table_walker.cc (11588:32cbf6ab7730) table_walker.cc (11938:9efd6816e06a)
1/*
1/*
2 * Copyright (c) 2010, 2012-2016 ARM Limited
2 * Copyright (c) 2010, 2012-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : MemObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent(this), doL2DescEvent(this),
68 doL0LongDescEvent(this), doL1LongDescEvent(this),
69 doL2LongDescEvent(this), doL3LongDescEvent(this),
70 LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
71 &doL2LongDescEvent, &doL3LongDescEvent },
72 doProcessEvent(this)
73{
74 sctlr = 0;
75
76 // Cache system-level properties
77 if (FullSystem) {
78 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
79 assert(armSys);
80 haveSecurity = armSys->haveSecurity();
81 _haveLPAE = armSys->haveLPAE();
82 _haveVirtualization = armSys->haveVirtualization();
83 physAddrRange = armSys->physAddrRange();
84 _haveLargeAsid64 = armSys->haveLargeAsid64();
85 } else {
86 haveSecurity = _haveLPAE = _haveVirtualization = false;
87 _haveLargeAsid64 = false;
88 physAddrRange = 32;
89 }
90
91}
92
93TableWalker::~TableWalker()
94{
95 ;
96}
97
98void
99TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
100{
101 stage2Mmu = m;
102 port = &m->getPort();
103 masterId = master_id;
104}
105
106void
107TableWalker::init()
108{
109 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
110 fatal_if(!port, "Table walker must have a valid port\n");
111 fatal_if(!tlb, "Table walker must have a valid TLB\n");
112}
113
114BaseMasterPort&
115TableWalker::getMasterPort(const std::string &if_name, PortID idx)
116{
117 if (if_name == "port") {
118 if (!isStage2) {
119 return *port;
120 } else {
121 fatal("Cannot access table walker port through stage-two walker\n");
122 }
123 }
124 return MemObject::getMasterPort(if_name, idx);
125}
126
127TableWalker::WalkerState::WalkerState() :
128 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
129 asid(0), vmid(0), isHyp(false), transState(nullptr),
130 vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
131 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
132 pxnTable(false), stage2Req(false), doingStage2(false),
133 stage2Tran(nullptr), timing(false), functional(false),
134 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
135 delayed(false), tableWalker(nullptr)
136{
137}
138
139void
140TableWalker::completeDrain()
141{
142 if (drainState() == DrainState::Draining &&
143 stateQueues[L0].empty() && stateQueues[L1].empty() &&
144 stateQueues[L2].empty() && stateQueues[L3].empty() &&
145 pendingQueue.empty()) {
146
147 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
148 signalDrainDone();
149 }
150}
151
152DrainState
153TableWalker::drain()
154{
155 bool state_queues_not_empty = false;
156
157 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
158 if (!stateQueues[i].empty()) {
159 state_queues_not_empty = true;
160 break;
161 }
162 }
163
164 if (state_queues_not_empty || pendingQueue.size()) {
165 DPRINTF(Drain, "TableWalker not drained\n");
166 return DrainState::Draining;
167 } else {
168 DPRINTF(Drain, "TableWalker free, no need to drain\n");
169 return DrainState::Drained;
170 }
171}
172
173void
174TableWalker::drainResume()
175{
176 if (params()->sys->isTimingMode() && currState) {
177 delete currState;
178 currState = NULL;
179 pendingChange();
180 }
181}
182
183Fault
184TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
185 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
186 TLB::Translation *_trans, bool _timing, bool _functional,
187 bool secure, TLB::ArmTranslationType tranType,
188 bool _stage2Req)
189{
190 assert(!(_functional && _timing));
191 ++statWalks;
192
193 WalkerState *savedCurrState = NULL;
194
195 if (!currState && !_functional) {
196 // For atomic mode, a new WalkerState instance should be only created
197 // once per TLB. For timing mode, a new instance is generated for every
198 // TLB miss.
199 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
200
201 currState = new WalkerState();
202 currState->tableWalker = this;
203 } else if (_functional) {
204 // If we are mixing functional mode with timing (or even
205 // atomic), we need to to be careful and clean up after
206 // ourselves to not risk getting into an inconsistent state.
207 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
208 savedCurrState = currState;
209 currState = new WalkerState();
210 currState->tableWalker = this;
211 } else if (_timing) {
212 // This is a translation that was completed and then faulted again
213 // because some underlying parameters that affect the translation
214 // changed out from under us (e.g. asid). It will either be a
215 // misprediction, in which case nothing will happen or we'll use
216 // this fault to re-execute the faulting instruction which should clean
217 // up everything.
218 if (currState->vaddr_tainted == _req->getVaddr()) {
219 ++statSquashedBefore;
220 return std::make_shared<ReExec>();
221 }
222 }
223 pendingChange();
224
225 currState->startTime = curTick();
226 currState->tc = _tc;
227 // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
228 // aarch32/translation/translation/AArch32.TranslateAddress dictates
229 // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
230 currState->aarch64 = isStage2 || opModeIs64(currOpMode(_tc)) ||
231 ((currEL(_tc) == EL0) && ELIs64(_tc, EL1));
232 currState->el = currEL(_tc);
233 currState->transState = _trans;
234 currState->req = _req;
235 currState->fault = NoFault;
236 currState->asid = _asid;
237 currState->vmid = _vmid;
238 currState->isHyp = _isHyp;
239 currState->timing = _timing;
240 currState->functional = _functional;
241 currState->mode = _mode;
242 currState->tranType = tranType;
243 currState->isSecure = secure;
244 currState->physAddrRange = physAddrRange;
245
246 /** @todo These should be cached or grabbed from cached copies in
247 the TLB, all these miscreg reads are expensive */
248 currState->vaddr_tainted = currState->req->getVaddr();
249 if (currState->aarch64)
250 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
251 currState->tc, currState->el);
252 else
253 currState->vaddr = currState->vaddr_tainted;
254
255 if (currState->aarch64) {
256 if (isStage2) {
257 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
258 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
259 } else switch (currState->el) {
260 case EL0:
261 case EL1:
262 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
263 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
264 break;
265 case EL2:
266 assert(_haveVirtualization);
267 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
268 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
269 break;
270 case EL3:
271 assert(haveSecurity);
272 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
273 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
274 break;
275 default:
276 panic("Invalid exception level");
277 break;
278 }
279 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
280 } else {
281 currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
282 MISCREG_SCTLR, currState->tc, !currState->isSecure));
283 currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
284 MISCREG_TTBCR, currState->tc, !currState->isSecure));
285 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
286 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
287 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
288 }
289 sctlr = currState->sctlr;
290
291 currState->isFetch = (currState->mode == TLB::Execute);
292 currState->isWrite = (currState->mode == TLB::Write);
293
294 statRequestOrigin[REQUESTED][currState->isFetch]++;
295
296 // We only do a second stage of translation if we're not secure, or in
297 // hyp mode, the second stage MMU is enabled, and this table walker
298 // instance is the first stage.
299 // TODO: fix setting of doingStage2 for timing mode
300 currState->doingStage2 = false;
301 currState->stage2Req = _stage2Req && !isStage2;
302
303 bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
304 longDescFormatInUse(currState->tc);
305
306 if (long_desc_format) {
307 // Helper variables used for hierarchical permissions
308 currState->secureLookup = currState->isSecure;
309 currState->rwTable = true;
310 currState->userTable = true;
311 currState->xnTable = false;
312 currState->pxnTable = false;
313
314 ++statWalksLongDescriptor;
315 } else {
316 ++statWalksShortDescriptor;
317 }
318
319 if (!currState->timing) {
320 Fault fault = NoFault;
321 if (currState->aarch64)
322 fault = processWalkAArch64();
323 else if (long_desc_format)
324 fault = processWalkLPAE();
325 else
326 fault = processWalk();
327
328 // If this was a functional non-timing access restore state to
329 // how we found it.
330 if (currState->functional) {
331 delete currState;
332 currState = savedCurrState;
333 }
334 return fault;
335 }
336
337 if (pending || pendingQueue.size()) {
338 pendingQueue.push_back(currState);
339 currState = NULL;
340 pendingChange();
341 } else {
342 pending = true;
343 pendingChange();
344 if (currState->aarch64)
345 return processWalkAArch64();
346 else if (long_desc_format)
347 return processWalkLPAE();
348 else
349 return processWalk();
350 }
351
352 return NoFault;
353}
354
355void
356TableWalker::processWalkWrapper()
357{
358 assert(!currState);
359 assert(pendingQueue.size());
360 pendingChange();
361 currState = pendingQueue.front();
362
363 ExceptionLevel target_el = EL0;
364 if (currState->aarch64)
365 target_el = currEL(currState->tc);
366 else
367 target_el = EL1;
368
369 // Check if a previous walk filled this request already
370 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
371 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
372 currState->vmid, currState->isHyp, currState->isSecure, true, false,
373 target_el);
374
375 // Check if we still need to have a walk for this request. If the requesting
376 // instruction has been squashed, or a previous walk has filled the TLB with
377 // a match, we just want to get rid of the walk. The latter could happen
378 // when there are multiple outstanding misses to a single page and a
379 // previous request has been successfully translated.
380 if (!currState->transState->squashed() && !te) {
381 // We've got a valid request, lets process it
382 pending = true;
383 pendingQueue.pop_front();
384 // Keep currState in case one of the processWalk... calls NULLs it
385 WalkerState *curr_state_copy = currState;
386 Fault f;
387 if (currState->aarch64)
388 f = processWalkAArch64();
389 else if (longDescFormatInUse(currState->tc) ||
390 currState->isHyp || isStage2)
391 f = processWalkLPAE();
392 else
393 f = processWalk();
394
395 if (f != NoFault) {
396 curr_state_copy->transState->finish(f, curr_state_copy->req,
397 curr_state_copy->tc, curr_state_copy->mode);
398
399 delete curr_state_copy;
400 }
401 return;
402 }
403
404
405 // If the instruction that we were translating for has been
406 // squashed we shouldn't bother.
