->functional) {
338 delete currState;
339 currState = savedCurrState;
340 }
341 return fault;
342 }
343
344 if (pending || pendingQueue.size()) {
345 pendingQueue.push_back(currState);
346 currState = NULL;
347 pendingChange();
348 } else {
349 pending = true;
350 pendingChange();
351 if (currState->aarch64)
352 return processWalkAArch64();
353 else if (long_desc_format)
354 return processWalkLPAE();
355 else
356 return processWalk();
357 }
358
359 return NoFault;
360}
361
362void
363TableWalker::processWalkWrapper()
364{
365 assert(!currState);
366 assert(pendingQueue.size());
367 pendingChange();
368 currState = pendingQueue.front();
369
370 // Check if a previous walk filled this request already
371 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
372 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
373 currState->vmid, currState->isHyp, currState->isSecure, true, false,
374 currState->el);
375
376 // Check if we still need to have a walk for this request. If the requesting
377 // instruction has been squashed, or a previous walk has filled the TLB with
378 // a match, we just want to get rid of the walk. The latter could happen
379 // when there are multiple outstanding misses to a single page and a
380 // previous request has been successfully translated.
381 if (!currState->transState->squashed() && !te) {
382 // We've got a valid request, lets process it
383 pending = true;
384 pendingQueue.pop_front();
385 // Keep currState in case one of the processWalk... calls NULLs it
386 WalkerState *curr_state_copy = currState;
387 Fault f;
388 if (currState->aarch64)
389 f = processWalkAArch64();
390 else if (longDescFormatInUse(currState->tc) ||
391 currState->isHyp || isStage2)
392 f = processWalkLPAE();
393 else
394 f = processWalk();
395
396 if (f != NoFault) {
397 curr_state_copy->transState->finish(f, curr_state_copy->req,
398 curr_state_copy->tc, curr_state_copy->mode);
399
400 delete curr_state_copy;
401 }
402 return;
403 }
404
405
406 // If the instruction that we were translating for has been
407 // squashed we shouldn't bother.
408 unsigned num_squashed = 0;
409 ThreadContext *tc = currState->tc;
410 while ((num_squashed < numSquashable) && currState &&
411 (currState->transState->squashed() || te)) {
412 pendingQueue.pop_front();
413 num_squashed++;
414 statSquashedBefore++;
415
416 DPRINTF(TLB, "Squashing table walk for address %#x\n",
417 currState->vaddr_tainted);
418
419 if (currState->transState->squashed()) {
420 // finish the translation which will delete the translation object
421 currState->transState->finish(
422 std::make_shared<UnimpFault>("Squashed Inst"),
423 currState->req, currState->tc, currState->mode);
424 } else {
425 // translate the request now that we know it will work
426 statWalkServiceTime.sample(curTick() - currState->startTime);
427 tlb->translateTiming(currState->req, currState->tc,
428 currState->transState, currState->mode);
429
430 }
431
432 // delete the current request
433 delete currState;
434
435 // peak at the next one
436 if (pendingQueue.size()) {
437 currState = pendingQueue.front();
438 te = tlb->lookup(currState->vaddr, currState->asid,
439 currState->vmid, currState->isHyp, currState->isSecure, true,
440 false, currState->el);
441 } else {
442 // Terminate the loop, nothing more to do
443 currState = NULL;
444 }
445 }
446 pendingChange();
447
448 // if we still have pending translations, schedule more work
449 nextWalk(tc);
450 currState = NULL;
451}
452
453Fault
454TableWalker::processWalk()
455{
456 Addr ttbr = 0;
457
458 // If translation isn't enabled, we shouldn't be here
459 assert(currState->sctlr.m || isStage2);
460
461 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
462 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
463 32 - currState->ttbcr.n));
464
465 statWalkWaitTime.sample(curTick() - currState->startTime);
466
467 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
468 32 - currState->ttbcr.n)) {
469 DPRINTF(TLB, " - Selecting TTBR0\n");
470 // Check if table walk is allowed when Security Extensions are enabled
471 if (haveSecurity && currState->ttbcr.pd0) {
472 if (currState->isFetch)
473 return std::make_shared<PrefetchAbort>(
474 currState->vaddr_tainted,
475 ArmFault::TranslationLL + L1,
476 isStage2,
477 ArmFault::VmsaTran);
478 else
479 return std::make_shared<DataAbort>(
480 currState->vaddr_tainted,
481 TlbEntry::DomainType::NoAccess, currState->isWrite,
482 ArmFault::TranslationLL + L1, isStage2,
483 ArmFault::VmsaTran);
484 }
485 ttbr = currState->tc->readMiscReg(snsBankedIndex(
486 MISCREG_TTBR0, currState->tc, !currState->isSecure));
487 } else {
488 DPRINTF(TLB, " - Selecting TTBR1\n");
489 // Check if table walk is allowed when Security Extensions are enabled
490 if (haveSecurity && currState->ttbcr.pd1) {
491 if (currState->isFetch)
492 return std::make_shared<PrefetchAbort>(
493 currState->vaddr_tainted,
494 ArmFault::TranslationLL + L1,
495 isStage2,
496 ArmFault::VmsaTran);
497 else
498 return std::make_shared<DataAbort>(
499 currState->vaddr_tainted,
500 TlbEntry::DomainType::NoAccess, currState->isWrite,
501 ArmFault::TranslationLL + L1, isStage2,
502 ArmFault::VmsaTran);
503 }
504 ttbr = currState->tc->readMiscReg(snsBankedIndex(
505 MISCREG_TTBR1, currState->tc, !currState->isSecure));
506 currState->ttbcr.n = 0;
507 }
508
509 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
510 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
511 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
512 currState->isSecure ? "s" : "ns");
513
514 // Trickbox address check
515 Fault f;
516 f = testWalk(l1desc_addr, sizeof(uint32_t),
517 TlbEntry::DomainType::NoAccess, L1);
518 if (f) {
519 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
520 if (currState->timing) {
521 pending = false;
522 nextWalk(currState->tc);
523 currState = NULL;
524 } else {
525 currState->tc = NULL;
526 currState->req = NULL;
527 }
528 return f;
529 }
530
531 Request::Flags flag = Request::PT_WALK;
532 if (currState->sctlr.c == 0) {
533 flag.set(Request::UNCACHEABLE);
534 }
535
536 if (currState->isSecure) {
537 flag.set(Request::SECURE);
538 }
539
540 bool delayed;
541 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
542 sizeof(uint32_t), flag, L1, &doL1DescEvent,
543 &TableWalker::doL1Descriptor);
544 if (!delayed) {
545 f = currState->fault;
546 }
547
548 return f;
549}
550
551Fault
552TableWalker::processWalkLPAE()
553{
554 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
555 int tsz, n;
556 LookupLevel start_lookup_level = L1;
557
558 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
559 currState->vaddr_tainted, currState->ttbcr);
560
561 statWalkWaitTime.sample(curTick() - currState->startTime);
562
563 Request::Flags flag = Request::PT_WALK;
564 if (currState->isSecure)
565 flag.set(Request::SECURE);
566
567 // work out which base address register to use, if in hyp mode we always
568 // use HTTBR
569 if (isStage2) {
570 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
571 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
572 tsz = sext<4>(currState->vtcr.t0sz);
573 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
574 } else if (currState->isHyp) {
575 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
576 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
577 tsz = currState->htcr.t0sz;
578 } else {
579 assert(longDescFormatInUse(currState->tc));
580
581 // Determine boundaries of TTBR0/1 regions
582 if (currState->ttbcr.t0sz)
583 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
584 else if (currState->ttbcr.t1sz)
585 ttbr0_max = (1ULL << 32) -
586 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
587 else
588 ttbr0_max = (1ULL << 32) - 1;
589 if (currState->ttbcr.t1sz)
590 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
591 else
592 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
593
594 // The following code snippet selects the appropriate translation table base
595 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
596 // depending on the address range supported by the translation table (ARM
597 // ARM issue C B3.6.4)
598 if (currState->vaddr <= ttbr0_max) {
599 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
600 // Check if table walk is allowed
601 if (currState->ttbcr.epd0) {
602 if (currState->isFetch)
603 return std::make_shared<PrefetchAbort>(
604 currState->vaddr_tainted,
605 ArmFault::TranslationLL + L1,
606 isStage2,
607 ArmFault::LpaeTran);
608 else
609 return std::make_shared<DataAbort>(
610 currState->vaddr_tainted,
611 TlbEntry::DomainType::NoAccess,
612 currState->isWrite,
613 ArmFault::TranslationLL + L1,
614 isStage2,
615 ArmFault::LpaeTran);
616 }
617 ttbr = currState->tc->readMiscReg(snsBankedIndex(
618 MISCREG_TTBR0, currState->tc, !currState->isSecure));
619 tsz = currState->ttbcr.t0sz;
620 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
621 start_lookup_level = L2;
622 } else if (currState->vaddr >= ttbr1_min) {
623 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
624 // Check if table walk is allowed
625 if (currState->ttbcr.epd1) {
626 if (currState->isFetch)
627 return std::make_shared<PrefetchAbort>(
628 currState->vaddr_tainted,
629 ArmFault::TranslationLL + L1,
630 isStage2,
631 ArmFault::LpaeTran);
632 else
633 return std::make_shared<DataAbort>(
634 currState->vaddr_tainted,
635 TlbEntry::DomainType::NoAccess,
636 currState->isWrite,
637 ArmFault::TranslationLL + L1,
638 isStage2,
639 ArmFault::LpaeTran);
640 }
641 ttbr = currState->tc->readMiscReg(snsBankedIndex(
642 MISCREG_TTBR1, currState->tc, !currState->isSecure));
643 tsz = currState->ttbcr.t1sz;
644 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
645 start_lookup_level = L2;
646 } else {
647 // Out of boundaries -> translation fault
648 if (currState->isFetch)
649 return std::make_shared<PrefetchAbort>(
650 currState->vaddr_tainted,
651 ArmFault::TranslationLL + L1,
652 isStage2,
653 ArmFault::LpaeTran);
654 else
655 return std::make_shared<DataAbort>(
656 currState->vaddr_tainted,
657 TlbEntry::DomainType::NoAccess,
658 currState->isWrite, ArmFault::TranslationLL + L1,
659 isStage2, ArmFault::LpaeTran);
660 }
661
662 }
663
664 // Perform lookup (ARM ARM issue C B3.6.6)
665 if (start_lookup_level == L1) {
666 n = 5 - tsz;
667 desc_addr = mbits(ttbr, 39, n) |
668 (bits(currState->vaddr, n + 26, 30) << 3);
669 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
670 desc_addr, currState->isSecure ? "s" : "ns");
671 } else {
672 // Skip first-level lookup
673 n = (tsz >= 2 ? 14 - tsz : 12);
674 desc_addr = mbits(ttbr, 39, n) |
675 (bits(currState->vaddr, n + 17, 21) << 3);
676 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
677 desc_addr, currState->isSecure ? "s" : "ns");
678 }
679
680 // Trickbox address check
681 Fault f = testWalk(desc_addr, sizeof(uint64_t),
682 TlbEntry::DomainType::NoAccess, start_lookup_level);
683 if (f) {
684 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
685 if (currState->timing) {
686 pending = false;
687 nextWalk(currState->tc);
688 currState = NULL;
689 } else {
690 currState->tc = NULL;
691 currState->req = NULL;
692 }
693 return f;
694 }
695
696 if (currState->sctlr.c == 0) {
697 flag.set(Request::UNCACHEABLE);
698 }
699
700 currState->longDesc.lookupLevel = start_lookup_level;
701 currState->longDesc.aarch64 = false;
702 currState->longDesc.grainSize = Grain4KB;
703
704 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
705 sizeof(uint64_t), flag, start_lookup_level,
706 LongDescEventByLevel[start_lookup_level],
707 &TableWalker::doLongDescriptor);
708 if (!delayed) {
709 f = currState->fault;
710 }
711
712 return f;
713}
714
715unsigned
716TableWalker::adjustTableSizeAArch64(unsigned tsz)
717{
718 if (tsz < 25)
719 return 25;
720 if (tsz > 48)
721 return 48;
722 return tsz;
723}
724
725bool
726TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
727{
728 return (currPhysAddrRange != MaxPhysAddrRange &&
729 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
730}
731
732Fault
733TableWalker::processWalkAArch64()
734{
735 assert(currState->aarch64);
736
737 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
738 currState->vaddr_tainted, currState->tcr);
739
740 static const GrainSize GrainMap_tg0[] =
741 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
742 static const GrainSize GrainMap_tg1[] =
743 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
744
745 statWalkWaitTime.sample(curTick() - currState->startTime);
746
747 // Determine TTBR, table size, granule size and phys. address range
748 Addr ttbr = 0;
749 int tsz = 0, ps = 0;
750 GrainSize tg = Grain4KB; // grain size computed from tg* field
751 bool fault = false;
752
753 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
754
755 switch (currState->el) {
756 case EL0:
757 case EL1:
758 if (isStage2) {
759 DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
760 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
761 tsz = 64 - currState->vtcr.t0sz64;
762 tg = GrainMap_tg0[currState->vtcr.tg0];
763 // ARM DDI 0487A.f D7-2148
764 // The starting level of stage 2 translation depends on
765 // VTCR_EL2.SL0 and VTCR_EL2.TG0
766 LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
767 uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
768 static const LookupLevel SLL[] = {
769 L2, L3, L3, __, // sl0 == 0
770 L1, L2, L2, __, // sl0 == 1, etc.
771 L0, L1, L1, __,
772 __, __, __, __
773 };
774 start_lookup_level = SLL[sl_tg];
775 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
776 "Cannot discern lookup level from vtcr.{sl0,tg0}");
777 ps = currState->vtcr.ps;
778 } else {
779 switch (bits(currState->vaddr, 63,48)) {
780 case 0:
781 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
782 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
783 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
784 tg = GrainMap_tg0[currState->tcr.tg0];
785 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
786 currState->tcr.epd0)
787 fault = true;
788 break;
789 case 0xffff:
790 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
791 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
792 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
793 tg = GrainMap_tg1[currState->tcr.tg1];
794 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
795 currState->tcr.epd1)
796 fault = true;
797 break;
798 default:
799 // top two bytes must be all 0s or all 1s, else invalid addr
800 fault = true;
801 }
802 ps = currState->tcr.ips;
803 }
804 break;
805 case EL2:
806 switch(bits(currState->vaddr, 63,48)) {
807 case 0:
808 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
809 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
810 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
811 tg = GrainMap_tg0[currState->tcr.tg0];
812 break;
813
814 case 0xffff:
815 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
816 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL2);
817 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
818 tg = GrainMap_tg1[currState->tcr.tg1];
819 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
820 currState->tcr.epd1 || !currState->hcr.e2h)
821 fault = true;
822 break;
823
824 default:
825 // invalid addr if top two bytes are not all 0s
826 fault = true;
827 }
828 ps = currState->tcr.ps;
829 break;
830 case EL3:
831 switch(bits(currState->vaddr, 63,48)) {
832 case 0:
833 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
834 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
835 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
836 tg = GrainMap_tg0[currState->tcr.tg0];
837 break;
838 default:
839 // invalid addr if top two bytes are not all 0s
840 fault = true;
841 }
842 ps = currState->tcr.ps;
843 break;
844 }
845
846 if (fault) {
847 Fault f;
848 if (currState->isFetch)
849 f = std::make_shared<PrefetchAbort>(
850 currState->vaddr_tainted,
851 ArmFault::TranslationLL + L0, isStage2,
852 ArmFault::LpaeTran);
853 else
854 f = std::make_shared<DataAbort>(
855 currState->vaddr_tainted,
856 TlbEntry::DomainType::NoAccess,
857 currState->isWrite,
858 ArmFault::TranslationLL + L0,
859 isStage2, ArmFault::LpaeTran);
860
861 if (currState->timing) {
862 pending = false;
863 nextWalk(currState->tc);
864 currState = NULL;
865 } else {
866 currState->tc = NULL;
867 currState->req = NULL;
868 }
869 return f;
870
871 }
872
873 if (tg == ReservedGrain) {
874 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
875 "DEFINED behavior takes this to mean 4KB granules\n");
876 tg = Grain4KB;
877 }
878
879 // Determine starting lookup level
880 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
881 // in ARM DDI 0487A. These table values correspond to the cascading tests
882 // to compute the lookup level and are of the form
883 // (grain_size + N*stride), for N = {1, 2, 3}.
884 // A value of 64 will never succeed and a value of 0 will always succeed.
885 if (start_lookup_level == MAX_LOOKUP_LEVELS) {
886 struct GrainMap {
887 GrainSize grain_size;
888 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
889 };
890 static const GrainMap GM[] = {
891 { Grain4KB, { 39, 30, 0, 0 } },
892 { Grain16KB, { 47, 36, 25, 0 } },
893 { Grain64KB, { 64, 42, 29, 0 } }
894 };
895
896 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
897
898 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
899 if (tg == GM[i].grain_size) {
900 lookup = GM[i].lookup_level_cutoff;
901 break;
902 }
903 }
904 assert(lookup);
905
906 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
907 if (tsz > lookup[L]) {
908 start_lookup_level = (LookupLevel) L;
909 break;
910 }
911 }
912 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
913 "Table walker couldn't find lookup level\n");
914 }
915
916 int stride = tg - 3;
917
918 // Determine table base address
919 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
920 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
921
922 // Determine physical address size and raise an Address Size Fault if
923 // necessary
924 int pa_range = decodePhysAddrRange64(ps);
925 // Clamp to lower limit
926 if (pa_range > physAddrRange)
927 currState->physAddrRange = physAddrRange;
928 else
929 currState->physAddrRange = pa_range;
930 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
931 DPRINTF(TLB, "Address size fault before any lookup\n");
932 Fault f;
933 if (currState->isFetch)
934 f = std::make_shared<PrefetchAbort>(
935 currState->vaddr_tainted,
936 ArmFault::AddressSizeLL + start_lookup_level,
937 isStage2,
938 ArmFault::LpaeTran);
939 else
940 f = std::make_shared<DataAbort>(
941 currState->vaddr_tainted,
942 TlbEntry::DomainType::NoAccess,
943 currState->isWrite,
944 ArmFault::AddressSizeLL + start_lookup_level,
945 isStage2,
946 ArmFault::LpaeTran);
947
948
949 if (currState->timing) {
950 pending = false;
951 nextWalk(currState->tc);
952 currState = NULL;
953 } else {
954 currState->tc = NULL;
955 currState->req = NULL;
956 }
957 return f;
958
959 }
960
961 // Determine descriptor address
962 Addr desc_addr = base_addr |
963 (bits(currState->vaddr, tsz - 1,
964 stride * (3 - start_lookup_level) + tg) << 3);
965
966 // Trickbox address check
967 Fault f = testWalk(desc_addr, sizeof(uint64_t),
968 TlbEntry::DomainType::NoAccess, start_lookup_level);
969 if (f) {
970 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
971 if (currState->timing) {
972 pending = false;
973 nextWalk(currState->tc);
974 currState = NULL;
975 } else {
976 currState->tc = NULL;
977 currState->req = NULL;
978 }
979 return f;
980 }
981
982 Request::Flags flag = Request::PT_WALK;
983 if (currState->sctlr.c == 0) {
984 flag.set(Request::UNCACHEABLE);
985 }
986
987 if (currState->isSecure) {
988 flag.set(Request::SECURE);
989 }
990
991 currState->longDesc.lookupLevel = start_lookup_level;
992 currState->longDesc.aarch64 = true;
993 currState->longDesc.grainSize = tg;
994
995 if (currState->timing) {
996 fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
997 sizeof(uint64_t), flag, start_lookup_level,
998 LongDescEventByLevel[start_lookup_level], NULL);
999 } else {
1000 fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
1001 sizeof(uint64_t), flag, -1, NULL,
1002 &TableWalker::doLongDescriptor);
1003 f = currState->fault;
1004 }
1005
1006 return f;
1007}
1008
1009void
1010TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
1011 uint8_t texcb, bool s)
1012{
1013 // Note: tc and sctlr local variables are hiding tc and sctrl class
1014 // variables
1015 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1016 te.shareable = false; // default value
1017 te.nonCacheable = false;
1018 te.outerShareable = false;
1019 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1020 switch(texcb) {
1021 case 0: // Stongly-ordered
1022 te.nonCacheable = true;
1023 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1024 te.shareable = true;
1025 te.innerAttrs = 1;
1026 te.outerAttrs = 0;
1027 break;
1028 case 1: // Shareable Device
1029 te.nonCacheable = true;
1030 te.mtype = TlbEntry::MemoryType::Device;
1031 te.shareable = true;
1032 te.innerAttrs = 3;
1033 te.outerAttrs = 0;
1034 break;
1035 case 2: // Outer and Inner Write-Through, no Write-Allocate
1036 te.mtype = TlbEntry::MemoryType::Normal;
1037 te.shareable = s;
1038 te.innerAttrs = 6;
1039 te.outerAttrs = bits(texcb, 1, 0);
1040 break;
1041 case 3: // Outer and Inner Write-Back, no Write-Allocate
1042 te.mtype = TlbEntry::MemoryType::Normal;
1043 te.shareable = s;
1044 te.innerAttrs = 7;
1045 te.outerAttrs = bits(texcb, 1, 0);
1046 break;
1047 case 4: // Outer and Inner Non-cacheable
1048 te.nonCacheable = true;
1049 te.mtype = TlbEntry::MemoryType::Normal;
1050 te.shareable = s;
1051 te.innerAttrs = 0;
1052 te.outerAttrs = bits(texcb, 1, 0);
1053 break;
1054 case 5: // Reserved
1055 panic("Reserved texcb value!\n");
1056 break;
1057 case 6: // Implementation Defined
1058 panic("Implementation-defined texcb value!\n");
1059 break;
1060 case 7: // Outer and Inner Write-Back, Write-Allocate
1061 te.mtype = TlbEntry::MemoryType::Normal;
1062 te.shareable = s;
1063 te.innerAttrs = 5;
1064 te.outerAttrs = 1;
1065 break;
1066 case 8: // Non-shareable Device
1067 te.nonCacheable = true;
1068 te.mtype = TlbEntry::MemoryType::Device;
1069 te.shareable = false;
1070 te.innerAttrs = 3;
1071 te.outerAttrs = 0;
1072 break;
1073 case 9 ... 15: // Reserved
1074 panic("Reserved texcb value!\n");
1075 break;
1076 case 16 ... 31: // Cacheable Memory
1077 te.mtype = TlbEntry::MemoryType::Normal;
1078 te.shareable = s;
1079 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1080 te.nonCacheable = true;
1081 te.innerAttrs = bits(texcb, 1, 0);
1082 te.outerAttrs = bits(texcb, 3, 2);
1083 break;
1084 default:
1085 panic("More than 32 states for 5 bits?\n");
1086 }
1087 } else {
1088 assert(tc);
1089 PRRR prrr = tc->readMiscReg(snsBankedIndex(MISCREG_PRRR,
1090 currState->tc, !currState->isSecure));
1091 NMRR nmrr = tc->readMiscReg(snsBankedIndex(MISCREG_NMRR,
1092 currState->tc, !currState->isSecure));
1093 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1094 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1095 switch(bits(texcb, 2,0)) {
1096 case 0:
1097 curr_tr = prrr.tr0;
1098 curr_ir = nmrr.ir0;
1099 curr_or = nmrr.or0;
1100 te.outerShareable = (prrr.nos0 == 0);
1101 break;
1102 case 1:
1103 curr_tr = prrr.tr1;
1104 curr_ir = nmrr.ir1;
1105 curr_or = nmrr.or1;
1106 te.outerShareable = (prrr.nos1 == 0);
1107 break;
1108 case 2:
1109 curr_tr = prrr.tr2;
1110 curr_ir = nmrr.ir2;
1111 curr_or = nmrr.or2;
1112 te.outerShareable = (prrr.nos2 == 0);
1113 break;
1114 case 3:
1115 curr_tr = prrr.tr3;
1116 curr_ir = nmrr.ir3;
1117 curr_or = nmrr.or3;
1118 te.outerShareable = (prrr.nos3 == 0);
1119 break;
1120 case 4:
1121 curr_tr = prrr.tr4;
1122 curr_ir = nmrr.ir4;
1123 curr_or = nmrr.or4;
1124 te.outerShareable = (prrr.nos4 == 0);
1125 break;
1126 case 5:
1127 curr_tr = prrr.tr5;
1128 curr_ir = nmrr.ir5;
1129 curr_or = nmrr.or5;
1130 te.outerShareable = (prrr.nos5 == 0);
1131 break;
1132 case 6:
1133 panic("Imp defined type\n");
1134 case 7:
1135 curr_tr = prrr.tr7;
1136 curr_ir = nmrr.ir7;
1137 curr_or = nmrr.or7;
1138 te.outerShareable = (prrr.nos7 == 0);
1139 break;
1140 }
1141
1142 switch(curr_tr) {
1143 case 0:
1144 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1145 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1146 te.nonCacheable = true;
1147 te.innerAttrs = 1;
1148 te.outerAttrs = 0;
1149 te.shareable = true;
1150 break;
1151 case 1:
1152 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1153 prrr.ds1, prrr.ds0, s);
1154 te.mtype = TlbEntry::MemoryType::Device;
1155 te.nonCacheable = true;
1156 te.innerAttrs = 3;
1157 te.outerAttrs = 0;
1158 if (prrr.ds1 && s)
1159 te.shareable = true;
1160 if (prrr.ds0 && !s)
1161 te.shareable = true;
1162 break;
1163 case 2:
1164 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1165 prrr.ns1, prrr.ns0, s);
1166 te.mtype = TlbEntry::MemoryType::Normal;
1167 if (prrr.ns1 && s)
1168 te.shareable = true;
1169 if (prrr.ns0 && !s)
1170 te.shareable = true;
1171 break;
1172 case 3:
1173 panic("Reserved type");
1174 }
1175
1176 if (te.mtype == TlbEntry::MemoryType::Normal){
1177 switch(curr_ir) {
1178 case 0:
1179 te.nonCacheable = true;
1180 te.innerAttrs = 0;
1181 break;
1182 case 1:
1183 te.innerAttrs = 5;
1184 break;
1185 case 2:
1186 te.innerAttrs = 6;
1187 break;
1188 case 3:
1189 te.innerAttrs = 7;
1190 break;
1191 }
1192
1193 switch(curr_or) {
1194 case 0:
1195 te.nonCacheable = true;
1196 te.outerAttrs = 0;
1197 break;
1198 case 1:
1199 te.outerAttrs = 1;
1200 break;
1201 case 2:
1202 te.outerAttrs = 2;
1203 break;
1204 case 3:
1205 te.outerAttrs = 3;
1206 break;
1207 }
1208 }
1209 }
1210 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1211 "outerAttrs: %d\n",
1212 te.shareable, te.innerAttrs, te.outerAttrs);
1213 te.setAttributes(false);
1214}
1215
1216void
1217TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1218 LongDescriptor &lDescriptor)
1219{
1220 assert(_haveLPAE);
1221
1222 uint8_t attr;
1223 uint8_t sh = lDescriptor.sh();
1224 // Different format and source of attributes if this is a stage 2
1225 // translation
1226 if (isStage2) {
1227 attr = lDescriptor.memAttr();
1228 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1229 uint8_t attr_1_0 = attr & 0x3;
1230
1231 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1232
1233 if (attr_3_2 == 0) {
1234 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1235 : TlbEntry::MemoryType::Device;
1236 te.outerAttrs = 0;
1237 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1238 te.nonCacheable = true;
1239 } else {
1240 te.mtype = TlbEntry::MemoryType::Normal;
1241 te.outerAttrs = attr_3_2 == 1 ? 0 :
1242 attr_3_2 == 2 ? 2 : 1;
1243 te.innerAttrs = attr_1_0 == 1 ? 0 :
1244 attr_1_0 == 2 ? 6 : 5;
1245 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1246 }
1247 } else {
1248 uint8_t attrIndx = lDescriptor.attrIndx();
1249
1250 // LPAE always uses remapping of memory attributes, irrespective of the
1251 // value of SCTLR.TRE
1252 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1253 int reg_as_int = snsBankedIndex(reg, currState->tc,
1254 !currState->isSecure);
1255 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1256 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1257 uint8_t attr_7_4 = bits(attr, 7, 4);
1258 uint8_t attr_3_0 = bits(attr, 3, 0);
1259 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1260
1261 // Note: the memory subsystem only cares about the 'cacheable' memory
1262 // attribute. The other attributes are only used to fill the PAR register
1263 // accordingly to provide the illusion of full support
1264 te.nonCacheable = false;
1265
1266 switch (attr_7_4) {
1267 case 0x0:
1268 // Strongly-ordered or Device memory
1269 if (attr_3_0 == 0x0)
1270 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1271 else if (attr_3_0 == 0x4)
1272 te.mtype = TlbEntry::MemoryType::Device;
1273 else
1274 panic("Unpredictable behavior\n");
1275 te.nonCacheable = true;
1276 te.outerAttrs = 0;
1277 break;
1278 case 0x4:
1279 // Normal memory, Outer Non-cacheable
1280 te.mtype = TlbEntry::MemoryType::Normal;
1281 te.outerAttrs = 0;
1282 if (attr_3_0 == 0x4)
1283 // Inner Non-cacheable
1284 te.nonCacheable = true;
1285 else if (attr_3_0 < 0x8)
1286 panic("Unpredictable behavior\n");
1287 break;
1288 case 0x8:
1289 case 0x9:
1290 case 0xa:
1291 case 0xb:
1292 case 0xc:
1293 case 0xd:
1294 case 0xe:
1295 case 0xf:
1296 if (attr_7_4 & 0x4) {
1297 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1298 } else {
1299 te.outerAttrs = 0x2;
1300 }
1301 // Normal memory, Outer Cacheable
1302 te.mtype = TlbEntry::MemoryType::Normal;
1303 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1304 panic("Unpredictable behavior\n");
1305 break;
1306 default:
1307 panic("Unpredictable behavior\n");
1308 break;
1309 }
1310
1311 switch (attr_3_0) {
1312 case 0x0:
1313 te.innerAttrs = 0x1;
1314 break;
1315 case 0x4:
1316 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1317 break;
1318 case 0x8:
1319 case 0x9:
1320 case 0xA:
1321 case 0xB:
1322 te.innerAttrs = 6;
1323 break;
1324 case 0xC:
1325 case 0xD:
1326 case 0xE:
1327 case 0xF:
1328 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1329 break;
1330 default:
1331 panic("Unpredictable behavior\n");
1332 break;
1333 }
1334 }
1335
1336 te.outerShareable = sh == 2;
1337 te.shareable = (sh & 0x2) ? true : false;
1338 te.setAttributes(true);
1339 te.attributes |= (uint64_t) attr << 56;
1340}
1341
1342void
1343TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1344 LongDescriptor &lDescriptor)
1345{
1346 uint8_t attr;
1347 uint8_t attr_hi;
1348 uint8_t attr_lo;
1349 uint8_t sh = lDescriptor.sh();
1350
1351 if (isStage2) {
1352 attr = lDescriptor.memAttr();
1353 uint8_t attr_hi = (attr >> 2) & 0x3;
1354 uint8_t attr_lo = attr & 0x3;
1355
1356 DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1357
1358 if (attr_hi == 0) {
1359 te.mtype = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1360 : TlbEntry::MemoryType::Device;
1361 te.outerAttrs = 0;
1362 te.innerAttrs = attr_lo == 0 ? 1 : 3;
1363 te.nonCacheable = true;
1364 } else {
1365 te.mtype = TlbEntry::MemoryType::Normal;
1366 te.outerAttrs = attr_hi == 1 ? 0 :
1367 attr_hi == 2 ? 2 : 1;
1368 te.innerAttrs = attr_lo == 1 ? 0 :
1369 attr_lo == 2 ? 6 : 5;
1370 // Treat write-through memory as uncacheable, this is safe
1371 // but for performance reasons not optimal.