407 unsigned num_squashed = 0;
408 ThreadContext *tc = currState->tc;
409 while ((num_squashed < numSquashable) && currState &&
410 (currState->transState->squashed() || te)) {
411 pendingQueue.pop_front();
412 num_squashed++;
413 statSquashedBefore++;
414
415 DPRINTF(TLB, "Squashing table walk for address %#x\n",
416 currState->vaddr_tainted);
417
418 if (currState->transState->squashed()) {
419 // finish the translation which will delete the translation object
420 currState->transState->finish(
421 std::make_shared<UnimpFault>("Squashed Inst"),
422 currState->req, currState->tc, currState->mode);
423 } else {
424 // translate the request now that we know it will work
425 statWalkServiceTime.sample(curTick() - currState->startTime);
426 tlb->translateTiming(currState->req, currState->tc,
427 currState->transState, currState->mode);
428
429 }
430
431 // delete the current request
432 delete currState;
433
434 // peak at the next one
435 if (pendingQueue.size()) {
436 currState = pendingQueue.front();
437 te = tlb->lookup(currState->vaddr, currState->asid,
438 currState->vmid, currState->isHyp, currState->isSecure, true,
439 false, target_el);
440 } else {
441 // Terminate the loop, nothing more to do
442 currState = NULL;
443 }
444 }
445 pendingChange();
446
447 // if we still have pending translations, schedule more work
448 nextWalk(tc);
449 currState = NULL;
450}
451
452Fault
453TableWalker::processWalk()
454{
455 Addr ttbr = 0;
456
457 // If translation isn't enabled, we shouldn't be here
458 assert(currState->sctlr.m || isStage2);
459
460 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
461 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
462 32 - currState->ttbcr.n));
463
464 statWalkWaitTime.sample(curTick() - currState->startTime);
465
466 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
467 32 - currState->ttbcr.n)) {
468 DPRINTF(TLB, " - Selecting TTBR0\n");
469 // Check if table walk is allowed when Security Extensions are enabled
470 if (haveSecurity && currState->ttbcr.pd0) {
471 if (currState->isFetch)
472 return std::make_shared<PrefetchAbort>(
473 currState->vaddr_tainted,
474 ArmFault::TranslationLL + L1,
475 isStage2,
476 ArmFault::VmsaTran);
477 else
478 return std::make_shared<DataAbort>(
479 currState->vaddr_tainted,
480 TlbEntry::DomainType::NoAccess, currState->isWrite,
481 ArmFault::TranslationLL + L1, isStage2,
482 ArmFault::VmsaTran);
483 }
484 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
485 MISCREG_TTBR0, currState->tc, !currState->isSecure));
486 } else {
487 DPRINTF(TLB, " - Selecting TTBR1\n");
488 // Check if table walk is allowed when Security Extensions are enabled
489 if (haveSecurity && currState->ttbcr.pd1) {
490 if (currState->isFetch)
491 return std::make_shared<PrefetchAbort>(
492 currState->vaddr_tainted,
493 ArmFault::TranslationLL + L1,
494 isStage2,
495 ArmFault::VmsaTran);
496 else
497 return std::make_shared<DataAbort>(
498 currState->vaddr_tainted,
499 TlbEntry::DomainType::NoAccess, currState->isWrite,
500 ArmFault::TranslationLL + L1, isStage2,
501 ArmFault::VmsaTran);
502 }
503 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
504 MISCREG_TTBR1, currState->tc, !currState->isSecure));
505 currState->ttbcr.n = 0;
506 }
507
508 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
509 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
510 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
511 currState->isSecure ? "s" : "ns");
512
513 // Trickbox address check
514 Fault f;
515 f = testWalk(l1desc_addr, sizeof(uint32_t),
516 TlbEntry::DomainType::NoAccess, L1);
517 if (f) {
518 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
519 if (currState->timing) {
520 pending = false;
521 nextWalk(currState->tc);
522 currState = NULL;
523 } else {
524 currState->tc = NULL;
525 currState->req = NULL;
526 }
527 return f;
528 }
529
530 Request::Flags flag = Request::PT_WALK;
531 if (currState->sctlr.c == 0) {
532 flag.set(Request::UNCACHEABLE);
533 }
534
535 if (currState->isSecure) {
536 flag.set(Request::SECURE);
537 }
538
539 bool delayed;
540 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
541 sizeof(uint32_t), flag, L1, &doL1DescEvent,
542 &TableWalker::doL1Descriptor);
543 if (!delayed) {
544 f = currState->fault;
545 }
546
547 return f;
548}
549
550Fault
551TableWalker::processWalkLPAE()
552{
553 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
554 int tsz, n;
555 LookupLevel start_lookup_level = L1;
556
557 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
558 currState->vaddr_tainted, currState->ttbcr);
559
560 statWalkWaitTime.sample(curTick() - currState->startTime);
561
562 Request::Flags flag = Request::PT_WALK;
563 if (currState->isSecure)
564 flag.set(Request::SECURE);
565
566 // work out which base address register to use, if in hyp mode we always
567 // use HTTBR
568 if (isStage2) {
569 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
570 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
571 tsz = sext<4>(currState->vtcr.t0sz);
572 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
573 } else if (currState->isHyp) {
574 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
575 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
576 tsz = currState->htcr.t0sz;
577 } else {
578 assert(longDescFormatInUse(currState->tc));
579
580 // Determine boundaries of TTBR0/1 regions
581 if (currState->ttbcr.t0sz)
582 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
583 else if (currState->ttbcr.t1sz)
584 ttbr0_max = (1ULL << 32) -
585 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
586 else
587 ttbr0_max = (1ULL << 32) - 1;
588 if (currState->ttbcr.t1sz)
589 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
590 else
591 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
592
593 // The following code snippet selects the appropriate translation table base
594 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
595 // depending on the address range supported by the translation table (ARM
596 // ARM issue C B3.6.4)
597 if (currState->vaddr <= ttbr0_max) {
598 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
599 // Check if table walk is allowed
600 if (currState->ttbcr.epd0) {
601 if (currState->isFetch)
602 return std::make_shared<PrefetchAbort>(
603 currState->vaddr_tainted,
604 ArmFault::TranslationLL + L1,
605 isStage2,
606 ArmFault::LpaeTran);
607 else
608 return std::make_shared<DataAbort>(
609 currState->vaddr_tainted,
610 TlbEntry::DomainType::NoAccess,
611 currState->isWrite,
612 ArmFault::TranslationLL + L1,
613 isStage2,
614 ArmFault::LpaeTran);
615 }
616 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
617 MISCREG_TTBR0, currState->tc, !currState->isSecure));
618 tsz = currState->ttbcr.t0sz;
619 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
620 start_lookup_level = L2;
621 } else if (currState->vaddr >= ttbr1_min) {
622 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
623 // Check if table walk is allowed
624 if (currState->ttbcr.epd1) {
625 if (currState->isFetch)
626 return std::make_shared<PrefetchAbort>(
627 currState->vaddr_tainted,
628 ArmFault::TranslationLL + L1,
629 isStage2,
630 ArmFault::LpaeTran);
631 else
632 return std::make_shared<DataAbort>(
633 currState->vaddr_tainted,
634 TlbEntry::DomainType::NoAccess,
635 currState->isWrite,
636 ArmFault::TranslationLL + L1,
637 isStage2,
638 ArmFault::LpaeTran);
639 }
640 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
641 MISCREG_TTBR1, currState->tc, !currState->isSecure));
642 tsz = currState->ttbcr.t1sz;
643 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
644 start_lookup_level = L2;
645 } else {
646 // Out of boundaries -> translation fault
647 if (currState->isFetch)
648 return std::make_shared<PrefetchAbort>(
649 currState->vaddr_tainted,
650 ArmFault::TranslationLL + L1,
651 isStage2,
652 ArmFault::LpaeTran);
653 else
654 return std::make_shared<DataAbort>(
655 currState->vaddr_tainted,
656 TlbEntry::DomainType::NoAccess,
657 currState->isWrite, ArmFault::TranslationLL + L1,
658 isStage2, ArmFault::LpaeTran);
659 }
660
661 }
662
663 // Perform lookup (ARM ARM issue C B3.6.6)
664 if (start_lookup_level == L1) {
665 n = 5 - tsz;
666 desc_addr = mbits(ttbr, 39, n) |
667 (bits(currState->vaddr, n + 26, 30) << 3);
668 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
669 desc_addr, currState->isSecure ? "s" : "ns");
670 } else {
671 // Skip first-level lookup
672 n = (tsz >= 2 ? 14 - tsz : 12);
673 desc_addr = mbits(ttbr, 39, n) |
674 (bits(currState->vaddr, n + 17, 21) << 3);
675 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
676 desc_addr, currState->isSecure ? "s" : "ns");
677 }
678
679 // Trickbox address check
680 Fault f = testWalk(desc_addr, sizeof(uint64_t),
681 TlbEntry::DomainType::NoAccess, start_lookup_level);
682 if (f) {
683 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
684 if (currState->timing) {
685 pending = false;
686 nextWalk(currState->tc);
687 currState = NULL;
688 } else {
689 currState->tc = NULL;
690 currState->req = NULL;
691 }
692 return f;
693 }
694
695 if (currState->sctlr.c == 0) {
696 flag.set(Request::UNCACHEABLE);
697 }
698
699 currState->longDesc.lookupLevel = start_lookup_level;
700 currState->longDesc.aarch64 = false;
701 currState->longDesc.grainSize = Grain4KB;
702
703 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
704 sizeof(uint64_t), flag, start_lookup_level,
705 LongDescEventByLevel[start_lookup_level],
706 &TableWalker::doLongDescriptor);
707 if (!delayed) {
708 f = currState->fault;
709 }
710
711 return f;
712}
713
714unsigned
715TableWalker::adjustTableSizeAArch64(unsigned tsz)
716{
717 if (tsz < 25)
718 return 25;
719 if (tsz > 48)
720 return 48;
721 return tsz;
722}
723
724bool
725TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
726{
727 return (currPhysAddrRange != MaxPhysAddrRange &&
728 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
729}
730
731Fault
732TableWalker::processWalkAArch64()
733{
734 assert(currState->aarch64);
735
736 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
737 currState->vaddr_tainted, currState->tcr);
738
739 static const GrainSize GrainMapDefault[] =
740 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
741 static const GrainSize GrainMap_EL1_tg1[] =
742 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
743
744 statWalkWaitTime.sample(curTick() - currState->startTime);
745
746 // Determine TTBR, table size, granule size and phys. address range
747 Addr ttbr = 0;
748 int tsz = 0, ps = 0;
749 GrainSize tg = Grain4KB; // grain size computed from tg* field
750 bool fault = false;
751
752 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
753
754 switch (currState->el) {
755 case EL0:
756 case EL1:
757 if (isStage2) {
758 DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
759 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
760 tsz = 64 - currState->vtcr.t0sz64;
761 tg = GrainMapDefault[currState->vtcr.tg0];