1372 te.nonCacheable = (attr_hi == 1) || (attr_hi == 2) ||
1373 (attr_lo == 1) || (attr_lo == 2);
1374 }
1375 } else {
1376 uint8_t attrIndx = lDescriptor.attrIndx();
1377
1378 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1379
1380 // Select MAIR
1381 uint64_t mair;
1382 switch (currState->el) {
1383 case EL0:
1384 case EL1:
1385 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1386 break;
1387 case EL2:
1388 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1389 break;
1390 case EL3:
1391 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1392 break;
1393 default:
1394 panic("Invalid exception level");
1395 break;
1396 }
1397
1398 // Select attributes
1399 attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1400 attr_lo = bits(attr, 3, 0);
1401 attr_hi = bits(attr, 7, 4);
1402
1403 // Memory type
1404 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1405
1406 // Cacheability
1407 te.nonCacheable = false;
1408 if (te.mtype == TlbEntry::MemoryType::Device) { // Device memory
1409 te.nonCacheable = true;
1410 }
1411 // Treat write-through memory as uncacheable, this is safe
1412 // but for performance reasons not optimal.
1413 switch (attr_hi) {
1414 case 0x1 ... 0x3: // Normal Memory, Outer Write-through transient
1415 case 0x4: // Normal memory, Outer Non-cacheable
1416 case 0x8 ... 0xb: // Normal Memory, Outer Write-through non-transient
1417 te.nonCacheable = true;
1418 }
1419 switch (attr_lo) {
1420 case 0x1 ... 0x3: // Normal Memory, Inner Write-through transient
1421 case 0x9 ... 0xb: // Normal Memory, Inner Write-through non-transient
1422 warn_if(!attr_hi, "Unpredictable behavior");
1423 M5_FALLTHROUGH;
1424 case 0x4: // Device-nGnRE memory or
1425 // Normal memory, Inner Non-cacheable
1426 case 0x8: // Device-nGRE memory or
1427 // Normal memory, Inner Write-through non-transient
1428 te.nonCacheable = true;
1429 }
1430
1431 te.shareable = sh == 2;
1432 te.outerShareable = (sh & 0x2) ? true : false;
1433 // Attributes formatted according to the 64-bit PAR
1434 te.attributes = ((uint64_t) attr << 56) |
1435 (1 << 11) | // LPAE bit
1436 (te.ns << 9) | // NS bit
1437 (sh << 7);
1438 }
1439}
1440
1441void
1442TableWalker::doL1Descriptor()
1443{
1444 if (currState->fault != NoFault) {
1445 return;
1446 }
1447
1448 currState->l1Desc.data = htog(currState->l1Desc.data,
1449 byteOrder(currState->tc));
1450
1451 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1452 currState->vaddr_tainted, currState->l1Desc.data);
1453 TlbEntry te;
1454
1455 switch (currState->l1Desc.type()) {
1456 case L1Descriptor::Ignore:
1457 case L1Descriptor::Reserved:
1458 if (!currState->timing) {
1459 currState->tc = NULL;
1460 currState->req = NULL;
1461 }
1462 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1463 if (currState->isFetch)
1464 currState->fault =
1465 std::make_shared<PrefetchAbort>(
1466 currState->vaddr_tainted,
1467 ArmFault::TranslationLL + L1,
1468 isStage2,
1469 ArmFault::VmsaTran);
1470 else
1471 currState->fault =
1472 std::make_shared<DataAbort>(
1473 currState->vaddr_tainted,
1474 TlbEntry::DomainType::NoAccess,
1475 currState->isWrite,
1476 ArmFault::TranslationLL + L1, isStage2,
1477 ArmFault::VmsaTran);
1478 return;
1479 case L1Descriptor::Section:
1480 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1481 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1482 * enabled if set, do l1.Desc.setAp0() instead of generating
1483 * AccessFlag0
1484 */
1485
1486 currState->fault = std::make_shared<DataAbort>(
1487 currState->vaddr_tainted,
1488 currState->l1Desc.domain(),
1489 currState->isWrite,
1490 ArmFault::AccessFlagLL + L1,
1491 isStage2,
1492 ArmFault::VmsaTran);
1493 }
1494 if (currState->l1Desc.supersection()) {
1495 panic("Haven't implemented supersections\n");
1496 }
1497 insertTableEntry(currState->l1Desc, false);
1498 return;
1499 case L1Descriptor::PageTable:
1500 {
1501 Addr l2desc_addr;
1502 l2desc_addr = currState->l1Desc.l2Addr() |
1503 (bits(currState->vaddr, 19, 12) << 2);
1504 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1505 l2desc_addr, currState->isSecure ? "s" : "ns");
1506
1507 // Trickbox address check
1508 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1509 currState->l1Desc.domain(), L2);
1510
1511 if (currState->fault) {
1512 if (!currState->timing) {
1513 currState->tc = NULL;
1514 currState->req = NULL;
1515 }
1516 return;
1517 }
1518
1519 Request::Flags flag = Request::PT_WALK;
1520 if (currState->isSecure)
1521 flag.set(Request::SECURE);
1522
1523 bool delayed;
1524 delayed = fetchDescriptor(l2desc_addr,
1525 (uint8_t*)&currState->l2Desc.data,
1526 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1527 &TableWalker::doL2Descriptor);
1528 if (delayed) {
1529 currState->delayed = true;
1530 }
1531
1532 return;
1533 }
1534 default:
1535 panic("A new type in a 2 bit field?\n");
1536 }
1537}
1538
1/*
2 * Copyright (c) 2010, 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : ClockedObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent([this]{ doL1DescriptorWrapper(); }, name()),
68 doL2DescEvent([this]{ doL2DescriptorWrapper(); }, name()),
69 doL0LongDescEvent([this]{ doL0LongDescriptorWrapper(); }, name()),
70 doL1LongDescEvent([this]{ doL1LongDescriptorWrapper(); }, name()),
71 doL2LongDescEvent([this]{ doL2LongDescriptorWrapper(); }, name()),
72 doL3LongDescEvent([this]{ doL3LongDescriptorWrapper(); }, name()),
73 LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
74 &doL2LongDescEvent, &doL3LongDescEvent },
75 doProcessEvent([this]{ processWalkWrapper(); }, name())
76{
77 sctlr = 0;
78
79 // Cache system-level properties
80 if (FullSystem) {
81 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
82 assert(armSys);
83 haveSecurity = armSys->haveSecurity();
84 _haveLPAE = armSys->haveLPAE();
85 _haveVirtualization = armSys->haveVirtualization();
86 physAddrRange = armSys->physAddrRange();
87 _haveLargeAsid64 = armSys->haveLargeAsid64();
88 } else {
89 haveSecurity = _haveLPAE = _haveVirtualization = false;
90 _haveLargeAsid64 = false;
91 physAddrRange = 32;
92 }
93
94}
95
96TableWalker::~TableWalker()
97{
98 ;
99}
100
101void
102TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
103{
104 stage2Mmu = m;
105 port = &m->getDMAPort();
106 masterId = master_id;
107}
108
109void
110TableWalker::init()
111{
112 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
113 fatal_if(!port, "Table walker must have a valid port\n");
114 fatal_if(!tlb, "Table walker must have a valid TLB\n");
115}
116
117Port &
118TableWalker::getPort(const std::string &if_name, PortID idx)
119{
120 if (if_name == "port") {
121 if (!isStage2) {
122 return *port;
123 } else {
124 fatal("Cannot access table walker port through stage-two walker\n");
125 }
126 }
127 return ClockedObject::getPort(if_name, idx);
128}
129
130TableWalker::WalkerState::WalkerState() :
131 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
132 asid(0), vmid(0), isHyp(false), transState(nullptr),
133 vaddr(0), vaddr_tainted(0),
134 sctlr(0), scr(0), cpsr(0), tcr(0),
135 htcr(0), hcr(0), vtcr(0),
136 isWrite(false), isFetch(false), isSecure(false),
137 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
138 pxnTable(false), stage2Req(false),
139 stage2Tran(nullptr), timing(false), functional(false),
140 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
141 delayed(false), tableWalker(nullptr)
142{
143}
144
145void
146TableWalker::completeDrain()
147{
148 if (drainState() == DrainState::Draining &&
149 stateQueues[L0].empty() && stateQueues[L1].empty() &&
150 stateQueues[L2].empty() && stateQueues[L3].empty() &&
151 pendingQueue.empty()) {
152
153 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
154 signalDrainDone();
155 }
156}
157
158DrainState
159TableWalker::drain()
160{
161 bool state_queues_not_empty = false;
162
163 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
164 if (!stateQueues[i].empty()) {
165 state_queues_not_empty = true;
166 break;
167 }
168 }
169
170 if (state_queues_not_empty || pendingQueue.size()) {
171 DPRINTF(Drain, "TableWalker not drained\n");
172 return DrainState::Draining;
173 } else {
174 DPRINTF(Drain, "TableWalker free, no need to drain\n");
175 return DrainState::Drained;
176 }
177}
178
179void
180TableWalker::drainResume()
181{
182 if (params()->sys->isTimingMode() && currState) {
183 delete currState;
184 currState = NULL;
185 pendingChange();
186 }
187}
188
189Fault
190TableWalker::walk(const RequestPtr &_req, ThreadContext *_tc, uint16_t _asid,
191 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
192 TLB::Translation *_trans, bool _timing, bool _functional,
193 bool secure, TLB::ArmTranslationType tranType,
194 bool _stage2Req)
195{
196 assert(!(_functional && _timing));
197 ++statWalks;
198
199 WalkerState *savedCurrState = NULL;
200
201 if (!currState && !_functional) {
202 // For atomic mode, a new WalkerState instance should be only created
203 // once per TLB. For timing mode, a new instance is generated for every
204 // TLB miss.
205 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
206
207 currState = new WalkerState();
208 currState->tableWalker = this;
209 } else if (_functional) {
210 // If we are mixing functional mode with timing (or even
211 // atomic), we need to to be careful and clean up after
212 // ourselves to not risk getting into an inconsistent state.
213 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
214 savedCurrState = currState;
215 currState = new WalkerState();
216 currState->tableWalker = this;
217 } else if (_timing) {
218 // This is a translation that was completed and then faulted again
219 // because some underlying parameters that affect the translation
220 // changed out from under us (e.g. asid). It will either be a
221 // misprediction, in which case nothing will happen or we'll use
222 // this fault to re-execute the faulting instruction which should clean
223 // up everything.
224 if (currState->vaddr_tainted == _req->getVaddr()) {
225 ++statSquashedBefore;
226 return std::make_shared<ReExec>();
227 }
228 }
229 pendingChange();
230
231 currState->startTime = curTick();
232 currState->tc = _tc;
233 // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
234 // aarch32/translation/translation/AArch32.TranslateAddress dictates
235 // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
236 if (isStage2) {
237 currState->el = EL1;
238 currState->aarch64 = ELIs64(_tc, EL2);
239 } else {
240 currState->el =
241 TLB::tranTypeEL(_tc->readMiscReg(MISCREG_CPSR), tranType);
242 currState->aarch64 =
243 ELIs64(_tc, currState->el == EL0 ? EL1 : currState->el);
244 }
245 currState->transState = _trans;
246 currState->req = _req;
247 currState->fault = NoFault;
248 currState->asid = _asid;
249 currState->vmid = _vmid;
250 currState->isHyp = _isHyp;
251 currState->timing = _timing;
252 currState->functional = _functional;
253 currState->mode = _mode;
254 currState->tranType = tranType;
255 currState->isSecure = secure;
256 currState->physAddrRange = physAddrRange;
257
258 /** @todo These should be cached or grabbed from cached copies in
259 the TLB, all these miscreg reads are expensive */
260 currState->vaddr_tainted = currState->req->getVaddr();
261 if (currState->aarch64)
262 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
263 currState->tc, currState->el);
264 else
265 currState->vaddr = currState->vaddr_tainted;
266
267 if (currState->aarch64) {
268 if (isStage2) {
269 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
270 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
271 } else switch (currState->el) {
272 case EL0:
273 case EL1:
274 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
275 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
276 break;
277 case EL2:
278 assert(_haveVirtualization);
279 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
280 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
281 break;
282 case EL3:
283 assert(haveSecurity);
284 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
285 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
286 break;
287 default:
288 panic("Invalid exception level");
289 break;
290 }
291 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
292 } else {
293 currState->sctlr = currState->tc->readMiscReg(snsBankedIndex(
294 MISCREG_SCTLR, currState->tc, !currState->isSecure));
295 currState->ttbcr = currState->tc->readMiscReg(snsBankedIndex(
296 MISCREG_TTBCR, currState->tc, !currState->isSecure));
297 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
298 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
299 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
300 }
301 sctlr = currState->sctlr;
302
303 currState->isFetch = (currState->mode == TLB::Execute);
304 currState->isWrite = (currState->mode == TLB::Write);
305
306 statRequestOrigin[REQUESTED][currState->isFetch]++;
307
308 currState->stage2Req = _stage2Req && !isStage2;
309
310 bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
311 longDescFormatInUse(currState->tc);
312
313 if (long_desc_format) {
314 // Helper variables used for hierarchical permissions
315 currState->secureLookup = currState->isSecure;
316 currState->rwTable = true;
317 currState->userTable = true;
318 currState->xnTable = false;
319 currState->pxnTable = false;
320
321 ++statWalksLongDescriptor;
322 } else {
323 ++statWalksShortDescriptor;
324 }
325
326 if (!currState->timing) {
327 Fault fault = NoFault;
328 if (currState->aarch64)
329 fault = processWalkAArch64();
330 else if (long_desc_format)
331 fault = processWalkLPAE();
332 else
333 fault = processWalk();
334
335 // If this was a functional non-timing access restore state to
336 // how we found it.
337 if (currState->functional) {
338 delete currState;
339 currState = savedCurrState;
340 }
341 return fault;
342 }
343
344 if (pending || pendingQueue.size()) {
345 pendingQueue.push_back(currState);
346 currState = NULL;
347 pendingChange();
348 } else {
349 pending = true;
350 pendingChange();
351 if (currState->aarch64)
352 return processWalkAArch64();
353 else if (long_desc_format)
354 return processWalkLPAE();
355 else
356 return processWalk();
357 }
358
359 return NoFault;
360}
361
362void
363TableWalker::processWalkWrapper()
364{
365 assert(!currState);
366 assert(pendingQueue.size());
367 pendingChange();
368 currState = pendingQueue.front();
369
370 // Check if a previous walk filled this request already
371 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
372 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
373 currState->vmid, currState->isHyp, currState->isSecure, true, false,
374 currState->el);
375
376 // Check if we still need to have a walk for this request. If the requesting
377 // instruction has been squashed, or a previous walk has filled the TLB with
378 // a match, we just want to get rid of the walk. The latter could happen
379 // when there are multiple outstanding misses to a single page and a
380 // previous request has been successfully translated.
381 if (!currState->transState->squashed() && !te) {
382 // We've got a valid request, lets process it
383 pending = true;
384 pendingQueue.pop_front();
385 // Keep currState in case one of the processWalk... calls NULLs it
386 WalkerState *curr_state_copy = currState;
387 Fault f;
388 if (currState->aarch64)
389 f = processWalkAArch64();
390 else if (longDescFormatInUse(currState->tc) ||
391 currState->isHyp || isStage2)
392 f = processWalkLPAE();
393 else
394 f = processWalk();
395
396 if (f != NoFault) {
397 curr_state_copy->transState->finish(f, curr_state_copy->req,
398 curr_state_copy->tc, curr_state_copy->mode);
399
400 delete curr_state_copy;
401 }
402 return;
403 }
404
405
406 // If the instruction that we were translating for has been
407 // squashed we shouldn't bother.
408 unsigned num_squashed = 0;
409 ThreadContext *tc = currState->tc;
410 while ((num_squashed < numSquashable) && currState &&
411 (currState->transState->squashed() || te)) {
412 pendingQueue.pop_front();
413 num_squashed++;
414 statSquashedBefore++;
415
416 DPRINTF(TLB, "Squashing table walk for address %#x\n",
417 currState->vaddr_tainted);
418
419 if (currState->transState->squashed()) {
420 // finish the translation which will delete the translation object
421 currState->transState->finish(
422 std::make_shared<UnimpFault>("Squashed Inst"),
423 currState->req, currState->tc, currState->mode);
424 } else {
425 // translate the request now that we know it will work
426 statWalkServiceTime.sample(curTick() - currState->startTime);
427 tlb->translateTiming(currState->req, currState->tc,
428 currState->transState, currState->mode);
429
430 }
431
432 // delete the current request
433 delete currState;
434
435 // peak at the next one
436 if (pendingQueue.size()) {
437 currState = pendingQueue.front();
438 te = tlb->lookup(currState->vaddr, currState->asid,
439 currState->vmid, currState->isHyp, currState->isSecure, true,
440 false, currState->el);
441 } else {
442 // Terminate the loop, nothing more to do
443 currState = NULL;
444 }
445 }
446 pendingChange();
447
448 // if we still have pending translations, schedule more work
449 nextWalk(tc);
450 currState = NULL;
451}
452
453Fault
454TableWalker::processWalk()
455{
456 Addr ttbr = 0;
457
458 // If translation isn't enabled, we shouldn't be here
459 assert(currState->sctlr.m || isStage2);
460
461 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
462 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
463 32 - currState->ttbcr.n));
464
465 statWalkWaitTime.sample(curTick() - currState->startTime);
466
467 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
468 32 - currState->ttbcr.n)) {
469 DPRINTF(TLB, " - Selecting TTBR0\n");
470 // Check if table walk is allowed when Security Extensions are enabled
471 if (haveSecurity && currState->ttbcr.pd0) {
472 if (currState->isFetch)
473 return std::make_shared<PrefetchAbort>(
474 currState->vaddr_tainted,
475 ArmFault::TranslationLL + L1,
476 isStage2,
477 ArmFault::VmsaTran);
478 else
479 return std::make_shared<DataAbort>(
480 currState->vaddr_tainted,
481 TlbEntry::DomainType::NoAccess, currState->isWrite,
482 ArmFault::TranslationLL + L1, isStage2,
483 ArmFault::VmsaTran);
484 }
485 ttbr = currState->tc->readMiscReg(snsBankedIndex(
486 MISCREG_TTBR0, currState->tc, !currState->isSecure));
487 } else {
488 DPRINTF(TLB, " - Selecting TTBR1\n");
489 // Check if table walk is allowed when Security Extensions are enabled
490 if (haveSecurity && currState->ttbcr.pd1) {
491 if (currState->isFetch)
492 return std::make_shared<PrefetchAbort>(
493 currState->vaddr_tainted,
494 ArmFault::TranslationLL + L1,
495 isStage2,
496 ArmFault::VmsaTran);
497 else
498 return std::make_shared<DataAbort>(
499 currState->vaddr_tainted,
500 TlbEntry::DomainType::NoAccess, currState->isWrite,
501 ArmFault::TranslationLL + L1, isStage2,
502 ArmFault::VmsaTran);
503 }
504 ttbr = currState->tc->readMiscReg(snsBankedIndex(
505 MISCREG_TTBR1, currState->tc, !currState->isSecure));
506 currState->ttbcr.n = 0;
507 }
508
509 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
510 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
511 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
512 currState->isSecure ? "s" : "ns");
513
514 // Trickbox address check
515 Fault f;
516 f = testWalk(l1desc_addr, sizeof(uint32_t),
517 TlbEntry::DomainType::NoAccess, L1);
518 if (f) {
519 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
520 if (currState->timing) {
521 pending = false;
522 nextWalk(currState->tc);
523 currState = NULL;
524 } else {
525 currState->tc = NULL;
526 currState->req = NULL;
527 }
528 return f;
529 }
530
531 Request::Flags flag = Request::PT_WALK;
532 if (currState->sctlr.c == 0) {
533 flag.set(Request::UNCACHEABLE);
534 }
535
536 if (currState->isSecure) {
537 flag.set(Request::SECURE);
538 }
539
540 bool delayed;
541 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
542 sizeof(uint32_t), flag, L1, &doL1DescEvent,
543 &TableWalker::doL1Descriptor);
544 if (!delayed) {
545 f = currState->fault;
546 }
547
548 return f;
549}
550
551Fault
552TableWalker::processWalkLPAE()
553{
554 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
555 int tsz, n;
556 LookupLevel start_lookup_level = L1;
557
558 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
559 currState->vaddr_tainted, currState->ttbcr);
560
561 statWalkWaitTime.sample(curTick() - currState->startTime);
562
563 Request::Flags flag = Request::PT_WALK;
564 if (currState->isSecure)
565 flag.set(Request::SECURE);
566
567 // work out which base address register to use, if in hyp mode we always
568 // use HTTBR
569 if (isStage2) {
570 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
571 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
572 tsz = sext<4>(currState->vtcr.t0sz);
573 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
574 } else if (currState->isHyp) {
575 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
576 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
577 tsz = currState->htcr.t0sz;
578 } else {
579 assert(longDescFormatInUse(currState->tc));
580
581 // Determine boundaries of TTBR0/1 regions
582 if (currState->ttbcr.t0sz)
583 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
584 else if (currState->ttbcr.t1sz)
585 ttbr0_max = (1ULL << 32) -
586 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
587 else
588 ttbr0_max = (1ULL << 32) - 1;
589 if (currState->ttbcr.t1sz)
590 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
591 else
592 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
593
594 // The following code snippet selects the appropriate translation table base
595 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
596 // depending on the address range supported by the translation table (ARM
597 // ARM issue C B3.6.4)
598 if (currState->vaddr <= ttbr0_max) {
599 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
600 // Check if table walk is allowed
601 if (currState->ttbcr.epd0) {
602 if (currState->isFetch)
603 return std::make_shared<PrefetchAbort>(
604 currState->vaddr_tainted,
605 ArmFault::TranslationLL + L1,
606 isStage2,
607 ArmFault::LpaeTran);
608 else
609 return std::make_shared<DataAbort>(
610 currState->vaddr_tainted,
611 TlbEntry::DomainType::NoAccess,
612 currState->isWrite,
613 ArmFault::TranslationLL + L1,
614 isStage2,
615 ArmFault::LpaeTran);
616 }
617 ttbr = currState->tc->readMiscReg(snsBankedIndex(
618 MISCREG_TTBR0, currState->tc, !currState->isSecure));
619 tsz = currState->ttbcr.t0sz;
620 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
621 start_lookup_level = L2;
622 } else if (currState->vaddr >= ttbr1_min) {
623 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
624 // Check if table walk is allowed
625 if (currState->ttbcr.epd1) {
626 if (currState->isFetch)
627 return std::make_shared<PrefetchAbort>(
628 currState->vaddr_tainted,
629 ArmFault::TranslationLL + L1,
630 isStage2,
631 ArmFault::LpaeTran);
632 else
633 return std::make_shared<DataAbort>(
634 currState->vaddr_tainted,
635 TlbEntry::DomainType::NoAccess,
636 currState->isWrite,
637 ArmFault::TranslationLL + L1,
638 isStage2,
639 ArmFault::LpaeTran);
640 }
641 ttbr = currState->tc->readMiscReg(snsBankedIndex(
642 MISCREG_TTBR1, currState->tc, !currState->isSecure));
643 tsz = currState->ttbcr.t1sz;
644 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
645 start_lookup_level = L2;
646 } else {
647 // Out of boundaries -> translation fault
648 if (currState->isFetch)
649 return std::make_shared<PrefetchAbort>(
650 currState->vaddr_tainted,
651 ArmFault::TranslationLL + L1,
652 isStage2,
653 ArmFault::LpaeTran);
654 else
655 return std::make_shared<DataAbort>(
656 currState->vaddr_tainted,
657 TlbEntry::DomainType::NoAccess,
658 currState->isWrite, ArmFault::TranslationLL + L1,
659 isStage2, ArmFault::LpaeTran);
660 }
661
662 }
663
664 // Perform lookup (ARM ARM issue C B3.6.6)
665 if (start_lookup_level == L1) {
666 n = 5 - tsz;
667 desc_addr = mbits(ttbr, 39, n) |
668 (bits(currState->vaddr, n + 26, 30) << 3);
669 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
670 desc_addr, currState->isSecure ? "s" : "ns");
671 } else {
672 // Skip first-level lookup
673 n = (tsz >= 2 ? 14 - tsz : 12);
674 desc_addr = mbits(ttbr, 39, n) |
675 (bits(currState->vaddr, n + 17, 21) << 3);
676 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
677 desc_addr, currState->isSecure ? "s" : "ns");
678 }
679
680 // Trickbox address check
681 Fault f = testWalk(desc_addr, sizeof(uint64_t),
682 TlbEntry::DomainType::NoAccess, start_lookup_level);
683 if (f) {
684 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
685 if (currState->timing) {
686 pending = false;
687 nextWalk(currState->tc);
688 currState = NULL;
689 } else {
690 currState->tc = NULL;
691 currState->req = NULL;
692 }
693 return f;
694 }
695
696 if (currState->sctlr.c == 0) {
697 flag.set(Request::UNCACHEABLE);
698 }
699
700 currState->longDesc.lookupLevel = start_lookup_level;
701 currState->longDesc.aarch64 = false;
702 currState->longDesc.grainSize = Grain4KB;
703
704 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
705 sizeof(uint64_t), flag, start_lookup_level,
706 LongDescEventByLevel[start_lookup_level],
707 &TableWalker::doLongDescriptor);
708 if (!delayed) {
709 f = currState->fault;
710 }
711
712 return f;
713}
714
715unsigned
716TableWalker::adjustTableSizeAArch64(unsigned tsz)
717{
718 if (tsz < 25)
719 return 25;
720 if (tsz > 48)
721 return 48;
722 return tsz;
723}
724
725bool
726TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
727{
728 return (currPhysAddrRange != MaxPhysAddrRange &&
729 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
730}
731
732Fault
733TableWalker::processWalkAArch64()
734{
735 assert(currState->aarch64);
736
737 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
738 currState->vaddr_tainted, currState->tcr);
739
740 static const GrainSize GrainMap_tg0[] =
741 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
742 static const GrainSize GrainMap_tg1[] =
743 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
744
745 statWalkWaitTime.sample(curTick() - currState->startTime);
746
747 // Determine TTBR, table size, granule size and phys. address range
748 Addr ttbr = 0;
749 int tsz = 0, ps = 0;
750 GrainSize tg = Grain4KB; // grain size computed from tg* field
751 bool fault = false;
752
753 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
754
755 switch (currState->el) {
756 case EL0:
757 case EL1:
758 if (isStage2) {
759 DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
760 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
761 tsz = 64 - currState->vtcr.t0sz64;
762 tg = GrainMap_tg0[currState->vtcr.tg0];
763 // ARM DDI 0487A.f D7-2148
764 // The starting level of stage 2 translation depends on
765 // VTCR_EL2.SL0 and VTCR_EL2.TG0
766 LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
767 uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
768 static const LookupLevel SLL[] = {
769 L2, L3, L3, __, // sl0 == 0
770 L1, L2, L2, __, // sl0 == 1, etc.
771 L0, L1, L1, __,
772 __, __, __, __
773 };
774 start_lookup_level = SLL[sl_tg];
775 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
776 "Cannot discern lookup level from vtcr.{sl0,tg0}");
777 ps = currState->vtcr.ps;
778 } else {
779 switch (bits(currState->vaddr, 63,48)) {
780 case 0:
781 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
782 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
783 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
784 tg = GrainMap_tg0[currState->tcr.tg0];
785 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
786 currState->tcr.epd0)
787 fault = true;
788 break;
789 case 0xffff:
790 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
791 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
792 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
793 tg = GrainMap_tg1[currState->tcr.tg1];
794 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
795 currState->tcr.epd1)
796 fault = true;
797 break;
798 default:
799 // top two bytes must be all 0s or all 1s, else invalid addr
800 fault = true;
801 }
802 ps = currState->tcr.ips;
803 }
804 break;
805 case EL2:
806 switch(bits(currState->vaddr, 63,48)) {
807 case 0:
808 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
809 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
810 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
811 tg = GrainMap_tg0[currState->tcr.tg0];
812 break;
813
814 case 0xffff:
815 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
816 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL2);
817 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
818 tg = GrainMap_tg1[currState->tcr.tg1];
819 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
820 currState->tcr.epd1 || !currState->hcr.e2h)
821 fault = true;
822 break;
823
824 default:
825 // invalid addr if top two bytes are not all 0s
826 fault = true;
827 }
828 ps = currState->tcr.ps;
829 break;
830 case EL3:
831 switch(bits(currState->vaddr, 63,48)) {
832 case 0:
833 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
834 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
835 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
836 tg = GrainMap_tg0[currState->tcr.tg0];
837 break;
838 default:
839 // invalid addr if top two bytes are not all 0s
840 fault = true;
841 }
842 ps = currState->tcr.ps;
843 break;
844 }
845
846 if (fault) {
847 Fault f;
848 if (currState->isFetch)
849 f = std::make_shared<PrefetchAbort>(
850 currState->vaddr_tainted,
851 ArmFault::TranslationLL + L0, isStage2,
852 ArmFault::LpaeTran);
853 else
854 f = std::make_shared<DataAbort>(
855 currState->vaddr_tainted,
856 TlbEntry::DomainType::NoAccess,
857 currState->isWrite,
858 ArmFault::TranslationLL + L0,
859 isStage2, ArmFault::LpaeTran);
860
861 if (currState->timing) {
862 pending = false;
863 nextWalk(currState->tc);
864 currState = NULL;
865 } else {
866 currState->tc = NULL;
867 currState->req = NULL;
868 }
869 return f;
870
871 }
872
873 if (tg == ReservedGrain) {
874 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
875 "DEFINED behavior takes this to mean 4KB granules\n");
876 tg = Grain4KB;
877 }
878
879 // Determine starting lookup level
880 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
881 // in ARM DDI 0487A. These table values correspond to the cascading tests
882 // to compute the lookup level and are of the form
883 // (grain_size + N*stride), for N = {1, 2, 3}.
884 // A value of 64 will never succeed and a value of 0 will always succeed.