762 // ARM DDI 0487A.f D7-2148
763 // The starting level of stage 2 translation depends on
764 // VTCR_EL2.SL0 and VTCR_EL2.TG0
765 LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
766 uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
767 static const LookupLevel SLL[] = {
768 L2, L3, L3, __, // sl0 == 0
769 L1, L2, L2, __, // sl0 == 1, etc.
770 L0, L1, L1, __,
771 __, __, __, __
772 };
773 start_lookup_level = SLL[sl_tg];
774 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
775 "Cannot discern lookup level from vtcr.{sl0,tg0}");
776 } else switch (bits(currState->vaddr, 63,48)) {
777 case 0:
778 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
779 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
780 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
781 tg = GrainMapDefault[currState->tcr.tg0];
782 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
783 currState->tcr.epd0)
784 fault = true;
785 break;
786 case 0xffff:
787 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
788 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
789 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
790 tg = GrainMap_EL1_tg1[currState->tcr.tg1];
791 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
792 currState->tcr.epd1)
793 fault = true;
794 break;
795 default:
796 // top two bytes must be all 0s or all 1s, else invalid addr
797 fault = true;
798 }
799 ps = currState->tcr.ips;
800 break;
801 case EL2:
802 case EL3:
803 switch(bits(currState->vaddr, 63,48)) {
804 case 0:
805 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
806 if (currState->el == EL2)
807 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
808 else
809 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
810 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
811 tg = GrainMapDefault[currState->tcr.tg0];
812 break;
813 default:
814 // invalid addr if top two bytes are not all 0s
815 fault = true;
816 }
817 ps = currState->tcr.ips;
818 break;
819 }
820
821 if (fault) {
822 Fault f;
823 if (currState->isFetch)
824 f = std::make_shared<PrefetchAbort>(
825 currState->vaddr_tainted,
826 ArmFault::TranslationLL + L0, isStage2,
827 ArmFault::LpaeTran);
828 else
829 f = std::make_shared<DataAbort>(
830 currState->vaddr_tainted,
831 TlbEntry::DomainType::NoAccess,
832 currState->isWrite,
833 ArmFault::TranslationLL + L0,
834 isStage2, ArmFault::LpaeTran);
835
836 if (currState->timing) {
837 pending = false;
838 nextWalk(currState->tc);
839 currState = NULL;
840 } else {
841 currState->tc = NULL;
842 currState->req = NULL;
843 }
844 return f;
845
846 }
847
848 if (tg == ReservedGrain) {
849 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
850 "DEFINED behavior takes this to mean 4KB granules\n");
851 tg = Grain4KB;
852 }
853
854 // Determine starting lookup level
855 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
856 // in ARM DDI 0487A. These table values correspond to the cascading tests
857 // to compute the lookup level and are of the form
858 // (grain_size + N*stride), for N = {1, 2, 3}.
859 // A value of 64 will never succeed and a value of 0 will always succeed.
860 if (start_lookup_level == MAX_LOOKUP_LEVELS) {
861 struct GrainMap {
862 GrainSize grain_size;
863 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
864 };
865 static const GrainMap GM[] = {
866 { Grain4KB, { 39, 30, 0, 0 } },
867 { Grain16KB, { 47, 36, 25, 0 } },
868 { Grain64KB, { 64, 42, 29, 0 } }
869 };
870
871 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
872
873 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
874 if (tg == GM[i].grain_size) {
875 lookup = GM[i].lookup_level_cutoff;
876 break;
877 }
878 }
879 assert(lookup);
880
881 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
882 if (tsz > lookup[L]) {
883 start_lookup_level = (LookupLevel) L;
884 break;
885 }
886 }
887 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
888 "Table walker couldn't find lookup level\n");
889 }
890
891 int stride = tg - 3;
892
893 // Determine table base address
894 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
895 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
896
897 // Determine physical address size and raise an Address Size Fault if
898 // necessary
899 int pa_range = decodePhysAddrRange64(ps);
900 // Clamp to lower limit
901 if (pa_range > physAddrRange)
902 currState->physAddrRange = physAddrRange;
903 else
904 currState->physAddrRange = pa_range;
905 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
906 DPRINTF(TLB, "Address size fault before any lookup\n");
907 Fault f;
908 if (currState->isFetch)
909 f = std::make_shared<PrefetchAbort>(
910 currState->vaddr_tainted,
911 ArmFault::AddressSizeLL + start_lookup_level,
912 isStage2,
913 ArmFault::LpaeTran);
914 else
915 f = std::make_shared<DataAbort>(
916 currState->vaddr_tainted,
917 TlbEntry::DomainType::NoAccess,
918 currState->isWrite,
919 ArmFault::AddressSizeLL + start_lookup_level,
920 isStage2,
921 ArmFault::LpaeTran);
922
923
924 if (currState->timing) {
925 pending = false;
926 nextWalk(currState->tc);
927 currState = NULL;
928 } else {
929 currState->tc = NULL;
930 currState->req = NULL;
931 }
932 return f;
933
934 }
935
936 // Determine descriptor address
937 Addr desc_addr = base_addr |
938 (bits(currState->vaddr, tsz - 1,
939 stride * (3 - start_lookup_level) + tg) << 3);
940
941 // Trickbox address check
942 Fault f = testWalk(desc_addr, sizeof(uint64_t),
943 TlbEntry::DomainType::NoAccess, start_lookup_level);
944 if (f) {
945 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
946 if (currState->timing) {
947 pending = false;
948 nextWalk(currState->tc);
949 currState = NULL;
950 } else {
951 currState->tc = NULL;
952 currState->req = NULL;
953 }
954 return f;
955 }
956
957 Request::Flags flag = Request::PT_WALK;
958 if (currState->sctlr.c == 0) {
959 flag.set(Request::UNCACHEABLE);
960 }
961
962 if (currState->isSecure) {
963 flag.set(Request::SECURE);
964 }
965
966 currState->longDesc.lookupLevel = start_lookup_level;
967 currState->longDesc.aarch64 = true;
968 currState->longDesc.grainSize = tg;
969
970 if (currState->timing) {
971 fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
972 sizeof(uint64_t), flag, start_lookup_level,
973 LongDescEventByLevel[start_lookup_level], NULL);
974 } else {
975 fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
976 sizeof(uint64_t), flag, -1, NULL,
977 &TableWalker::doLongDescriptor);
978 f = currState->fault;
979 }
980
981 return f;
982}
983
984void
985TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
986 uint8_t texcb, bool s)
987{
988 // Note: tc and sctlr local variables are hiding tc and sctrl class
989 // variables
990 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
991 te.shareable = false; // default value
992 te.nonCacheable = false;
993 te.outerShareable = false;
994 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
995 switch(texcb) {
996 case 0: // Stongly-ordered
997 te.nonCacheable = true;
998 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
999 te.shareable = true;
1000 te.innerAttrs = 1;
1001 te.outerAttrs = 0;
1002 break;
1003 case 1: // Shareable Device
1004 te.nonCacheable = true;
1005 te.mtype = TlbEntry::MemoryType::Device;
1006 te.shareable = true;
1007 te.innerAttrs = 3;
1008 te.outerAttrs = 0;
1009 break;
1010 case 2: // Outer and Inner Write-Through, no Write-Allocate
1011 te.mtype = TlbEntry::MemoryType::Normal;
1012 te.shareable = s;
1013 te.innerAttrs = 6;
1014 te.outerAttrs = bits(texcb, 1, 0);
1015 break;
1016 case 3: // Outer and Inner Write-Back, no Write-Allocate
1017 te.mtype = TlbEntry::MemoryType::Normal;
1018 te.shareable = s;
1019 te.innerAttrs = 7;
1020 te.outerAttrs = bits(texcb, 1, 0);
1021 break;
1022 case 4: // Outer and Inner Non-cacheable
1023 te.nonCacheable = true;
1024 te.mtype = TlbEntry::MemoryType::Normal;
1025 te.shareable = s;
1026 te.innerAttrs = 0;
1027 te.outerAttrs = bits(texcb, 1, 0);
1028 break;
1029 case 5: // Reserved
1030 panic("Reserved texcb value!\n");
1031 break;
1032 case 6: // Implementation Defined
1033 panic("Implementation-defined texcb value!\n");
1034 break;
1035 case 7: // Outer and Inner Write-Back, Write-Allocate
1036 te.mtype = TlbEntry::MemoryType::Normal;
1037 te.shareable = s;
1038 te.innerAttrs = 5;
1039 te.outerAttrs = 1;
1040 break;
1041 case 8: // Non-shareable Device
1042 te.nonCacheable = true;
1043 te.mtype = TlbEntry::MemoryType::Device;
1044 te.shareable = false;
1045 te.innerAttrs = 3;
1046 te.outerAttrs = 0;
1047 break;
1048 case 9 ... 15: // Reserved
1049 panic("Reserved texcb value!\n");
1050 break;
1051 case 16 ... 31: // Cacheable Memory
1052 te.mtype = TlbEntry::MemoryType::Normal;
1053 te.shareable = s;
1054 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1055 te.nonCacheable = true;
1056 te.innerAttrs = bits(texcb, 1, 0);
1057 te.outerAttrs = bits(texcb, 3, 2);
1058 break;
1059 default:
1060 panic("More than 32 states for 5 bits?\n");
1061 }
1062 } else {
1063 assert(tc);
1064 PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1065 currState->tc, !currState->isSecure));