885 if (start_lookup_level == MAX_LOOKUP_LEVELS) {
886 struct GrainMap {
887 GrainSize grain_size;
888 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
889 };
890 static const GrainMap GM[] = {
891 { Grain4KB, { 39, 30, 0, 0 } },
892 { Grain16KB, { 47, 36, 25, 0 } },
893 { Grain64KB, { 64, 42, 29, 0 } }
894 };
895
896 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
897
898 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
899 if (tg == GM[i].grain_size) {
900 lookup = GM[i].lookup_level_cutoff;
901 break;
902 }
903 }
904 assert(lookup);
905
906 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
907 if (tsz > lookup[L]) {
908 start_lookup_level = (LookupLevel) L;
909 break;
910 }
911 }
912 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
913 "Table walker couldn't find lookup level\n");
914 }
915
916 int stride = tg - 3;
917
918 // Determine table base address
919 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
920 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
921
922 // Determine physical address size and raise an Address Size Fault if
923 // necessary
924 int pa_range = decodePhysAddrRange64(ps);
925 // Clamp to lower limit
926 if (pa_range > physAddrRange)
927 currState->physAddrRange = physAddrRange;
928 else
929 currState->physAddrRange = pa_range;
930 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
931 DPRINTF(TLB, "Address size fault before any lookup\n");
932 Fault f;
933 if (currState->isFetch)
934 f = std::make_shared<PrefetchAbort>(
935 currState->vaddr_tainted,
936 ArmFault::AddressSizeLL + start_lookup_level,
937 isStage2,
938 ArmFault::LpaeTran);
939 else
940 f = std::make_shared<DataAbort>(
941 currState->vaddr_tainted,
942 TlbEntry::DomainType::NoAccess,
943 currState->isWrite,
944 ArmFault::AddressSizeLL + start_lookup_level,
945 isStage2,
946 ArmFault::LpaeTran);
947
948
949 if (currState->timing) {
950 pending = false;
951 nextWalk(currState->tc);
952 currState = NULL;
953 } else {
954 currState->tc = NULL;
955 currState->req = NULL;
956 }
957 return f;
958
959 }
960
961 // Determine descriptor address
962 Addr desc_addr = base_addr |
963 (bits(currState->vaddr, tsz - 1,
964 stride * (3 - start_lookup_level) + tg) << 3);
965
966 // Trickbox address check
967 Fault f = testWalk(desc_addr, sizeof(uint64_t),
968 TlbEntry::DomainType::NoAccess, start_lookup_level);
969 if (f) {
970 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
971 if (currState->timing) {
972 pending = false;
973 nextWalk(currState->tc);
974 currState = NULL;
975 } else {
976 currState->tc = NULL;
977 currState->req = NULL;
978 }
979 return f;
980 }
981
982 Request::Flags flag = Request::PT_WALK;
983 if (currState->sctlr.c == 0) {
984 flag.set(Request::UNCACHEABLE);
985 }
986
987 if (currState->isSecure) {
988 flag.set(Request::SECURE);
989 }
990
991 currState->longDesc.lookupLevel = start_lookup_level;
992 currState->longDesc.aarch64 = true;
993 currState->longDesc.grainSize = tg;
994
995 if (currState->timing) {
996 fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
997 sizeof(uint64_t), flag, start_lookup_level,
998 LongDescEventByLevel[start_lookup_level], NULL);
999 } else {
1000 fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
1001 sizeof(uint64_t), flag, -1, NULL,
1002 &TableWalker::doLongDescriptor);
1003 f = currState->fault;
1004 }
1005
1006 return f;
1007}
1008
1009void
1010TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
1011 uint8_t texcb, bool s)
1012{
1013 // Note: tc and sctlr local variables are hiding tc and sctrl class
1014 // variables
1015 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1016 te.shareable = false; // default value
1017 te.nonCacheable = false;
1018 te.outerShareable = false;
1019 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1020 switch(texcb) {
1021 case 0: // Stongly-ordered
1022 te.nonCacheable = true;
1023 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1024 te.shareable = true;
1025 te.innerAttrs = 1;
1026 te.outerAttrs = 0;
1027 break;
1028 case 1: // Shareable Device
1029 te.nonCacheable = true;
1030 te.mtype = TlbEntry::MemoryType::Device;
1031 te.shareable = true;
1032 te.innerAttrs = 3;
1033 te.outerAttrs = 0;
1034 break;
1035 case 2: // Outer and Inner Write-Through, no Write-Allocate
1036 te.mtype = TlbEntry::MemoryType::Normal;
1037 te.shareable = s;
1038 te.innerAttrs = 6;
1039 te.outerAttrs = bits(texcb, 1, 0);
1040 break;
1041 case 3: // Outer and Inner Write-Back, no Write-Allocate
1042 te.mtype = TlbEntry::MemoryType::Normal;
1043 te.shareable = s;
1044 te.innerAttrs = 7;
1045 te.outerAttrs = bits(texcb, 1, 0);
1046 break;
1047 case 4: // Outer and Inner Non-cacheable
1048 te.nonCacheable = true;
1049 te.mtype = TlbEntry::MemoryType::Normal;
1050 te.shareable = s;
1051 te.innerAttrs = 0;
1052 te.outerAttrs = bits(texcb, 1, 0);
1053 break;
1054 case 5: // Reserved
1055 panic("Reserved texcb value!\n");
1056 break;
1057 case 6: // Implementation Defined
1058 panic("Implementation-defined texcb value!\n");
1059 break;
1060 case 7: // Outer and Inner Write-Back, Write-Allocate
1061 te.mtype = TlbEntry::MemoryType::Normal;
1062 te.shareable = s;
1063 te.innerAttrs = 5;
1064 te.outerAttrs = 1;
1065 break;
1066 case 8: // Non-shareable Device
1067 te.nonCacheable = true;
1068 te.mtype = TlbEntry::MemoryType::Device;
1069 te.shareable = false;
1070 te.innerAttrs = 3;
1071 te.outerAttrs = 0;
1072 break;
1073 case 9 ... 15: // Reserved
1074 panic("Reserved texcb value!\n");
1075 break;
1076 case 16 ... 31: // Cacheable Memory
1077 te.mtype = TlbEntry::MemoryType::Normal;
1078 te.shareable = s;
1079 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1080 te.nonCacheable = true;
1081 te.innerAttrs = bits(texcb, 1, 0);
1082 te.outerAttrs = bits(texcb, 3, 2);
1083 break;
1084 default:
1085 panic("More than 32 states for 5 bits?\n");
1086 }
1087 } else {
1088 assert(tc);
1089 PRRR prrr = tc->readMiscReg(snsBankedIndex(MISCREG_PRRR,
1090 currState->tc, !currState->isSecure));
1091 NMRR nmrr = tc->readMiscReg(snsBankedIndex(MISCREG_NMRR,
1092 currState->tc, !currState->isSecure));
1093 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1094 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1095 switch(bits(texcb, 2,0)) {
1096 case 0:
1097 curr_tr = prrr.tr0;
1098 curr_ir = nmrr.ir0;
1099 curr_or = nmrr.or0;
1100 te.outerShareable = (prrr.nos0 == 0);
1101 break;
1102 case 1:
1103 curr_tr = prrr.tr1;
1104 curr_ir = nmrr.ir1;
1105 curr_or = nmrr.or1;
1106 te.outerShareable = (prrr.nos1 == 0);
1107 break;
1108 case 2:
1109 curr_tr = prrr.tr2;
1110 curr_ir = nmrr.ir2;
1111 curr_or = nmrr.or2;
1112 te.outerShareable = (prrr.nos2 == 0);
1113 break;
1114 case 3:
1115 curr_tr = prrr.tr3;
1116 curr_ir = nmrr.ir3;
1117 curr_or = nmrr.or3;
1118 te.outerShareable = (prrr.nos3 == 0);
1119 break;
1120 case 4:
1121 curr_tr = prrr.tr4;
1122 curr_ir = nmrr.ir4;
1123 curr_or = nmrr.or4;
1124 te.outerShareable = (prrr.nos4 == 0);
1125 break;
1126 case 5:
1127 curr_tr = prrr.tr5;
1128 curr_ir = nmrr.ir5;
1129 curr_or = nmrr.or5;
1130 te.outerShareable = (prrr.nos5 == 0);
1131 break;
1132 case 6:
1133 panic("Imp defined type\n");
1134 case 7:
1135 curr_tr = prrr.tr7;
1136 curr_ir = nmrr.ir7;
1137 curr_or = nmrr.or7;
1138 te.outerShareable = (prrr.nos7 == 0);
1139 break;
1140 }
1141
1142 switch(curr_tr) {
1143 case 0:
1144 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1145 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1146 te.nonCacheable = true;
1147 te.innerAttrs = 1;
1148 te.outerAttrs = 0;
1149 te.shareable = true;
1150 break;
1151 case 1:
1152 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1153 prrr.ds1, prrr.ds0, s);
1154 te.mtype = TlbEntry::MemoryType::Device;
1155 te.nonCacheable = true;
1156 te.innerAttrs = 3;
1157 te.outerAttrs = 0;
1158 if (prrr.ds1 && s)
1159 te.shareable = true;
1160 if (prrr.ds0 && !s)
1161 te.shareable = true;
1162 break;
1163 case 2:
1164 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1165 prrr.ns1, prrr.ns0, s);
1166 te.mtype = TlbEntry::MemoryType::Normal;
1167 if (prrr.ns1 && s)
1168 te.shareable = true;
1169 if (prrr.ns0 && !s)
1170 te.shareable = true;
1171 break;
1172 case 3:
1173 panic("Reserved type");
1174 }
1175
1176 if (te.mtype == TlbEntry::MemoryType::Normal){
1177 switch(curr_ir) {
1178 case 0:
1179 te.nonCacheable = true;
1180 te.innerAttrs = 0;
1181 break;
1182 case 1:
1183 te.innerAttrs = 5;
1184 break;
1185 case 2:
1186 te.innerAttrs = 6;
1187 break;
1188 case 3:
1189 te.innerAttrs = 7;
1190 break;
1191 }
1192
1193 switch(curr_or) {
1194 case 0:
1195 te.nonCacheable = true;
1196 te.outerAttrs = 0;
1197 break;
1198 case 1:
1199 te.outerAttrs = 1;
1200 break;
1201 case 2:
1202 te.outerAttrs = 2;
1203 break;
1204 case 3:
1205 te.outerAttrs = 3;
1206 break;
1207 }
1208 }
1209 }
1210 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1211 "outerAttrs: %d\n",
1212 te.shareable, te.innerAttrs, te.outerAttrs);
1213 te.setAttributes(false);
1214}
1215
1216void
1217TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1218 LongDescriptor &lDescriptor)
1219{
1220 assert(_haveLPAE);
1221
1222 uint8_t attr;
1223 uint8_t sh = lDescriptor.sh();
1224 // Different format and source of attributes if this is a stage 2
1225 // translation
1226 if (isStage2) {
1227 attr = lDescriptor.memAttr();
1228 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1229 uint8_t attr_1_0 = attr & 0x3;
1230
1231 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1232
1233 if (attr_3_2 == 0) {
1234 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1235 : TlbEntry::MemoryType::Device;
1236 te.outerAttrs = 0;
1237 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1238 te.nonCacheable = true;
1239 } else {
1240 te.mtype = TlbEntry::MemoryType::Normal;
1241 te.outerAttrs = attr_3_2 == 1 ? 0 :
1242 attr_3_2 == 2 ? 2 : 1;
1243 te.innerAttrs = attr_1_0 == 1 ? 0 :
1244 attr_1_0 == 2 ? 6 : 5;
1245 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1246 }
1247 } else {
1248 uint8_t attrIndx = lDescriptor.attrIndx();
1249
1250 // LPAE always uses remapping of memory attributes, irrespective of the
1251 // value of SCTLR.TRE
1252 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1253 int reg_as_int = snsBankedIndex(reg, currState->tc,
1254 !currState->isSecure);
1255 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1256 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1257 uint8_t attr_7_4 = bits(attr, 7, 4);
1258 uint8_t attr_3_0 = bits(attr, 3, 0);
1259 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1260
1261 // Note: the memory subsystem only cares about the 'cacheable' memory
1262 // attribute. The other attributes are only used to fill the PAR register
1263 // accordingly to provide the illusion of full support
1264 te.nonCacheable = false;
1265
1266 switch (attr_7_4) {
1267 case 0x0:
1268 // Strongly-ordered or Device memory
1269 if (attr_3_0 == 0x0)
1270 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1271 else if (attr_3_0 == 0x4)
1272 te.mtype = TlbEntry::MemoryType::Device;
1273 else
1274 panic("Unpredictable behavior\n");
1275 te.nonCacheable = true;
1276 te.outerAttrs = 0;
1277 break;
1278 case 0x4:
1279 // Normal memory, Outer Non-cacheable
1280 te.mtype = TlbEntry::MemoryType::Normal;
1281 te.outerAttrs = 0;
1282 if (attr_3_0 == 0x4)
1283 // Inner Non-cacheable
1284 te.nonCacheable = true;
1285 else if (attr_3_0 < 0x8)
1286 panic("Unpredictable behavior\n");
1287 break;
1288 case 0x8:
1289 case 0x9:
1290 case 0xa:
1291 case 0xb:
1292 case 0xc:
1293 case 0xd:
1294 case 0xe:
1295 case 0xf:
1296 if (attr_7_4 & 0x4) {
1297 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1298 } else {
1299 te.outerAttrs = 0x2;
1300 }
1301 // Normal memory, Outer Cacheable
1302 te.mtype = TlbEntry::MemoryType::Normal;
1303 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1304 panic("Unpredictable behavior\n");
1305 break;
1306 default:
1307 panic("Unpredictable behavior\n");
1308 break;
1309 }
1310
1311 switch (attr_3_0) {
1312 case 0x0:
1313 te.innerAttrs = 0x1;
1314 break;
1315 case 0x4:
1316 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1317 break;
1318 case 0x8:
1319 case 0x9:
1320 case 0xA:
1321 case 0xB:
1322 te.innerAttrs = 6;
1323 break;
1324 case 0xC:
1325 case 0xD:
1326 case 0xE:
1327 case 0xF:
1328 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1329 break;
1330 default:
1331 panic("Unpredictable behavior\n");
1332 break;
1333 }
1334 }
1335
1336 te.outerShareable = sh == 2;
1337 te.shareable = (sh & 0x2) ? true : false;
1338 te.setAttributes(true);
1339 te.attributes |= (uint64_t) attr << 56;
1340}
1341
1342void
1343TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1344 LongDescriptor &lDescriptor)
1345{
1346 uint8_t attr;
1347 uint8_t attr_hi;
1348 uint8_t attr_lo;
1349 uint8_t sh = lDescriptor.sh();
1350
1351 if (isStage2) {
1352 attr = lDescriptor.memAttr();
1353 uint8_t attr_hi = (attr >> 2) & 0x3;
1354 uint8_t attr_lo = attr & 0x3;
1355
1356 DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1357
1358 if (attr_hi == 0) {
1359 te.mtype = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1360 : TlbEntry::MemoryType::Device;
1361 te.outerAttrs = 0;
1362 te.innerAttrs = attr_lo == 0 ? 1 : 3;
1363 te.nonCacheable = true;
1364 } else {
1365 te.mtype = TlbEntry::MemoryType::Normal;
1366 te.outerAttrs = attr_hi == 1 ? 0 :
1367 attr_hi == 2 ? 2 : 1;
1368 te.innerAttrs = attr_lo == 1 ? 0 :
1369 attr_lo == 2 ? 6 : 5;
1370 // Treat write-through memory as uncacheable, this is safe
1371 // but for performance reasons not optimal.
1372 te.nonCacheable = (attr_hi == 1) || (attr_hi == 2) ||
1373 (attr_lo == 1) || (attr_lo == 2);
1374 }
1375 } else {
1376 uint8_t attrIndx = lDescriptor.attrIndx();
1377
1378 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1379
1380 // Select MAIR
1381 uint64_t mair;
1382 switch (currState->el) {
1383 case EL0:
1384 case EL1:
1385 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1386 break;
1387 case EL2:
1388 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1389 break;
1390 case EL3:
1391 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1392 break;
1393 default:
1394 panic("Invalid exception level");
1395 break;
1396 }
1397
1398 // Select attributes
1399 attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1400 attr_lo = bits(attr, 3, 0);
1401 attr_hi = bits(attr, 7, 4);
1402
1403 // Memory type
1404 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1405
1406 // Cacheability
1407 te.nonCacheable = false;
1408 if (te.mtype == TlbEntry::MemoryType::Device) { // Device memory
1409 te.nonCacheable = true;
1410 }
1411 // Treat write-through memory as uncacheable, this is safe
1412 // but for performance reasons not optimal.