1066 NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1067 currState->tc, !currState->isSecure));
1068 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1069 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1070 switch(bits(texcb, 2,0)) {
1071 case 0:
1072 curr_tr = prrr.tr0;
1073 curr_ir = nmrr.ir0;
1074 curr_or = nmrr.or0;
1075 te.outerShareable = (prrr.nos0 == 0);
1076 break;
1077 case 1:
1078 curr_tr = prrr.tr1;
1079 curr_ir = nmrr.ir1;
1080 curr_or = nmrr.or1;
1081 te.outerShareable = (prrr.nos1 == 0);
1082 break;
1083 case 2:
1084 curr_tr = prrr.tr2;
1085 curr_ir = nmrr.ir2;
1086 curr_or = nmrr.or2;
1087 te.outerShareable = (prrr.nos2 == 0);
1088 break;
1089 case 3:
1090 curr_tr = prrr.tr3;
1091 curr_ir = nmrr.ir3;
1092 curr_or = nmrr.or3;
1093 te.outerShareable = (prrr.nos3 == 0);
1094 break;
1095 case 4:
1096 curr_tr = prrr.tr4;
1097 curr_ir = nmrr.ir4;
1098 curr_or = nmrr.or4;
1099 te.outerShareable = (prrr.nos4 == 0);
1100 break;
1101 case 5:
1102 curr_tr = prrr.tr5;
1103 curr_ir = nmrr.ir5;
1104 curr_or = nmrr.or5;
1105 te.outerShareable = (prrr.nos5 == 0);
1106 break;
1107 case 6:
1108 panic("Imp defined type\n");
1109 case 7:
1110 curr_tr = prrr.tr7;
1111 curr_ir = nmrr.ir7;
1112 curr_or = nmrr.or7;
1113 te.outerShareable = (prrr.nos7 == 0);
1114 break;
1115 }
1116
1117 switch(curr_tr) {
1118 case 0:
1119 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1120 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1121 te.nonCacheable = true;
1122 te.innerAttrs = 1;
1123 te.outerAttrs = 0;
1124 te.shareable = true;
1125 break;
1126 case 1:
1127 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1128 prrr.ds1, prrr.ds0, s);
1129 te.mtype = TlbEntry::MemoryType::Device;
1130 te.nonCacheable = true;
1131 te.innerAttrs = 3;
1132 te.outerAttrs = 0;
1133 if (prrr.ds1 && s)
1134 te.shareable = true;
1135 if (prrr.ds0 && !s)
1136 te.shareable = true;
1137 break;
1138 case 2:
1139 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1140 prrr.ns1, prrr.ns0, s);
1141 te.mtype = TlbEntry::MemoryType::Normal;
1142 if (prrr.ns1 && s)
1143 te.shareable = true;
1144 if (prrr.ns0 && !s)
1145 te.shareable = true;
1146 break;
1147 case 3:
1148 panic("Reserved type");
1149 }
1150
1151 if (te.mtype == TlbEntry::MemoryType::Normal){
1152 switch(curr_ir) {
1153 case 0:
1154 te.nonCacheable = true;
1155 te.innerAttrs = 0;
1156 break;
1157 case 1:
1158 te.innerAttrs = 5;
1159 break;
1160 case 2:
1161 te.innerAttrs = 6;
1162 break;
1163 case 3:
1164 te.innerAttrs = 7;
1165 break;
1166 }
1167
1168 switch(curr_or) {
1169 case 0:
1170 te.nonCacheable = true;
1171 te.outerAttrs = 0;
1172 break;
1173 case 1:
1174 te.outerAttrs = 1;
1175 break;
1176 case 2:
1177 te.outerAttrs = 2;
1178 break;
1179 case 3:
1180 te.outerAttrs = 3;
1181 break;
1182 }
1183 }
1184 }
1185 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1186 "outerAttrs: %d\n",
1187 te.shareable, te.innerAttrs, te.outerAttrs);
1188 te.setAttributes(false);
1189}
1190
1191void
1192TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1193 LongDescriptor &lDescriptor)
1194{
1195 assert(_haveLPAE);
1196
1197 uint8_t attr;
1198 uint8_t sh = lDescriptor.sh();
1199 // Different format and source of attributes if this is a stage 2
1200 // translation
1201 if (isStage2) {
1202 attr = lDescriptor.memAttr();
1203 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1204 uint8_t attr_1_0 = attr & 0x3;
1205
1206 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1207
1208 if (attr_3_2 == 0) {
1209 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1210 : TlbEntry::MemoryType::Device;
1211 te.outerAttrs = 0;
1212 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1213 te.nonCacheable = true;
1214 } else {
1215 te.mtype = TlbEntry::MemoryType::Normal;
1216 te.outerAttrs = attr_3_2 == 1 ? 0 :
1217 attr_3_2 == 2 ? 2 : 1;
1218 te.innerAttrs = attr_1_0 == 1 ? 0 :
1219 attr_1_0 == 2 ? 6 : 5;
1220 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1221 }
1222 } else {
1223 uint8_t attrIndx = lDescriptor.attrIndx();
1224
1225 // LPAE always uses remapping of memory attributes, irrespective of the
1226 // value of SCTLR.TRE
1227 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1228 int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1229 !currState->isSecure);
1230 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1231 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1232 uint8_t attr_7_4 = bits(attr, 7, 4);
1233 uint8_t attr_3_0 = bits(attr, 3, 0);
1234 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1235
1236 // Note: the memory subsystem only cares about the 'cacheable' memory
1237 // attribute. The other attributes are only used to fill the PAR register
1238 // accordingly to provide the illusion of full support
1239 te.nonCacheable = false;
1240
1241 switch (attr_7_4) {
1242 case 0x0:
1243 // Strongly-ordered or Device memory
1244 if (attr_3_0 == 0x0)
1245 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1246 else if (attr_3_0 == 0x4)
1247 te.mtype = TlbEntry::MemoryType::Device;
1248 else
1249 panic("Unpredictable behavior\n");
1250 te.nonCacheable = true;
1251 te.outerAttrs = 0;
1252 break;
1253 case 0x4:
1254 // Normal memory, Outer Non-cacheable
1255 te.mtype = TlbEntry::MemoryType::Normal;
1256 te.outerAttrs = 0;
1257 if (attr_3_0 == 0x4)
1258 // Inner Non-cacheable
1259 te.nonCacheable = true;
1260 else if (attr_3_0 < 0x8)
1261 panic("Unpredictable behavior\n");
1262 break;
1263 case 0x8:
1264 case 0x9:
1265 case 0xa:
1266 case 0xb:
1267 case 0xc:
1268 case 0xd:
1269 case 0xe:
1270 case 0xf:
1271 if (attr_7_4 & 0x4) {
1272 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1273 } else {
1274 te.outerAttrs = 0x2;
1275 }
1276 // Normal memory, Outer Cacheable
1277 te.mtype = TlbEntry::MemoryType::Normal;
1278 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1279 panic("Unpredictable behavior\n");
1280 break;
1281 default:
1282 panic("Unpredictable behavior\n");
1283 break;
1284 }
1285
1286 switch (attr_3_0) {
1287 case 0x0:
1288 te.innerAttrs = 0x1;
1289 break;
1290 case 0x4:
1291 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1292 break;
1293 case 0x8:
1294 case 0x9:
1295 case 0xA:
1296 case 0xB:
1297 te.innerAttrs = 6;
1298 break;
1299 case 0xC:
1300 case 0xD:
1301 case 0xE:
1302 case 0xF:
1303 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1304 break;
1305 default:
1306 panic("Unpredictable behavior\n");
1307 break;
1308 }
1309 }
1310
1311 te.outerShareable = sh == 2;
1312 te.shareable = (sh & 0x2) ? true : false;
1313 te.setAttributes(true);
1314 te.attributes |= (uint64_t) attr << 56;
1315}
1316
1317void
1318TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1319 LongDescriptor &lDescriptor)
1320{
1321 uint8_t attr;
1322 uint8_t attr_hi;
1323 uint8_t attr_lo;
1324 uint8_t sh = lDescriptor.sh();
1325
1326 if (isStage2) {
1327 attr = lDescriptor.memAttr();
1328 uint8_t attr_hi = (attr >> 2) & 0x3;
1329 uint8_t attr_lo = attr & 0x3;
1330
1331 DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1332
1333 if (attr_hi == 0) {
1334 te.mtype = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1335 : TlbEntry::MemoryType::Device;
1336 te.outerAttrs = 0;
1337 te.innerAttrs = attr_lo == 0 ? 1 : 3;
1338 te.nonCacheable = true;
1339 } else {
1340 te.mtype = TlbEntry::MemoryType::Normal;
1341 te.outerAttrs = attr_hi == 1 ? 0 :
1342 attr_hi == 2 ? 2 : 1;
1343 te.innerAttrs = attr_lo == 1 ? 0 :
1344 attr_lo == 2 ? 6 : 5;
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : MemObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent(this), doL2DescEvent(this),
68 doL0LongDescEvent(this), doL1LongDescEvent(this),
69 doL2LongDescEvent(this), doL3LongDescEvent(this),
70 LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
71 &doL2LongDescEvent, &doL3LongDescEvent },
72 doProcessEvent(this)
73{
74 sctlr = 0;
75
76 // Cache system-level properties
77 if (FullSystem) {
78 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
79 assert(armSys);
80 haveSecurity = armSys->haveSecurity();
81 _haveLPAE = armSys->haveLPAE();
82 _haveVirtualization = armSys->haveVirtualization();
83 physAddrRange = armSys->physAddrRange();
84 _haveLargeAsid64 = armSys->haveLargeAsid64();
85 } else {
86 haveSecurity = _haveLPAE = _haveVirtualization = false;
87 _haveLargeAsid64 = false;
88 physAddrRange = 32;
89 }
90
91}
92
93TableWalker::~TableWalker()
94{
95 ;
96}
97
98void
99TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
100{
101 stage2Mmu = m;
102 port = &m->getPort();
103 masterId = master_id;
104}
105
106void
107TableWalker::init()
108{
109 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
110 fatal_if(!port, "Table walker must have a valid port\n");
111 fatal_if(!tlb, "Table walker must have a valid TLB\n");
112}
113
114BaseMasterPort&
115TableWalker::getMasterPort(const std::string &if_name, PortID idx)
116{
117 if (if_name == "port") {
118 if (!isStage2) {
119 return *port;
120 } else {
121 fatal("Cannot access table walker port through stage-two walker\n");
122 }
123 }
124 return MemObject::getMasterPort(if_name, idx);
125}
126
127TableWalker::WalkerState::WalkerState() :