1413 switch (attr_hi) {
1414 case 0x1 ... 0x3: // Normal Memory, Outer Write-through transient
1415 case 0x4: // Normal memory, Outer Non-cacheable
1416 case 0x8 ... 0xb: // Normal Memory, Outer Write-through non-transient
1417 te.nonCacheable = true;
1418 }
1419 switch (attr_lo) {
1420 case 0x1 ... 0x3: // Normal Memory, Inner Write-through transient
1421 case 0x9 ... 0xb: // Normal Memory, Inner Write-through non-transient
1422 warn_if(!attr_hi, "Unpredictable behavior");
1423 M5_FALLTHROUGH;
1424 case 0x4: // Device-nGnRE memory or
1425 // Normal memory, Inner Non-cacheable
1426 case 0x8: // Device-nGRE memory or
1427 // Normal memory, Inner Write-through non-transient
1428 te.nonCacheable = true;
1429 }
1430
1431 te.shareable = sh == 2;
1432 te.outerShareable = (sh & 0x2) ? true : false;
1433 // Attributes formatted according to the 64-bit PAR
1434 te.attributes = ((uint64_t) attr << 56) |
1435 (1 << 11) | // LPAE bit
1436 (te.ns << 9) | // NS bit
1437 (sh << 7);
1438 }
1439}
1440
1441void
1442TableWalker::doL1Descriptor()
1443{
1444 if (currState->fault != NoFault) {
1445 return;
1446 }
1447
1448 currState->l1Desc.data = htog(currState->l1Desc.data,
1449 byteOrder(currState->tc));
1450
1451 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1452 currState->vaddr_tainted, currState->l1Desc.data);
1453 TlbEntry te;
1454
1455 switch (currState->l1Desc.type()) {
1456 case L1Descriptor::Ignore:
1457 case L1Descriptor::Reserved:
1458 if (!currState->timing) {
1459 currState->tc = NULL;
1460 currState->req = NULL;
1461 }
1462 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1463 if (currState->isFetch)
1464 currState->fault =
1465 std::make_shared<PrefetchAbort>(
1466 currState->vaddr_tainted,
1467 ArmFault::TranslationLL + L1,
1468 isStage2,
1469 ArmFault::VmsaTran);
1470 else
1471 currState->fault =
1472 std::make_shared<DataAbort>(
1473 currState->vaddr_tainted,
1474 TlbEntry::DomainType::NoAccess,
1475 currState->isWrite,
1476 ArmFault::TranslationLL + L1, isStage2,
1477 ArmFault::VmsaTran);
1478 return;
1479 case L1Descriptor::Section:
1480 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1481 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1482 * enabled if set, do l1.Desc.setAp0() instead of generating
1483 * AccessFlag0
1484 */
1485
1486 currState->fault = std::make_shared<DataAbort>(
1487 currState->vaddr_tainted,
1488 currState->l1Desc.domain(),
1489 currState->isWrite,
1490 ArmFault::AccessFlagLL + L1,
1491 isStage2,
1492 ArmFault::VmsaTran);
1493 }
1494 if (currState->l1Desc.supersection()) {
1495 panic("Haven't implemented supersections\n");
1496 }
1497 insertTableEntry(currState->l1Desc, false);
1498 return;
1499 case L1Descriptor::PageTable:
1500 {
1501 Addr l2desc_addr;
1502 l2desc_addr = currState->l1Desc.l2Addr() |
1503 (bits(currState->vaddr, 19, 12) << 2);
1504 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1505 l2desc_addr, currState->isSecure ? "s" : "ns");
1506
1507 // Trickbox address check
1508 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1509 currState->l1Desc.domain(), L2);
1510
1511 if (currState->fault) {
1512 if (!currState->timing) {
1513 currState->tc = NULL;
1514 currState->req = NULL;
1515 }
1516 return;
1517 }
1518
1519 Request::Flags flag = Request::PT_WALK;
1520 if (currState->isSecure)
1521 flag.set(Request::SECURE);
1522
1523 bool delayed;
1524 delayed = fetchDescriptor(l2desc_addr,
1525 (uint8_t*)&currState->l2Desc.data,
1526 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1527 &TableWalker::doL2Descriptor);
1528 if (delayed) {
1529 currState->delayed = true;
1530 }
1531
1532 return;
1533 }
1534 default:
1535 panic("A new type in a 2 bit field?\n");
1536 }
1537}
1538
1539Fault
1540TableWalker::generateLongDescFault(ArmFault::FaultSource src)
1541{
1542 if (currState->isFetch) {
1543 return std::make_shared<PrefetchAbort>(
1544 currState->vaddr_tainted,
1545 src + currState->longDesc.lookupLevel,
1546 isStage2,
1547 ArmFault::LpaeTran);
1548 } else {
1549 return std::make_shared<DataAbort>(
1550 currState->vaddr_tainted,
1551 TlbEntry::DomainType::NoAccess,
1552 currState->isWrite,
1553 src + currState->longDesc.lookupLevel,
1554 isStage2,
1555 ArmFault::LpaeTran);
1556 }
1557}
1558
1539void
1540TableWalker::doLongDescriptor()
1541{
1542 if (currState->fault != NoFault) {
1543 return;
1544 }
1545
1546 currState->longDesc.data = htog(currState->longDesc.data,
1547 byteOrder(currState->tc));
1548
1549 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1550 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1551 currState->longDesc.data,
1552 currState->aarch64 ? "AArch64" : "long-desc.");
1553
1554 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1555 (currState->longDesc.type() == LongDescriptor::Page)) {
1556 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1557 "xn: %d, ap: %d, af: %d, type: %d\n",
1558 currState->longDesc.lookupLevel,
1559 currState->longDesc.data,
1560 currState->longDesc.pxn(),
1561 currState->longDesc.xn(),
1562 currState->longDesc.ap(),
1563 currState->longDesc.af(),
1564 currState->longDesc.type());
1565 } else {
1566 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1567 currState->longDesc.lookupLevel,
1568 currState->longDesc.data,
1569 currState->longDesc.type());
1570 }
1571
1572 TlbEntry te;
1573
1574 switch (currState->longDesc.type()) {
1575 case LongDescriptor::Invalid:
1576 if (!currState->timing) {
1577 currState->tc = NULL;
1578 currState->req = NULL;
1579 }
1580
1581 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1582 currState->longDesc.lookupLevel,
1583 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1559void
1560TableWalker::doLongDescriptor()
1561{
1562 if (currState->fault != NoFault) {
1563 return;
1564 }
1565
1566 currState->longDesc.data = htog(currState->longDesc.data,
1567 byteOrder(currState->tc));
1568
1569 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1570 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1571 currState->longDesc.data,
1572 currState->aarch64 ? "AArch64" : "long-desc.");
1573
1574 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1575 (currState->longDesc.type() == LongDescriptor::Page)) {
1576 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1577 "xn: %d, ap: %d, af: %d, type: %d\n",
1578 currState->longDesc.lookupLevel,
1579 currState->longDesc.data,
1580 currState->longDesc.pxn(),
1581 currState->longDesc.xn(),
1582 currState->longDesc.ap(),
1583 currState->longDesc.af(),
1584 currState->longDesc.type());
1585 } else {
1586 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1587 currState->longDesc.lookupLevel,
1588 currState->longDesc.data,
1589 currState->longDesc.type());
1590 }
1591
1592 TlbEntry te;
1593
1594 switch (currState->longDesc.type()) {
1595 case LongDescriptor::Invalid:
1596 if (!currState->timing) {
1597 currState->tc = NULL;
1598 currState->req = NULL;
1599 }
1600
1601 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1602 currState->longDesc.lookupLevel,
1603 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1584 if (currState->isFetch)
1585 currState->fault = std::make_shared<PrefetchAbort>(
1586 currState->vaddr_tainted,
1587 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1588 isStage2,
1589 ArmFault::LpaeTran);
1590 else
1591 currState->fault = std::make_shared<DataAbort>(
1592 currState->vaddr_tainted,
1593 TlbEntry::DomainType::NoAccess,
1594 currState->isWrite,
1595 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1596 isStage2,
1597 ArmFault::LpaeTran);
1604
1605 currState->fault = generateLongDescFault(ArmFault::TranslationLL);
1598 return;
1606 return;
1607
1599 case LongDescriptor::Block:
1600 case LongDescriptor::Page:
1601 {
1608 case LongDescriptor::Block:
1609 case LongDescriptor::Page:
1610 {
1602 bool fault = false;
1603 bool aff = false;
1611 auto fault_source = ArmFault::FaultSourceInvalid;
1604 // Check for address size fault
1605 if (checkAddrSizeFaultAArch64(
1606 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1607 currState->longDesc.offsetBits()),
1608 currState->physAddrRange)) {
1612 // Check for address size fault
1613 if (checkAddrSizeFaultAArch64(
1614 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1615 currState->longDesc.offsetBits()),
1616 currState->physAddrRange)) {
1609 fault = true;
1617
1610 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1611 currState->longDesc.lookupLevel);
1618 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1619 currState->longDesc.lookupLevel);
1620 fault_source = ArmFault::AddressSizeLL;
1621
1612 // Check for access fault
1613 } else if (currState->longDesc.af() == 0) {
1622 // Check for access fault
1623 } else if (currState->longDesc.af() == 0) {
1614 fault = true;
1624
1615 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1616 currState->longDesc.lookupLevel);
1625 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1626 currState->longDesc.lookupLevel);
1617 aff = true;
1627 fault_source = ArmFault::AccessFlagLL;
1618 }
1628 }
1619 if (fault) {
1620 if (currState->isFetch)
1621 currState->fault = std::make_shared<PrefetchAbort>(
1622 currState->vaddr_tainted,
1623 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1624 currState->longDesc.lookupLevel,
1625 isStage2,
1626 ArmFault::LpaeTran);
1627 else
1628 currState->fault = std::make_shared<DataAbort>(
1629 currState->vaddr_tainted,
1630 TlbEntry::DomainType::NoAccess, currState->isWrite,
1631 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1632 currState->longDesc.lookupLevel,
1633 isStage2,
1634 ArmFault::LpaeTran);
1629
1630 if (fault_source != ArmFault::FaultSourceInvalid) {
1631 currState->fault = generateLongDescFault(fault_source);
1635 } else {
1636 insertTableEntry(currState->longDesc, true);
1637 }
1638 }
1639 return;
1640 case LongDescriptor::Table:
1641 {
1642 // Set hierarchical permission flags
1643 currState->secureLookup = currState->secureLookup &&
1644 currState->longDesc.secureTable();
1645 currState->rwTable = currState->rwTable &&
1646 currState->longDesc.rwTable();
1647 currState->userTable = currState->userTable &&
1648 currState->longDesc.userTable();
1649 currState->xnTable = currState->xnTable ||
1650 currState->longDesc.xnTable();
1651 currState->pxnTable = currState->pxnTable ||
1652 currState->longDesc.pxnTable();
1653
1654 // Set up next level lookup
1655 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1656 currState->vaddr);
1657
1658 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1659 currState->longDesc.lookupLevel,
1660 currState->longDesc.lookupLevel + 1,
1661 next_desc_addr,
1662 currState->secureLookup ? "s" : "ns");
1663
1664 // Check for address size fault
1665 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1666 next_desc_addr, currState->physAddrRange)) {
1667 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1668 currState->longDesc.lookupLevel);
1632 } else {
1633 insertTableEntry(currState->longDesc, true);
1634 }
1635 }
1636 return;
1637 case LongDescriptor::Table:
1638 {
1639 // Set hierarchical permission flags
1640 currState->secureLookup = currState->secureLookup &&
1641 currState->longDesc.secureTable();
1642 currState->rwTable = currState->rwTable &&
1643 currState->longDesc.rwTable();
1644 currState->userTable = currState->userTable &&
1645 currState->longDesc.userTable();
1646 currState->xnTable = currState->xnTable ||
1647 currState->longDesc.xnTable();
1648 currState->pxnTable = currState->pxnTable ||
1649 currState->longDesc.pxnTable();
1650
1651 // Set up next level lookup
1652 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1653 currState->vaddr);
1654
1655 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1656 currState->longDesc.lookupLevel,
1657 currState->longDesc.lookupLevel + 1,
1658 next_desc_addr,
1659 currState->secureLookup ? "s" : "ns");
1660
1661 // Check for address size fault
1662 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1663 next_desc_addr, currState->physAddrRange)) {
1664 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1665 currState->longDesc.lookupLevel);
1669 if (currState->isFetch)
1670 currState->fault = std::make_shared<PrefetchAbort>(
1671 currState->vaddr_tainted,
1672 ArmFault::AddressSizeLL
1673 + currState->longDesc.lookupLevel,
1674 isStage2,
1675 ArmFault::LpaeTran);
1676 else
1677 currState->fault = std::make_shared<DataAbort>(
1678 currState->vaddr_tainted,
1679 TlbEntry::DomainType::NoAccess, currState->isWrite,
1680 ArmFault::AddressSizeLL
1681 + currState->longDesc.lookupLevel,
1682 isStage2,
1683 ArmFault::LpaeTran);
1666
1667 currState->fault = generateLongDescFault(
1668 ArmFault::AddressSizeLL);
1684 return;
1685 }
1686
1687 // Trickbox address check
1688 currState->fault = testWalk(
1689 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1690 toLookupLevel(currState->longDesc.lookupLevel +1));
1691
1692 if (currState->fault) {
1693 if (!currState->timing) {
1694 currState->tc = NULL;
1695 currState->req = NULL;
1696 }
1697 return;
1698 }
1699
1700 Request::Flags flag = Request::PT_WALK;
1701 if (currState->secureLookup)
1702 flag.set(Request::SECURE);
1703
1704 LookupLevel L = currState->longDesc.lookupLevel =
1705 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1706 Event *event = NULL;
1707 switch (L) {
1708 case L1:
1709 assert(currState->aarch64);
1710 case L2:
1711 case L3:
1712 event = LongDescEventByLevel[L];
1713 break;
1714 default:
1715 panic("Wrong lookup level in table walk\n");
1716 break;
1717 }
1718
1719 bool delayed;
1720 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1721 sizeof(uint64_t), flag, -1, event,
1722 &TableWalker::doLongDescriptor);
1723 if (delayed) {
1724 currState->delayed = true;
1725 }
1726 }
1727 return;
1728 default:
1729 panic("A new type in a 2 bit field?\n");
1730 }
1731}
1732
1733void
1734TableWalker::doL2Descriptor()
1735{
1736 if (currState->fault != NoFault) {
1737 return;
1738 }
1739
1740 currState->l2Desc.data = htog(currState->l2Desc.data,
1741 byteOrder(currState->tc));
1742
1743 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1744 currState->vaddr_tainted, currState->l2Desc.data);
1745 TlbEntry te;
1746
1747 if (currState->l2Desc.invalid()) {
1748 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1749 if (!currState->timing) {
1750 currState->tc = NULL;
1751 currState->req = NULL;
1752 }
1753 if (currState->isFetch)
1754 currState->fault = std::make_shared<PrefetchAbort>(
1755 currState->vaddr_tainted,
1756 ArmFault::TranslationLL + L2,
1757 isStage2,
1758 ArmFault::VmsaTran);
1759 else
1760 currState->fault = std::make_shared<DataAbort>(
1761 currState->vaddr_tainted, currState->l1Desc.domain(),
1762 currState->isWrite, ArmFault::TranslationLL + L2,
1763 isStage2,
1764 ArmFault::VmsaTran);
1765 return;
1766 }
1767
1768 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1769 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1770 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1771 */
1772 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1773 currState->sctlr.afe, currState->l2Desc.ap());
1774
1775 currState->fault = std::make_shared<DataAbort>(
1776 currState->vaddr_tainted,
1777 TlbEntry::DomainType::NoAccess, currState->isWrite,
1778 ArmFault::AccessFlagLL + L2, isStage2,
1779 ArmFault::VmsaTran);
1780 }
1781
1782 insertTableEntry(currState->l2Desc, false);
1783}
1784
1785void
1786TableWalker::doL1DescriptorWrapper()
1787{
1788 currState = stateQueues[L1].front();
1789 currState->delayed = false;
1790 // if there's a stage2 translation object we don't need it any more
1791 if (currState->stage2Tran) {
1792 delete currState->stage2Tran;
1793 currState->stage2Tran = NULL;
1794 }
1795
1796
1797 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1798 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1799
1800 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1801 doL1Descriptor();
1802
1803 stateQueues[L1].pop_front();
1804 // Check if fault was generated
1805 if (currState->fault != NoFault) {
1806 currState->transState->finish(currState->fault, currState->req,
1807 currState->tc, currState->mode);
1808 statWalksShortTerminatedAtLevel[0]++;
1809
1810 pending = false;
1811 nextWalk(currState->tc);
1812
1813 currState->req = NULL;
1814 currState->tc = NULL;
1815 currState->delayed = false;
1816 delete currState;
1817 }
1818 else if (!currState->delayed) {
1819 // delay is not set so there is no L2 to do
1820 // Don't finish the translation if a stage 2 look up is underway
1821 statWalkServiceTime.sample(curTick() - currState->startTime);
1822 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1823 tlb->translateTiming(currState->req, currState->tc,
1824 currState->transState, currState->mode);
1825 statWalksShortTerminatedAtLevel[0]++;
1826
1827 pending = false;
1828 nextWalk(currState->tc);
1829
1830 currState->req = NULL;
1831 currState->tc = NULL;
1832 currState->delayed = false;
1833 delete currState;
1834 } else {
1835 // need to do L2 descriptor
1836 stateQueues[L2].push_back(currState);
1837 }
1838 currState = NULL;
1839}
1840
1841void
1842TableWalker::doL2DescriptorWrapper()
1843{
1844 currState = stateQueues[L2].front();
1845 assert(currState->delayed);
1846 // if there's a stage2 translation object we don't need it any more
1847 if (currState->stage2Tran) {
1848 delete currState->stage2Tran;
1849 currState->stage2Tran = NULL;
1850 }
1851
1852 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1853 currState->vaddr_tainted);
1854 doL2Descriptor();
1855
1856 // Check if fault was generated
1857 if (currState->fault != NoFault) {
1858 currState->transState->finish(currState->fault, currState->req,
1859 currState->tc, currState->mode);
1860 statWalksShortTerminatedAtLevel[1]++;
1861 } else {
1862 statWalkServiceTime.sample(curTick() - currState->startTime);
1863 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1864 tlb->translateTiming(currState->req, currState->tc,
1865 currState->transState, currState->mode);
1866 statWalksShortTerminatedAtLevel[1]++;
1867 }
1868
1869
1870 stateQueues[L2].pop_front();
1871 pending = false;
1872 nextWalk(currState->tc);
1873
1874 currState->req = NULL;
1875 currState->tc = NULL;
1876 currState->delayed = false;
1877
1878 delete currState;
1879 currState = NULL;
1880}
1881
1882void
1883TableWalker::doL0LongDescriptorWrapper()
1884{
1885 doLongDescriptorWrapper(L0);
1886}
1887
1888void
1889TableWalker::doL1LongDescriptorWrapper()
1890{
1891 doLongDescriptorWrapper(L1);
1892}
1893
1894void
1895TableWalker::doL2LongDescriptorWrapper()
1896{
1897 doLongDescriptorWrapper(L2);
1898}
1899
1900void
1901TableWalker::doL3LongDescriptorWrapper()
1902{
1903 doLongDescriptorWrapper(L3);
1904}
1905
1906void
1907TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1908{
1909 currState = stateQueues[curr_lookup_level].front();
1910 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1911 currState->delayed = false;
1912
1913 // if there's a stage2 translation object we don't need it any more
1914 if (currState->stage2Tran) {
1915 delete currState->stage2Tran;
1916 currState->stage2Tran = NULL;
1917 }
1918
1919 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1920 currState->vaddr_tainted);
1921 doLongDescriptor();
1922
1923 stateQueues[curr_lookup_level].pop_front();
1924
1925 if (currState->fault != NoFault) {
1926 // A fault was generated
1927 currState->transState->finish(currState->fault, currState->req,
1928 currState->tc, currState->mode);
1929
1930 pending = false;
1931 nextWalk(currState->tc);
1932
1933 currState->req = NULL;
1934 currState->tc = NULL;
1935 currState->delayed = false;
1936 delete currState;
1937 } else if (!currState->delayed) {
1938 // No additional lookups required
1939 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1940 statWalkServiceTime.sample(curTick() - currState->startTime);
1941 tlb->translateTiming(currState->req, currState->tc,
1942 currState->transState, currState->mode);
1943 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1944
1945 pending = false;
1946 nextWalk(currState->tc);
1947
1948 currState->req = NULL;
1949 currState->tc = NULL;
1950 currState->delayed = false;
1951 delete currState;
1952 } else {
1953 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1954 panic("Max. number of lookups already reached in table walk\n");
1955 // Need to perform additional lookups
1956 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1957 }
1958 currState = NULL;
1959}
1960
1961
1962void
1963TableWalker::nextWalk(ThreadContext *tc)
1964{
1965 if (pendingQueue.size())
1966 schedule(doProcessEvent, clockEdge(Cycles(1)));
1967 else
1968 completeDrain();
1969}
1970
1971bool
1972TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1973 Request::Flags flags, int queueIndex, Event *event,
1974 void (TableWalker::*doDescriptor)())
1975{
1976 bool isTiming = currState->timing;
1977
1978 DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1979 descAddr, currState->stage2Req);
1980
1981 // If this translation has a stage 2 then we know descAddr is an IPA and
1982 // needs to be translated before we can access the page table. Do that
1983 // check here.
1984 if (currState->stage2Req) {
1985 Fault fault;
1986 flags = flags | TLB::MustBeOne;
1987
1988 if (isTiming) {
1989 Stage2MMU::Stage2Translation *tran = new
1990 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1991 currState->vaddr);
1992 currState->stage2Tran = tran;
1993 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1994 flags);
1995 fault = tran->fault;
1996 } else {
1997 fault = stage2Mmu->readDataUntimed(currState->tc,
1998 currState->vaddr, descAddr, data, numBytes, flags,
1999 currState->functional);
2000 }
2001
2002 if (fault != NoFault) {
2003 currState->fault = fault;
2004 }
2005 if (isTiming) {
2006 if (queueIndex >= 0) {
2007 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2008 stateQueues[queueIndex].size());
2009 stateQueues[queueIndex].push_back(currState);
2010 currState = NULL;
2011 }
2012 } else {
2013 (this->*doDescriptor)();
2014 }
2015 } else {
2016 if (isTiming) {
2017 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
2018 currState->tc->getCpuPtr()->clockPeriod(),flags);
2019 if (queueIndex >= 0) {
2020 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2021 stateQueues[queueIndex].size());
2022 stateQueues[queueIndex].push_back(currState);
2023 currState = NULL;
2024 }
2025 } else if (!currState->functional) {
2026 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
2027 currState->tc->getCpuPtr()->clockPeriod(), flags);
2028 (this->*doDescriptor)();
2029 } else {
2030 RequestPtr req = std::make_shared<Request>(
2031 descAddr, numBytes, flags, masterId);
2032
2033 req->taskId(ContextSwitchTaskId::DMA);
2034 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
2035 pkt->dataStatic(data);
2036 port->sendFunctional(pkt);
2037 (this->*doDescriptor)();
2038 delete pkt;
2039 }
2040 }
2041 return (isTiming);
2042}
2043
2044void
2045TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2046{
2047 TlbEntry te;
2048
2049 // Create and fill a new page table entry
2050 te.valid = true;
2051 te.longDescFormat = longDescriptor;
2052 te.isHyp = currState->isHyp;
2053 te.asid = currState->asid;
2054 te.vmid = currState->vmid;
2055 te.N = descriptor.offsetBits();
2056 te.vpn = currState->vaddr >> te.N;
2057 te.size = (1<<te.N) - 1;
2058 te.pfn = descriptor.pfn();
2059 te.domain = descriptor.domain();
2060 te.lookupLevel = descriptor.lookupLevel;
2061 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
2062 te.nstid = !currState->isSecure;
2063 te.xn = descriptor.xn();
2064 if (currState->aarch64)
2065 te.el = currState->el;
2066 else
2067 te.el = EL1;
2068
2069 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2070 statRequestOrigin[COMPLETED][currState->isFetch]++;
2071
2072 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2073 // as global
2074 te.global = descriptor.global(currState) || isStage2;
2075 if (longDescriptor) {
2076 LongDescriptor lDescriptor =
2077 dynamic_cast<LongDescriptor &>(descriptor);
2078
2079 te.xn |= currState->xnTable;
2080 te.pxn = currState->pxnTable || lDescriptor.pxn();
2081 if (isStage2) {
2082 // this is actually the HAP field, but its stored in the same bit
2083 // possitions as the AP field in a stage 1 translation.
2084 te.hap = lDescriptor.ap();
2085 } else {
2086 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2087 (currState->userTable && (descriptor.ap() & 0x1));
2088 }
2089 if (currState->aarch64)
2090 memAttrsAArch64(currState->tc, te, lDescriptor);
2091 else
2092 memAttrsLPAE(currState->tc, te, lDescriptor);
2093 } else {
2094 te.ap = descriptor.ap();
2095 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2096 descriptor.shareable());
2097 }
2098
2099 // Debug output
2100 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2101 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2102 te.N, te.pfn, te.size, te.global, te.valid);
2103 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2104 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2105 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2106 te.nonCacheable, te.ns);
2107 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2108 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2109 descriptor.getRawData());
2110
2111 // Insert the entry into the TLB
2112 tlb->insert(currState->vaddr, te);
2113 if (!currState->timing) {
2114 currState->tc = NULL;
2115 currState->req = NULL;
2116 }
2117}
2118
2119ArmISA::TableWalker *
2120ArmTableWalkerParams::create()
2121{
2122 return new ArmISA::TableWalker(this);
2123}
2124
2125LookupLevel
2126TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2127{
2128 switch (lookup_level_as_int) {
2129 case L1:
2130 return L1;
2131 case L2:
2132 return L2;
2133 case L3:
2134 return L3;
2135 default:
2136 panic("Invalid lookup level conversion");
2137 }
2138}
2139
2140/* this method keeps track of the table walker queue's residency, so
2141 * needs to be called whenever requests start and complete. */
2142void
2143TableWalker::pendingChange()
2144{
2145 unsigned n = pendingQueue.size();
2146 if ((currState != NULL) && (currState != pendingQueue.front())) {
2147 ++n;
2148 }
2149
2150 if (n != pendingReqs) {
2151 Tick now = curTick();
2152 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2153 pendingReqs = n;
2154 pendingChangeTick = now;
2155 }
2156}
2157
2158Fault
2159TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2160 LookupLevel lookup_level)
2161{
2162 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2163 currState->mode, domain, lookup_level);
2164}
2165
2166
2167uint8_t
2168TableWalker::pageSizeNtoStatBin(uint8_t N)
2169{
2170 /* for statPageSizes */
2171 switch(N) {
2172 case 12: return 0; // 4K
2173 case 14: return 1; // 16K (using 16K granule in v8-64)
2174 case 16: return 2; // 64K
2175 case 20: return 3; // 1M
2176 case 21: return 4; // 2M-LPAE
2177 case 24: return 5; // 16M
2178 case 25: return 6; // 32M (using 16K granule in v8-64)
2179 case 29: return 7; // 512M (using 64K granule in v8-64)
2180 case 30: return 8; // 1G-LPAE
2181 default:
2182 panic("unknown page size");
2183 return 255;
2184 }
2185}
2186
2187void
2188TableWalker::regStats()
2189{
2190 ClockedObject::regStats();
2191
2192 statWalks
2193 .name(name() + ".walks")
2194 .desc("Table walker walks requested")
2195 ;
2196
2197 statWalksShortDescriptor
2198 .name(name() + ".walksShort")
2199 .desc("Table walker walks initiated with short descriptors")
2200 .flags(Stats::nozero)
2201 ;
2202
2203 statWalksLongDescriptor
2204 .name(name() + ".walksLong")
2205 .desc("Table walker walks initiated with long descriptors")
2206 .flags(Stats::nozero)
2207 ;
2208
2209 statWalksShortTerminatedAtLevel
2210 .init(2)
2211 .name(name() + ".walksShortTerminationLevel")
2212 .desc("Level at which table walker walks "
2213 "with short descriptors terminate")
2214 .flags(Stats::nozero)
2215 ;
2216 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2217 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2218
2219 statWalksLongTerminatedAtLevel
2220 .init(4)
2221 .name(name() + ".walksLongTerminationLevel")
2222 .desc("Level at which table walker walks "
2223 "with long descriptors terminate")
2224 .flags(Stats::nozero)
2225 ;
2226 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2227 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2228 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2229 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2230
2231 statSquashedBefore
2232 .name(name() + ".walksSquashedBefore")
2233 .desc("Table walks squashed before starting")
2234 .flags(Stats::nozero)
2235 ;
2236
2237 statSquashedAfter
2238 .name(name() + ".walksSquashedAfter")
2239 .desc("Table walks squashed after completion")
2240 .flags(Stats::nozero)
2241 ;
2242
2243 statWalkWaitTime
2244 .init(16)
2245 .name(name() + ".walkWaitTime")
2246 .desc("Table walker wait (enqueue to first request) latency")
2247 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2248 ;
2249
2250 statWalkServiceTime
2251 .init(16)
2252 .name(name() + ".walkCompletionTime")
2253 .desc("Table walker service (enqueue to completion) latency")
2254 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2255 ;
2256
2257 statPendingWalks
2258 .init(16)
2259 .name(name() + ".walksPending")
2260 .desc("Table walker pending requests distribution")
2261 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2262 ;
2263
2264 statPageSizes // see DDI 0487A D4-1661
2265 .init(9)
2266 .name(name() + ".walkPageSizes")
2267 .desc("Table walker page sizes translated")
2268 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2269 ;
2270 statPageSizes.subname(0, "4K");
2271 statPageSizes.subname(1, "16K");
2272 statPageSizes.subname(2, "64K");
2273 statPageSizes.subname(3, "1M");
2274 statPageSizes.subname(4, "2M");
2275 statPageSizes.subname(5, "16M");
2276 statPageSizes.subname(6, "32M");
2277 statPageSizes.subname(7, "512M");
2278 statPageSizes.subname(8, "1G");
2279
2280 statRequestOrigin
2281 .init(2,2) // Instruction/Data, requests/completed
2282 .name(name() + ".walkRequestOrigin")
2283 .desc("Table walker requests started/completed, data/inst")
2284 .flags(Stats::total)
2285 ;
2286 statRequestOrigin.subname(0,"Requested");
2287 statRequestOrigin.subname(1,"Completed");
2288 statRequestOrigin.ysubname(0,"Data");
2289 statRequestOrigin.ysubname(1,"Inst");
2290}
1669 return;
1670 }
1671
1672 // Trickbox address check
1673 currState->fault = testWalk(
1674 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1675 toLookupLevel(currState->longDesc.lookupLevel +1));
1676
1677 if (currState->fault) {
1678 if (!currState->timing) {
1679 currState->tc = NULL;
1680 currState->req = NULL;
1681 }
1682 return;
1683 }
1684
1685 Request::Flags flag = Request::PT_WALK;
1686 if (currState->secureLookup)
1687 flag.set(Request::SECURE);
1688
1689 LookupLevel L = currState->longDesc.lookupLevel =
1690 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1691 Event *event = NULL;
1692 switch (L) {
1693 case L1:
1694 assert(currState->aarch64);
1695 case L2:
1696 case L3:
1697 event = LongDescEventByLevel[L];
1698 break;
1699 default:
1700 panic("Wrong lookup level in table walk\n");
1701 break;
1702 }
1703
1704 bool delayed;
1705 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1706 sizeof(uint64_t), flag, -1, event,
1707 &TableWalker::doLongDescriptor);
1708 if (delayed) {
1709 currState->delayed = true;
1710 }
1711 }
1712 return;
1713 default:
1714 panic("A new type in a 2 bit field?\n");
1715 }
1716}
1717
1718void
1719TableWalker::doL2Descriptor()
1720{
1721 if (currState->fault != NoFault) {
1722 return;
1723 }
1724
1725 currState->l2Desc.data = htog(currState->l2Desc.data,
1726 byteOrder(currState->tc));
1727
1728 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1729 currState->vaddr_tainted, currState->l2Desc.data);
1730 TlbEntry te;
1731
1732 if (currState->l2Desc.invalid()) {
1733 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1734 if (!currState->timing) {
1735 currState->tc = NULL;
1736 currState->req = NULL;
1737 }