128 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
129 asid(0), vmid(0), isHyp(false), transState(nullptr),
130 vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
131 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
132 pxnTable(false), stage2Req(false), doingStage2(false),
133 stage2Tran(nullptr), timing(false), functional(false),
134 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
135 delayed(false), tableWalker(nullptr)
136{
137}
138
139void
140TableWalker::completeDrain()
141{
142 if (drainState() == DrainState::Draining &&
143 stateQueues[L0].empty() && stateQueues[L1].empty() &&
144 stateQueues[L2].empty() && stateQueues[L3].empty() &&
145 pendingQueue.empty()) {
146
147 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
148 signalDrainDone();
149 }
150}
151
152DrainState
153TableWalker::drain()
154{
155 bool state_queues_not_empty = false;
156
157 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
158 if (!stateQueues[i].empty()) {
159 state_queues_not_empty = true;
160 break;
161 }
162 }
163
164 if (state_queues_not_empty || pendingQueue.size()) {
165 DPRINTF(Drain, "TableWalker not drained\n");
166 return DrainState::Draining;
167 } else {
168 DPRINTF(Drain, "TableWalker free, no need to drain\n");
169 return DrainState::Drained;
170 }
171}
172
173void
174TableWalker::drainResume()
175{
176 if (params()->sys->isTimingMode() && currState) {
177 delete currState;
178 currState = NULL;
179 pendingChange();
180 }
181}
182
183Fault
184TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
185 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
186 TLB::Translation *_trans, bool _timing, bool _functional,
187 bool secure, TLB::ArmTranslationType tranType,
188 bool _stage2Req)
189{
190 assert(!(_functional && _timing));
191 ++statWalks;
192
193 WalkerState *savedCurrState = NULL;
194
195 if (!currState && !_functional) {
196 // For atomic mode, a new WalkerState instance should be only created
197 // once per TLB. For timing mode, a new instance is generated for every
198 // TLB miss.
199 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
200
201 currState = new WalkerState();
202 currState->tableWalker = this;
203 } else if (_functional) {
204 // If we are mixing functional mode with timing (or even
205 // atomic), we need to to be careful and clean up after
206 // ourselves to not risk getting into an inconsistent state.
207 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
208 savedCurrState = currState;
209 currState = new WalkerState();
210 currState->tableWalker = this;
211 } else if (_timing) {
212 // This is a translation that was completed and then faulted again
213 // because some underlying parameters that affect the translation
214 // changed out from under us (e.g. asid). It will either be a
215 // misprediction, in which case nothing will happen or we'll use
216 // this fault to re-execute the faulting instruction which should clean
217 // up everything.
218 if (currState->vaddr_tainted == _req->getVaddr()) {
219 ++statSquashedBefore;
220 return std::make_shared<ReExec>();
221 }
222 }
223 pendingChange();
224
225 currState->startTime = curTick();
226 currState->tc = _tc;
227 // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
228 // aarch32/translation/translation/AArch32.TranslateAddress dictates
229 // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
230 currState->aarch64 = isStage2 || opModeIs64(currOpMode(_tc)) ||
231 ((currEL(_tc) == EL0) && ELIs64(_tc, EL1));
232 currState->el = currEL(_tc);
233 currState->transState = _trans;
234 currState->req = _req;
235 currState->fault = NoFault;
236 currState->asid = _asid;
237 currState->vmid = _vmid;
238 currState->isHyp = _isHyp;
239 currState->timing = _timing;
240 currState->functional = _functional;
241 currState->mode = _mode;
242 currState->tranType = tranType;
243 currState->isSecure = secure;
244 currState->physAddrRange = physAddrRange;
245
246 /** @todo These should be cached or grabbed from cached copies in
247 the TLB, all these miscreg reads are expensive */
248 currState->vaddr_tainted = currState->req->getVaddr();
249 if (currState->aarch64)
250 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
251 currState->tc, currState->el);
252 else
253 currState->vaddr = currState->vaddr_tainted;
254
255 if (currState->aarch64) {
256 if (isStage2) {
257 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
258 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
259 } else switch (currState->el) {
260 case EL0:
261 case EL1:
262 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
263 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
264 break;
265 case EL2:
266 assert(_haveVirtualization);
267 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
268 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
269 break;
270 case EL3:
271 assert(haveSecurity);
272 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
273 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
274 break;
275 default:
276 panic("Invalid exception level");
277 break;
278 }
279 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
280 } else {
281 currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
282 MISCREG_SCTLR, currState->tc, !currState->isSecure));
283 currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
284 MISCREG_TTBCR, currState->tc, !currState->isSecure));
285 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
286 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
287 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
288 }
289 sctlr = currState->sctlr;
290
291 currState->isFetch = (currState->mode == TLB::Execute);
292 currState->isWrite = (currState->mode == TLB::Write);
293
294 statRequestOrigin[REQUESTED][currState->isFetch]++;
295
296 // We only do a second stage of translation if we're not secure, or in
297 // hyp mode, the second stage MMU is enabled, and this table walker
298 // instance is the first stage.
299 // TODO: fix setting of doingStage2 for timing mode
300 currState->doingStage2 = false;
301 currState->stage2Req = _stage2Req && !isStage2;
302
303 bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
304 longDescFormatInUse(currState->tc);
305
306 if (long_desc_format) {
307 // Helper variables used for hierarchical permissions
308 currState->secureLookup = currState->isSecure;
309 currState->rwTable = true;
310 currState->userTable = true;
311 currState->xnTable = false;
312 currState->pxnTable = false;
313
314 ++statWalksLongDescriptor;
315 } else {
316 ++statWalksShortDescriptor;
317 }
318
319 if (!currState->timing) {
320 Fault fault = NoFault;
321 if (currState->aarch64)
322 fault = processWalkAArch64();
323 else if (long_desc_format)
324 fault = processWalkLPAE();
325 else
326 fault = processWalk();
327
328 // If this was a functional non-timing access restore state to
329 // how we found it.
330 if (currState->functional) {
331 delete currState;
332 currState = savedCurrState;
333 }
334 return fault;
335 }
336
337 if (pending || pendingQueue.size()) {
338 pendingQueue.push_back(currState);
339 currState = NULL;
340 pendingChange();
341 } else {
342 pending = true;
343 pendingChange();
344 if (currState->aarch64)
345 return processWalkAArch64();
346 else if (long_desc_format)
347 return processWalkLPAE();
348 else
349 return processWalk();
350 }
351
352 return NoFault;
353}
354
355void
356TableWalker::processWalkWrapper()
357{
358 assert(!currState);
359 assert(pendingQueue.size());
360 pendingChange();
361 currState = pendingQueue.front();
362
363 ExceptionLevel target_el = EL0;
364 if (currState->aarch64)
365 target_el = currEL(currState->tc);
366 else
367 target_el = EL1;
368
369 // Check if a previous walk filled this request already
370 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
371 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
372 currState->vmid, currState->isHyp, currState->isSecure, true, false,
373 target_el);
374
375 // Check if we still need to have a walk for this request. If the requesting
376 // instruction has been squashed, or a previous walk has filled the TLB with
377 // a match, we just want to get rid of the walk. The latter could happen
378 // when there are multiple outstanding misses to a single page and a
379 // previous request has been successfully translated.
380 if (!currState->transState->squashed() && !te) {
381 // We've got a valid request, lets process it
382 pending = true;
383 pendingQueue.pop_front();
384 // Keep currState in case one of the processWalk... calls NULLs it
385 WalkerState *curr_state_copy = currState;
386 Fault f;
387 if (currState->aarch64)
388 f = processWalkAArch64();
389 else if (longDescFormatInUse(currState->tc) ||
390 currState->isHyp || isStage2)
391 f = processWalkLPAE();
392 else
393 f = processWalk();
394
395 if (f != NoFault) {
396 curr_state_copy->transState->finish(f, curr_state_copy->req,
397 curr_state_copy->tc, curr_state_copy->mode);
398
399 delete curr_state_copy;
400 }
401 return;
402 }
403
404
405 // If the instruction that we were translating for has been
406 // squashed we shouldn't bother.