1738 if (currState->isFetch)
1739 currState->fault = std::make_shared<PrefetchAbort>(
1740 currState->vaddr_tainted,
1741 ArmFault::TranslationLL + L2,
1742 isStage2,
1743 ArmFault::VmsaTran);
1744 else
1745 currState->fault = std::make_shared<DataAbort>(
1746 currState->vaddr_tainted, currState->l1Desc.domain(),
1747 currState->isWrite, ArmFault::TranslationLL + L2,
1748 isStage2,
1749 ArmFault::VmsaTran);
1750 return;
1751 }
1752
1753 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1754 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1755 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1756 */
1757 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1758 currState->sctlr.afe, currState->l2Desc.ap());
1759
1760 currState->fault = std::make_shared<DataAbort>(
1761 currState->vaddr_tainted,
1762 TlbEntry::DomainType::NoAccess, currState->isWrite,
1763 ArmFault::AccessFlagLL + L2, isStage2,
1764 ArmFault::VmsaTran);
1765 }
1766
1767 insertTableEntry(currState->l2Desc, false);
1768}
1769
1770void
1771TableWalker::doL1DescriptorWrapper()
1772{
1773 currState = stateQueues[L1].front();
1774 currState->delayed = false;
1775 // if there's a stage2 translation object we don't need it any more
1776 if (currState->stage2Tran) {
1777 delete currState->stage2Tran;
1778 currState->stage2Tran = NULL;
1779 }
1780
1781
1782 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1783 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1784
1785 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1786 doL1Descriptor();
1787
1788 stateQueues[L1].pop_front();
1789 // Check if fault was generated
1790 if (currState->fault != NoFault) {
1791 currState->transState->finish(currState->fault, currState->req,
1792 currState->tc, currState->mode);
1793 statWalksShortTerminatedAtLevel[0]++;
1794
1795 pending = false;
1796 nextWalk(currState->tc);
1797
1798 currState->req = NULL;
1799 currState->tc = NULL;
1800 currState->delayed = false;
1801 delete currState;
1802 }
1803 else if (!currState->delayed) {
1804 // delay is not set so there is no L2 to do
1805 // Don't finish the translation if a stage 2 look up is underway
1806 statWalkServiceTime.sample(curTick() - currState->startTime);
1807 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1808 tlb->translateTiming(currState->req, currState->tc,
1809 currState->transState, currState->mode);
1810 statWalksShortTerminatedAtLevel[0]++;
1811
1812 pending = false;
1813 nextWalk(currState->tc);
1814
1815 currState->req = NULL;
1816 currState->tc = NULL;
1817 currState->delayed = false;
1818 delete currState;
1819 } else {
1820 // need to do L2 descriptor
1821 stateQueues[L2].push_back(currState);
1822 }
1823 currState = NULL;
1824}
1825
1826void
1827TableWalker::doL2DescriptorWrapper()
1828{
1829 currState = stateQueues[L2].front();
1830 assert(currState->delayed);
1831 // if there's a stage2 translation object we don't need it any more
1832 if (currState->stage2Tran) {
1833 delete currState->stage2Tran;
1834 currState->stage2Tran = NULL;
1835 }
1836
1837 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1838 currState->vaddr_tainted);
1839 doL2Descriptor();
1840
1841 // Check if fault was generated
1842 if (currState->fault != NoFault) {
1843 currState->transState->finish(currState->fault, currState->req,
1844 currState->tc, currState->mode);
1845 statWalksShortTerminatedAtLevel[1]++;
1846 } else {
1847 statWalkServiceTime.sample(curTick() - currState->startTime);
1848 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1849 tlb->translateTiming(currState->req, currState->tc,
1850 currState->transState, currState->mode);
1851 statWalksShortTerminatedAtLevel[1]++;
1852 }
1853
1854
1855 stateQueues[L2].pop_front();
1856 pending = false;
1857 nextWalk(currState->tc);
1858
1859 currState->req = NULL;
1860 currState->tc = NULL;
1861 currState->delayed = false;
1862
1863 delete currState;
1864 currState = NULL;
1865}
1866
1867void
1868TableWalker::doL0LongDescriptorWrapper()
1869{
1870 doLongDescriptorWrapper(L0);
1871}
1872
1873void
1874TableWalker::doL1LongDescriptorWrapper()
1875{
1876 doLongDescriptorWrapper(L1);
1877}
1878
1879void
1880TableWalker::doL2LongDescriptorWrapper()
1881{
1882 doLongDescriptorWrapper(L2);
1883}
1884
1885void
1886TableWalker::doL3LongDescriptorWrapper()
1887{
1888 doLongDescriptorWrapper(L3);
1889}
1890
1891void
1892TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1893{
1894 currState = stateQueues[curr_lookup_level].front();
1895 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1896 currState->delayed = false;
1897
1898 // if there's a stage2 translation object we don't need it any more
1899 if (currState->stage2Tran) {
1900 delete currState->stage2Tran;
1901 currState->stage2Tran = NULL;
1902 }
1903
1904 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1905 currState->vaddr_tainted);
1906 doLongDescriptor();
1907
1908 stateQueues[curr_lookup_level].pop_front();
1909
1910 if (currState->fault != NoFault) {
1911 // A fault was generated
1912 currState->transState->finish(currState->fault, currState->req,
1913 currState->tc, currState->mode);
1914
1915 pending = false;
1916 nextWalk(currState->tc);
1917
1918 currState->req = NULL;
1919 currState->tc = NULL;
1920 currState->delayed = false;
1921 delete currState;
1922 } else if (!currState->delayed) {
1923 // No additional lookups required
1924 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1925 statWalkServiceTime.sample(curTick() - currState->startTime);
1926 tlb->translateTiming(currState->req, currState->tc,
1927 currState->transState, currState->mode);
1928 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1929
1930 pending = false;
1931 nextWalk(currState->tc);
1932
1933 currState->req = NULL;
1934 currState->tc = NULL;
1935 currState->delayed = false;
1936 delete currState;
1937 } else {
1938 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1939 panic("Max. number of lookups already reached in table walk\n");
1940 // Need to perform additional lookups
1941 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1942 }
1943 currState = NULL;
1944}
1945
1946
1947void
1948TableWalker::nextWalk(ThreadContext *tc)
1949{
1950 if (pendingQueue.size())
1951 schedule(doProcessEvent, clockEdge(Cycles(1)));
1952 else
1953 completeDrain();
1954}
1955
1956bool
1957TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1958 Request::Flags flags, int queueIndex, Event *event,
1959 void (TableWalker::*doDescriptor)())
1960{
1961 bool isTiming = currState->timing;
1962
1963 DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1964 descAddr, currState->stage2Req);
1965
1966 // If this translation has a stage 2 then we know descAddr is an IPA and
1967 // needs to be translated before we can access the page table. Do that
1968 // check here.
1969 if (currState->stage2Req) {
1970 Fault fault;
1971 flags = flags | TLB::MustBeOne;
1972
1973 if (isTiming) {
1974 Stage2MMU::Stage2Translation *tran = new
1975 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1976 currState->vaddr);
1977 currState->stage2Tran = tran;
1978 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1979 flags);
1980 fault = tran->fault;
1981 } else {
1982 fault = stage2Mmu->readDataUntimed(currState->tc,
1983 currState->vaddr, descAddr, data, numBytes, flags,
1984 currState->functional);
1985 }
1986
1987 if (fault != NoFault) {
1988 currState->fault = fault;
1989 }
1990 if (isTiming) {
1991 if (queueIndex >= 0) {
1992 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1993 stateQueues[queueIndex].size());
1994 stateQueues[queueIndex].push_back(currState);
1995 currState = NULL;
1996 }
1997 } else {
1998 (this->*doDescriptor)();
1999 }
2000 } else {
2001 if (isTiming) {
2002 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
2003 currState->tc->getCpuPtr()->clockPeriod(),flags);
2004 if (queueIndex >= 0) {
2005 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2006 stateQueues[queueIndex].size());
2007 stateQueues[queueIndex].push_back(currState);
2008 currState = NULL;
2009 }
2010 } else if (!currState->functional) {
2011 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
2012 currState->tc->getCpuPtr()->clockPeriod(), flags);
2013 (this->*doDescriptor)();
2014 } else {
2015 RequestPtr req = std::make_shared<Request>(
2016 descAddr, numBytes, flags, masterId);
2017
2018 req->taskId(ContextSwitchTaskId::DMA);
2019 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
2020 pkt->dataStatic(data);
2021 port->sendFunctional(pkt);
2022 (this->*doDescriptor)();
2023 delete pkt;
2024 }
2025 }
2026 return (isTiming);
2027}
2028
2029void
2030TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2031{
2032 TlbEntry te;
2033
2034 // Create and fill a new page table entry
2035 te.valid = true;
2036 te.longDescFormat = longDescriptor;
2037 te.isHyp = currState->isHyp;
2038 te.asid = currState->asid;
2039 te.vmid = currState->vmid;
2040 te.N = descriptor.offsetBits();
2041 te.vpn = currState->vaddr >> te.N;
2042 te.size = (1<<te.N) - 1;
2043 te.pfn = descriptor.pfn();
2044 te.domain = descriptor.domain();
2045 te.lookupLevel = descriptor.lookupLevel;
2046 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
2047 te.nstid = !currState->isSecure;
2048 te.xn = descriptor.xn();
2049 if (currState->aarch64)
2050 te.el = currState->el;
2051 else
2052 te.el = EL1;
2053
2054 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2055 statRequestOrigin[COMPLETED][currState->isFetch]++;
2056
2057 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2058 // as global
2059 te.global = descriptor.global(currState) || isStage2;
2060 if (longDescriptor) {
2061 LongDescriptor lDescriptor =
2062 dynamic_cast<LongDescriptor &>(descriptor);
2063
2064 te.xn |= currState->xnTable;
2065 te.pxn = currState->pxnTable || lDescriptor.pxn();
2066 if (isStage2) {
2067 // this is actually the HAP field, but its stored in the same bit
2068 // possitions as the AP field in a stage 1 translation.
2069 te.hap = lDescriptor.ap();
2070 } else {
2071 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2072 (currState->userTable && (descriptor.ap() & 0x1));
2073 }
2074 if (currState->aarch64)
2075 memAttrsAArch64(currState->tc, te, lDescriptor);
2076 else
2077 memAttrsLPAE(currState->tc, te, lDescriptor);
2078 } else {
2079 te.ap = descriptor.ap();
2080 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2081 descriptor.shareable());
2082 }
2083
2084 // Debug output
2085 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2086 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2087 te.N, te.pfn, te.size, te.global, te.valid);
2088 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2089 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2090 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2091 te.nonCacheable, te.ns);
2092 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2093 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2094 descriptor.getRawData());
2095
2096 // Insert the entry into the TLB
2097 tlb->insert(currState->vaddr, te);
2098 if (!currState->timing) {
2099 currState->tc = NULL;
2100 currState->req = NULL;
2101 }
2102}
2103
2104ArmISA::TableWalker *
2105ArmTableWalkerParams::create()
2106{
2107 return new ArmISA::TableWalker(this);
2108}
2109
2110LookupLevel
2111TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2112{
2113 switch (lookup_level_as_int) {
2114 case L1:
2115 return L1;
2116 case L2:
2117 return L2;
2118 case L3:
2119 return L3;
2120 default:
2121 panic("Invalid lookup level conversion");
2122 }
2123}
2124
2125/* this method keeps track of the table walker queue's residency, so
2126 * needs to be called whenever requests start and complete. */
2127void
2128TableWalker::pendingChange()
2129{
2130 unsigned n = pendingQueue.size();
2131 if ((currState != NULL) && (currState != pendingQueue.front())) {
2132 ++n;
2133 }
2134
2135 if (n != pendingReqs) {
2136 Tick now = curTick();
2137 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2138 pendingReqs = n;
2139 pendingChangeTick = now;
2140 }
2141}
2142
2143Fault
2144TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2145 LookupLevel lookup_level)
2146{
2147 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2148 currState->mode, domain, lookup_level);
2149}
2150
2151
2152uint8_t
2153TableWalker::pageSizeNtoStatBin(uint8_t N)
2154{
2155 /* for statPageSizes */
2156 switch(N) {
2157 case 12: return 0; // 4K
2158 case 14: return 1; // 16K (using 16K granule in v8-64)
2159 case 16: return 2; // 64K
2160 case 20: return 3; // 1M
2161 case 21: return 4; // 2M-LPAE
2162 case 24: return 5; // 16M
2163 case 25: return 6; // 32M (using 16K granule in v8-64)
2164 case 29: return 7; // 512M (using 64K granule in v8-64)
2165 case 30: return 8; // 1G-LPAE
2166 default:
2167 panic("unknown page size");
2168 return 255;
2169 }
2170}
2171
2172void
2173TableWalker::regStats()
2174{
2175 ClockedObject::regStats();
2176
2177 statWalks
2178 .name(name() + ".walks")
2179 .desc("Table walker walks requested")
2180 ;
2181
2182 statWalksShortDescriptor
2183 .name(name() + ".walksShort")
2184 .desc("Table walker walks initiated with short descriptors")
2185 .flags(Stats::nozero)
2186 ;
2187
2188 statWalksLongDescriptor
2189 .name(name() + ".walksLong")
2190 .desc("Table walker walks initiated with long descriptors")
2191 .flags(Stats::nozero)
2192 ;
2193
2194 statWalksShortTerminatedAtLevel
2195 .init(2)
2196 .name(name() + ".walksShortTerminationLevel")
2197 .desc("Level at which table walker walks "
2198 "with short descriptors terminate")
2199 .flags(Stats::nozero)
2200 ;
2201 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2202 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2203
2204 statWalksLongTerminatedAtLevel
2205 .init(4)
2206 .name(name() + ".walksLongTerminationLevel")
2207 .desc("Level at which table walker walks "
2208 "with long descriptors terminate")
2209 .flags(Stats::nozero)
2210 ;
2211 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2212 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2213 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2214 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2215
2216 statSquashedBefore
2217 .name(name() + ".walksSquashedBefore")
2218 .desc("Table walks squashed before starting")
2219 .flags(Stats::nozero)
2220 ;
2221
2222 statSquashedAfter
2223 .name(name() + ".walksSquashedAfter")
2224 .desc("Table walks squashed after completion")
2225 .flags(Stats::nozero)
2226 ;
2227
2228 statWalkWaitTime
2229 .init(16)
2230 .name(name() + ".walkWaitTime")
2231 .desc("Table walker wait (enqueue to first request) latency")
2232 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2233 ;
2234
2235 statWalkServiceTime
2236 .init(16)
2237 .name(name() + ".walkCompletionTime")
2238 .desc("Table walker service (enqueue to completion) latency")
2239 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2240 ;
2241
2242 statPendingWalks
2243 .init(16)
2244 .name(name() + ".walksPending")
2245 .desc("Table walker pending requests distribution")
2246 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2247 ;
2248
2249 statPageSizes // see DDI 0487A D4-1661
2250 .init(9)
2251 .name(name() + ".walkPageSizes")
2252 .desc("Table walker page sizes translated")
2253 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2254 ;
2255 statPageSizes.subname(0, "4K");
2256 statPageSizes.subname(1, "16K");
2257 statPageSizes.subname(2, "64K");
2258 statPageSizes.subname(3, "1M");
2259 statPageSizes.subname(4, "2M");
2260 statPageSizes.subname(5, "16M");
2261 statPageSizes.subname(6, "32M");
2262 statPageSizes.subname(7, "512M");
2263 statPageSizes.subname(8, "1G");
2264
2265 statRequestOrigin
2266 .init(2,2) // Instruction/Data, requests/completed
2267 .name(name() + ".walkRequestOrigin")
2268 .desc("Table walker requests started/completed, data/inst")
2269 .flags(Stats::total)
2270 ;
2271 statRequestOrigin.subname(0,"Requested");
2272 statRequestOrigin.subname(1,"Completed");
2273 statRequestOrigin.ysubname(0,"Data");
2274 statRequestOrigin.ysubname(1,"Inst");
2275}