407 unsigned num_squashed = 0;
408 ThreadContext *tc = currState->tc;
409 while ((num_squashed < numSquashable) && currState &&
410 (currState->transState->squashed() || te)) {
411 pendingQueue.pop_front();
412 num_squashed++;
413 statSquashedBefore++;
414
415 DPRINTF(TLB, "Squashing table walk for address %#x\n",
416 currState->vaddr_tainted);
417
418 if (currState->transState->squashed()) {
419 // finish the translation which will delete the translation object
420 currState->transState->finish(
421 std::make_shared<UnimpFault>("Squashed Inst"),
422 currState->req, currState->tc, currState->mode);
423 } else {
424 // translate the request now that we know it will work
425 statWalkServiceTime.sample(curTick() - currState->startTime);
426 tlb->translateTiming(currState->req, currState->tc,
427 currState->transState, currState->mode);
428
429 }
430
431 // delete the current request
432 delete currState;
433
434 // peak at the next one
435 if (pendingQueue.size()) {
436 currState = pendingQueue.front();
437 te = tlb->lookup(currState->vaddr, currState->asid,
438 currState->vmid, currState->isHyp, currState->isSecure, true,
439 false, target_el);
440 } else {
441 // Terminate the loop, nothing more to do
442 currState = NULL;
443 }
444 }
445 pendingChange();
446
447 // if we still have pending translations, schedule more work
448 nextWalk(tc);
449 currState = NULL;
450}
451
452Fault
453TableWalker::processWalk()
454{
455 Addr ttbr = 0;
456
457 // If translation isn't enabled, we shouldn't be here
458 assert(currState->sctlr.m || isStage2);
459
460 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
461 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
462 32 - currState->ttbcr.n));
463
464 statWalkWaitTime.sample(curTick() - currState->startTime);
465
466 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
467 32 - currState->ttbcr.n)) {
468 DPRINTF(TLB, " - Selecting TTBR0\n");
469 // Check if table walk is allowed when Security Extensions are enabled
470 if (haveSecurity && currState->ttbcr.pd0) {
471 if (currState->isFetch)
472 return std::make_shared<PrefetchAbort>(
473 currState->vaddr_tainted,
474 ArmFault::TranslationLL + L1,
475 isStage2,
476 ArmFault::VmsaTran);
477 else
478 return std::make_shared<DataAbort>(
479 currState->vaddr_tainted,
480 TlbEntry::DomainType::NoAccess, currState->isWrite,
481 ArmFault::TranslationLL + L1, isStage2,
482 ArmFault::VmsaTran);
483 }
484 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
485 MISCREG_TTBR0, currState->tc, !currState->isSecure));
486 } else {
487 DPRINTF(TLB, " - Selecting TTBR1\n");
488 // Check if table walk is allowed when Security Extensions are enabled
489 if (haveSecurity && currState->ttbcr.pd1) {
490 if (currState->isFetch)
491 return std::make_shared<PrefetchAbort>(
492 currState->vaddr_tainted,
493 ArmFault::TranslationLL + L1,
494 isStage2,
495 ArmFault::VmsaTran);
496 else
497 return std::make_shared<DataAbort>(
498 currState->vaddr_tainted,
499 TlbEntry::DomainType::NoAccess, currState->isWrite,
500 ArmFault::TranslationLL + L1, isStage2,
501 ArmFault::VmsaTran);
502 }
503 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
504 MISCREG_TTBR1, currState->tc, !currState->isSecure));
505 currState->ttbcr.n = 0;
506 }
507
508 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
509 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
510 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
511 currState->isSecure ? "s" : "ns");
512
513 // Trickbox address check
514 Fault f;
515 f = testWalk(l1desc_addr, sizeof(uint32_t),
516 TlbEntry::DomainType::NoAccess, L1);
517 if (f) {
518 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
519 if (currState->timing) {
520 pending = false;
521 nextWalk(currState->tc);
522 currState = NULL;
523 } else {
524 currState->tc = NULL;
525 currState->req = NULL;
526 }
527 return f;
528 }
529
530 Request::Flags flag = Request::PT_WALK;
531 if (currState->sctlr.c == 0) {
532 flag.set(Request::UNCACHEABLE);
533 }
534
535 if (currState->isSecure) {
536 flag.set(Request::SECURE);
537 }
538
539 bool delayed;
540 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
541 sizeof(uint32_t), flag, L1, &doL1DescEvent,
542 &TableWalker::doL1Descriptor);
543 if (!delayed) {
544 f = currState->fault;
545 }
546
547 return f;
548}
549
550Fault
551TableWalker::processWalkLPAE()
552{
553 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
554 int tsz, n;
555 LookupLevel start_lookup_level = L1;
556
557 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
558 currState->vaddr_tainted, currState->ttbcr);
559
560 statWalkWaitTime.sample(curTick() - currState->startTime);
561
562 Request::Flags flag = Request::PT_WALK;
563 if (currState->isSecure)
564 flag.set(Request::SECURE);
565
566 // work out which base address register to use, if in hyp mode we always
567 // use HTTBR
568 if (isStage2) {
569 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
570 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
571 tsz = sext<4>(currState->vtcr.t0sz);
572 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
573 } else if (currState->isHyp) {
574 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
575 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
576 tsz = currState->htcr.t0sz;
577 } else {
578 assert(longDescFormatInUse(currState->tc));
579
580 // Determine boundaries of TTBR0/1 regions
581 if (currState->ttbcr.t0sz)
582 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
583 else if (currState->ttbcr.t1sz)
584 ttbr0_max = (1ULL << 32) -
585 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
586 else
587 ttbr0_max = (1ULL << 32) - 1;
588 if (currState->ttbcr.t1sz)
589 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
590 else
591 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
592
593 // The following code snippet selects the appropriate translation table base
594 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
595 // depending on the address range supported by the translation table (ARM
596 // ARM issue C B3.6.4)
597 if (currState->vaddr <= ttbr0_max) {
598 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
599 // Check if table walk is allowed
600 if (currState->ttbcr.epd0) {
601 if (currState->isFetch)
602 return std::make_shared<PrefetchAbort>(
603 currState->vaddr_tainted,
604 ArmFault::TranslationLL + L1,
605 isStage2,
606 ArmFault::LpaeTran);
607 else
608 return std::make_shared<DataAbort>(
609 currState->vaddr_tainted,
610 TlbEntry::DomainType::NoAccess,
611 currState->isWrite,
612 ArmFault::TranslationLL + L1,
613 isStage2,
614 ArmFault::LpaeTran);
615 }
616 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
617 MISCREG_TTBR0, currState->tc, !currState->isSecure));
618 tsz = currState->ttbcr.t0sz;
619 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
620 start_lookup_level = L2;
621 } else if (currState->vaddr >= ttbr1_min) {
622 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
623 // Check if table walk is allowed
624 if (currState->ttbcr.epd1) {
625 if (currState->isFetch)
626 return std::make_shared<PrefetchAbort>(
627 currState->vaddr_tainted,
628 ArmFault::TranslationLL + L1,
629 isStage2,
630 ArmFault::LpaeTran);
631 else
632 return std::make_shared<DataAbort>(
633 currState->vaddr_tainted,
634 TlbEntry::DomainType::NoAccess,
635 currState->isWrite,
636 ArmFault::TranslationLL + L1,
637 isStage2,
638 ArmFault::LpaeTran);
639 }
640 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
641 MISCREG_TTBR1, currState->tc, !currState->isSecure));
642 tsz = currState->ttbcr.t1sz;
643 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
644 start_lookup_level = L2;
645 } else {
646 // Out of boundaries -> translation fault
647 if (currState->isFetch)
648 return std::make_shared<PrefetchAbort>(
649 currState->vaddr_tainted,
650 ArmFault::TranslationLL + L1,
651 isStage2,
652 ArmFault::LpaeTran);
653 else
654 return std::make_shared<DataAbort>(
655 currState->vaddr_tainted,
656 TlbEntry::DomainType::NoAccess,
657 currState->isWrite, ArmFault::TranslationLL + L1,
658 isStage2, ArmFault::LpaeTran);
659 }
660
661 }
662
663 // Perform lookup (ARM ARM issue C B3.6.6)
664 if (start_lookup_level == L1) {
665 n = 5 - tsz;
666 desc_addr = mbits(ttbr, 39, n) |
667 (bits(currState->vaddr, n + 26, 30) << 3);
668 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
669 desc_addr, currState->isSecure ? "s" : "ns");
670 } else {
671 // Skip first-level lookup
672 n = (tsz >= 2 ? 14 - tsz : 12);
673 desc_addr = mbits(ttbr, 39, n) |
674 (bits(currState->vaddr, n + 17, 21) << 3);
675 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
676 desc_addr, currState->isSecure ? "s" : "ns");
677 }
678
679 // Trickbox address check
680 Fault f = testWalk(desc_addr, sizeof(uint64_t),
681 TlbEntry::DomainType::NoAccess, start_lookup_level);
682 if (f) {
683 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
684 if (currState->timing) {
685 pending = false;
686 nextWalk(currState->tc);
687 currState = NULL;
688 } else {
689 currState->tc = NULL;
690 currState->req = NULL;
691 }
692 return f;
693 }
694
695 if (currState->sctlr.c == 0) {
696 flag.set(Request::UNCACHEABLE);
697 }
698
699 currState->longDesc.lookupLevel = start_lookup_level;
700 currState->longDesc.aarch64 = false;
701 currState->longDesc.grainSize = Grain4KB;
702
703 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
704 sizeof(uint64_t), flag, start_lookup_level,
705 LongDescEventByLevel[start_lookup_level],
706 &TableWalker::doLongDescriptor);
707 if (!delayed) {
708 f = currState->fault;
709 }
710
711 return f;
712}
713
714unsigned
715TableWalker::adjustTableSizeAArch64(unsigned tsz)
716{
717 if (tsz < 25)
718 return 25;
719 if (tsz > 48)
720 return 48;
721 return tsz;
722}
723
724bool
725TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
726{
727 return (currPhysAddrRange != MaxPhysAddrRange &&
728 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
729}
730
731Fault
732TableWalker::processWalkAArch64()
733{
734 assert(currState->aarch64);
735
736 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
737 currState->vaddr_tainted, currState->tcr);
738
739 static const GrainSize GrainMapDefault[] =
740 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
741 static const GrainSize GrainMap_EL1_tg1[] =
742 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
743
744 statWalkWaitTime.sample(curTick() - currState->startTime);
745
746 // Determine TTBR, table size, granule size and phys. address range
747 Addr ttbr = 0;
748 int tsz = 0, ps = 0;
749 GrainSize tg = Grain4KB; // grain size computed from tg* field
750 bool fault = false;
751
752 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
753
754 switch (currState->el) {
755 case EL0:
756 case EL1:
757 if (isStage2) {
758 DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
759 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
760 tsz = 64 - currState->vtcr.t0sz64;
761 tg = GrainMapDefault[currState->vtcr.tg0];
762 // ARM DDI 0487A.f D7-2148
763 // The starting level of stage 2 translation depends on
764 // VTCR_EL2.SL0 and VTCR_EL2.TG0
765 LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
766 uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
767 static const LookupLevel SLL[] = {
768 L2, L3, L3, __, // sl0 == 0
769 L1, L2, L2, __, // sl0 == 1, etc.
770 L0, L1, L1, __,
771 __, __, __, __
772 };
773 start_lookup_level = SLL[sl_tg];
774 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
775 "Cannot discern lookup level from vtcr.{sl0,tg0}");
776 } else switch (bits(currState->vaddr, 63,48)) {
777 case 0:
778 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
779 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
780 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
781 tg = GrainMapDefault[currState->tcr.tg0];
782 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
783 currState->tcr.epd0)
784 fault = true;
785 break;
786 case 0xffff:
787 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
788 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
789 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
790 tg = GrainMap_EL1_tg1[currState->tcr.tg1];
791 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
792 currState->tcr.epd1)
793 fault = true;
794 break;
795 default:
796 // top two bytes must be all 0s or all 1s, else invalid addr
797 fault = true;
798 }
799 ps = currState->tcr.ips;
800 break;
801 case EL2:
802 case EL3:
803 switch(bits(currState->vaddr, 63,48)) {
804 case 0:
805 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
806 if (currState->el == EL2)
807 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
808 else
809 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
810 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
811 tg = GrainMapDefault[currState->tcr.tg0];
812 break;
813 default:
814 // invalid addr if top two bytes are not all 0s
815 fault = true;
816 }
817 ps = currState->tcr.ips;
818 break;
819 }
820
821 if (fault) {
822 Fault f;
823 if (currState->isFetch)
824 f = std::make_shared<PrefetchAbort>(
825 currState->vaddr_tainted,
826 ArmFault::TranslationLL + L0, isStage2,
827 ArmFault::LpaeTran);
828 else
829 f = std::make_shared<DataAbort>(
830 currState->vaddr_tainted,
831 TlbEntry::DomainType::NoAccess,
832 currState->isWrite,
833 ArmFault::TranslationLL + L0,
834 isStage2, ArmFault::LpaeTran);
835
836 if (currState->timing) {
837 pending = false;
838 nextWalk(currState->tc);
839 currState = NULL;
840 } else {
841 currState->tc = NULL;
842 currState->req = NULL;
843 }
844 return f;
845
846 }
847
848 if (tg == ReservedGrain) {
849 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
850 "DEFINED behavior takes this to mean 4KB granules\n");
851 tg = Grain4KB;
852 }
853
854 // Determine starting lookup level
855 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
856 // in ARM DDI 0487A. These table values correspond to the cascading tests
857 // to compute the lookup level and are of the form
858 // (grain_size + N*stride), for N = {1, 2, 3}.
859 // A value of 64 will never succeed and a value of 0 will always succeed.
860 if (start_lookup_level == MAX_LOOKUP_LEVELS) {
861 struct GrainMap {
862 GrainSize grain_size;
863 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
864 };
865 static const GrainMap GM[] = {
866 { Grain4KB, { 39, 30, 0, 0 } },
867 { Grain16KB, { 47, 36, 25, 0 } },
868 { Grain64KB, { 64, 42, 29, 0 } }
869 };
870
871 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
872
873 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
874 if (tg == GM[i].grain_size) {
875 lookup = GM[i].lookup_level_cutoff;
876 break;
877 }
878 }
879 assert(lookup);
880
881 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
882 if (tsz > lookup[L]) {
883 start_lookup_level = (LookupLevel) L;
884 break;
885 }
886 }
887 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
888 "Table walker couldn't find lookup level\n");
889 }
890
891 int stride = tg - 3;
892
893 // Determine table base address
894 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
895 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
896
897 // Determine physical address size and raise an Address Size Fault if
898 // necessary
899 int pa_range = decodePhysAddrRange64(ps);
900 // Clamp to lower limit
901 if (pa_range > physAddrRange)
902 currState->physAddrRange = physAddrRange;
903 else
904 currState->physAddrRange = pa_range;
905 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
906 DPRINTF(TLB, "Address size fault before any lookup\n");
907 Fault f;
908 if (currState->isFetch)
909 f = std::make_shared<PrefetchAbort>(
910 currState->vaddr_tainted,
911 ArmFault::AddressSizeLL + start_lookup_level,
912 isStage2,
913 ArmFault::LpaeTran);
914 else
915 f = std::make_shared<DataAbort>(
916 currState->vaddr_tainted,
917 TlbEntry::DomainType::NoAccess,
918 currState->isWrite,
919 ArmFault::AddressSizeLL + start_lookup_level,
920 isStage2,
921 ArmFault::LpaeTran);
922
923
924 if (currState->timing) {
925 pending = false;
926 nextWalk(currState->tc);
927 currState = NULL;
928 } else {
929 currState->tc = NULL;
930 currState->req = NULL;
931 }
932 return f;
933
934 }
935
936 // Determine descriptor address
937 Addr desc_addr = base_addr |
938 (bits(currState->vaddr, tsz - 1,
939 stride * (3 - start_lookup_level) + tg) << 3);
940
941 // Trickbox address check
942 Fault f = testWalk(desc_addr, sizeof(uint64_t),
943 TlbEntry::DomainType::NoAccess, start_lookup_level);
944 if (f) {
945 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
946 if (currState->timing) {
947 pending = false;
948 nextWalk(currState->tc);
949 currState = NULL;
950 } else {
951 currState->tc = NULL;
952 currState->req = NULL;
953 }
954 return f;
955 }
956
957 Request::Flags flag = Request::PT_WALK;
958 if (currState->sctlr.c == 0) {
959 flag.set(Request::UNCACHEABLE);
960 }
961
962 if (currState->isSecure) {
963 flag.set(Request::SECURE);
964 }
965
966 currState->longDesc.lookupLevel = start_lookup_level;
967 currState->longDesc.aarch64 = true;
968 currState->longDesc.grainSize = tg;
969
970 if (currState->timing) {
971 fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
972 sizeof(uint64_t), flag, start_lookup_level,
973 LongDescEventByLevel[start_lookup_level], NULL);
974 } else {
975 fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
976 sizeof(uint64_t), flag, -1, NULL,
977 &TableWalker::doLongDescriptor);
978 f = currState->fault;
979 }
980
981 return f;
982}
983
984void
985TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
986 uint8_t texcb, bool s)
987{
988 // Note: tc and sctlr local variables are hiding tc and sctrl class
989 // variables
990 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
991 te.shareable = false; // default value
992 te.nonCacheable = false;
993 te.outerShareable = false;
994 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
995 switch(texcb) {
996 case 0: // Stongly-ordered
997 te.nonCacheable = true;
998 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
999 te.shareable = true;
1000 te.innerAttrs = 1;
1001 te.outerAttrs = 0;
1002 break;
1003 case 1: // Shareable Device
1004 te.nonCacheable = true;
1005 te.mtype = TlbEntry::MemoryType::Device;
1006 te.shareable = true;
1007 te.innerAttrs = 3;
1008 te.outerAttrs = 0;
1009 break;
1010 case 2: // Outer and Inner Write-Through, no Write-Allocate
1011 te.mtype = TlbEntry::MemoryType::Normal;
1012 te.shareable = s;
1013 te.innerAttrs = 6;
1014 te.outerAttrs = bits(texcb, 1, 0);
1015 break;
1016 case 3: // Outer and Inner Write-Back, no Write-Allocate
1017 te.mtype = TlbEntry::MemoryType::Normal;
1018 te.shareable = s;
1019 te.innerAttrs = 7;
1020 te.outerAttrs = bits(texcb, 1, 0);
1021 break;
1022 case 4: // Outer and Inner Non-cacheable
1023 te.nonCacheable = true;
1024 te.mtype = TlbEntry::MemoryType::Normal;
1025 te.shareable = s;
1026 te.innerAttrs = 0;
1027 te.outerAttrs = bits(texcb, 1, 0);
1028 break;
1029 case 5: // Reserved
1030 panic("Reserved texcb value!\n");
1031 break;
1032 case 6: // Implementation Defined
1033 panic("Implementation-defined texcb value!\n");
1034 break;
1035 case 7: // Outer and Inner Write-Back, Write-Allocate
1036 te.mtype = TlbEntry::MemoryType::Normal;
1037 te.shareable = s;
1038 te.innerAttrs = 5;
1039 te.outerAttrs = 1;
1040 break;
1041 case 8: // Non-shareable Device
1042 te.nonCacheable = true;
1043 te.mtype = TlbEntry::MemoryType::Device;
1044 te.shareable = false;
1045 te.innerAttrs = 3;
1046 te.outerAttrs = 0;
1047 break;
1048 case 9 ... 15: // Reserved
1049 panic("Reserved texcb value!\n");
1050 break;
1051 case 16 ... 31: // Cacheable Memory
1052 te.mtype = TlbEntry::MemoryType::Normal;
1053 te.shareable = s;
1054 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1055 te.nonCacheable = true;
1056 te.innerAttrs = bits(texcb, 1, 0);
1057 te.outerAttrs = bits(texcb, 3, 2);
1058 break;
1059 default:
1060 panic("More than 32 states for 5 bits?\n");
1061 }
1062 } else {
1063 assert(tc);
1064 PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1065 currState->tc, !currState->isSecure));
1066 NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1067 currState->tc, !currState->isSecure));
1068 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1069 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1070 switch(bits(texcb, 2,0)) {
1071 case 0:
1072 curr_tr = prrr.tr0;
1073 curr_ir = nmrr.ir0;
1074 curr_or = nmrr.or0;
1075 te.outerShareable = (prrr.nos0 == 0);
1076 break;
1077 case 1:
1078 curr_tr = prrr.tr1;
1079 curr_ir = nmrr.ir1;
1080 curr_or = nmrr.or1;
1081 te.outerShareable = (prrr.nos1 == 0);
1082 break;
1083 case 2:
1084 curr_tr = prrr.tr2;
1085 curr_ir = nmrr.ir2;
1086 curr_or = nmrr.or2;
1087 te.outerShareable = (prrr.nos2 == 0);
1088 break;
1089 case 3:
1090 curr_tr = prrr.tr3;
1091 curr_ir = nmrr.ir3;
1092 curr_or = nmrr.or3;
1093 te.outerShareable = (prrr.nos3 == 0);
1094 break;
1095 case 4:
1096 curr_tr = prrr.tr4;
1097 curr_ir = nmrr.ir4;
1098 curr_or = nmrr.or4;
1099 te.outerShareable = (prrr.nos4 == 0);
1100 break;
1101 case 5:
1102 curr_tr = prrr.tr5;
1103 curr_ir = nmrr.ir5;
1104 curr_or = nmrr.or5;
1105 te.outerShareable = (prrr.nos5 == 0);
1106 break;
1107 case 6:
1108 panic("Imp defined type\n");
1109 case 7:
1110 curr_tr = prrr.tr7;
1111 curr_ir = nmrr.ir7;
1112 curr_or = nmrr.or7;
1113 te.outerShareable = (prrr.nos7 == 0);
1114 break;
1115 }
1116
1117 switch(curr_tr) {
1118 case 0:
1119 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1120 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1121 te.nonCacheable = true;
1122 te.innerAttrs = 1;
1123 te.outerAttrs = 0;
1124 te.shareable = true;
1125 break;
1126 case 1:
1127 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1128 prrr.ds1, prrr.ds0, s);
1129 te.mtype = TlbEntry::MemoryType::Device;
1130 te.nonCacheable = true;
1131 te.innerAttrs = 3;
1132 te.outerAttrs = 0;
1133 if (prrr.ds1 && s)
1134 te.shareable = true;
1135 if (prrr.ds0 && !s)
1136 te.shareable = true;
1137 break;
1138 case 2:
1139 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1140 prrr.ns1, prrr.ns0, s);
1141 te.mtype = TlbEntry::MemoryType::Normal;
1142 if (prrr.ns1 && s)
1143 te.shareable = true;
1144 if (prrr.ns0 && !s)
1145 te.shareable = true;
1146 break;
1147 case 3:
1148 panic("Reserved type");
1149 }
1150
1151 if (te.mtype == TlbEntry::MemoryType::Normal){
1152 switch(curr_ir) {
1153 case 0:
1154 te.nonCacheable = true;
1155 te.innerAttrs = 0;
1156 break;
1157 case 1:
1158 te.innerAttrs = 5;
1159 break;
1160 case 2:
1161 te.innerAttrs = 6;
1162 break;
1163 case 3:
1164 te.innerAttrs = 7;
1165 break;
1166 }
1167
1168 switch(curr_or) {
1169 case 0:
1170 te.nonCacheable = true;
1171 te.outerAttrs = 0;
1172 break;
1173 case 1:
1174 te.outerAttrs = 1;
1175 break;
1176 case 2:
1177 te.outerAttrs = 2;
1178 break;
1179 case 3:
1180 te.outerAttrs = 3;
1181 break;
1182 }
1183 }
1184 }
1185 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1186 "outerAttrs: %d\n",
1187 te.shareable, te.innerAttrs, te.outerAttrs);
1188 te.setAttributes(false);
1189}
1190
1191void
1192TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1193 LongDescriptor &lDescriptor)
1194{
1195 assert(_haveLPAE);
1196
1197 uint8_t attr;
1198 uint8_t sh = lDescriptor.sh();
1199 // Different format and source of attributes if this is a stage 2
1200 // translation
1201 if (isStage2) {
1202 attr = lDescriptor.memAttr();
1203 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1204 uint8_t attr_1_0 = attr & 0x3;
1205
1206 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1207
1208 if (attr_3_2 == 0) {
1209 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1210 : TlbEntry::MemoryType::Device;
1211 te.outerAttrs = 0;
1212 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1213 te.nonCacheable = true;
1214 } else {
1215 te.mtype = TlbEntry::MemoryType::Normal;
1216 te.outerAttrs = attr_3_2 == 1 ? 0 :
1217 attr_3_2 == 2 ? 2 : 1;
1218 te.innerAttrs = attr_1_0 == 1 ? 0 :
1219 attr_1_0 == 2 ? 6 : 5;
1220 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1221 }
1222 } else {
1223 uint8_t attrIndx = lDescriptor.attrIndx();
1224
1225 // LPAE always uses remapping of memory attributes, irrespective of the
1226 // value of SCTLR.TRE
1227 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1228 int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1229 !currState->isSecure);
1230 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1231 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1232 uint8_t attr_7_4 = bits(attr, 7, 4);
1233 uint8_t attr_3_0 = bits(attr, 3, 0);
1234 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1235
1236 // Note: the memory subsystem only cares about the 'cacheable' memory
1237 // attribute. The other attributes are only used to fill the PAR register
1238 // accordingly to provide the illusion of full support
1239 te.nonCacheable = false;
1240
1241 switch (attr_7_4) {
1242 case 0x0:
1243 // Strongly-ordered or Device memory
1244 if (attr_3_0 == 0x0)
1245 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1246 else if (attr_3_0 == 0x4)
1247 te.mtype = TlbEntry::MemoryType::Device;
1248 else
1249 panic("Unpredictable behavior\n");
1250 te.nonCacheable = true;
1251 te.outerAttrs = 0;
1252 break;
1253 case 0x4:
1254 // Normal memory, Outer Non-cacheable
1255 te.mtype = TlbEntry::MemoryType::Normal;
1256 te.outerAttrs = 0;
1257 if (attr_3_0 == 0x4)
1258 // Inner Non-cacheable
1259 te.nonCacheable = true;
1260 else if (attr_3_0 < 0x8)
1261 panic("Unpredictable behavior\n");
1262 break;
1263 case 0x8:
1264 case 0x9:
1265 case 0xa:
1266 case 0xb:
1267 case 0xc:
1268 case 0xd:
1269 case 0xe:
1270 case 0xf:
1271 if (attr_7_4 & 0x4) {
1272 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1273 } else {
1274 te.outerAttrs = 0x2;
1275 }
1276 // Normal memory, Outer Cacheable
1277 te.mtype = TlbEntry::MemoryType::Normal;
1278 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1279 panic("Unpredictable behavior\n");
1280 break;
1281 default:
1282 panic("Unpredictable behavior\n");
1283 break;
1284 }
1285
1286 switch (attr_3_0) {
1287 case 0x0:
1288 te.innerAttrs = 0x1;
1289 break;
1290 case 0x4:
1291 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1292 break;
1293 case 0x8:
1294 case 0x9:
1295 case 0xA:
1296 case 0xB:
1297 te.innerAttrs = 6;
1298 break;
1299 case 0xC:
1300 case 0xD:
1301 case 0xE:
1302 case 0xF:
1303 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1304 break;
1305 default:
1306 panic("Unpredictable behavior\n");
1307 break;
1308 }
1309 }
1310
1311 te.outerShareable = sh == 2;
1312 te.shareable = (sh & 0x2) ? true : false;
1313 te.setAttributes(true);
1314 te.attributes |= (uint64_t) attr << 56;
1315}
1316
1317void
1318TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1319 LongDescriptor &lDescriptor)
1320{
1321 uint8_t attr;
1322 uint8_t attr_hi;
1323 uint8_t attr_lo;
1324 uint8_t sh = lDescriptor.sh();
1325
1326 if (isStage2) {
1327 attr = lDescriptor.memAttr();
1328 uint8_t attr_hi = (attr >> 2) & 0x3;
1329 uint8_t attr_lo = attr & 0x3;
1330
1331 DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1332
1333 if (attr_hi == 0) {
1334 te.mtype = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1335 : TlbEntry::MemoryType::Device;
1336 te.outerAttrs = 0;
1337 te.innerAttrs = attr_lo == 0 ? 1 : 3;
1338 te.nonCacheable = true;
1339 } else {
1340 te.mtype = TlbEntry::MemoryType::Normal;
1341 te.outerAttrs = attr_hi == 1 ? 0 :
1342 attr_hi == 2 ? 2 : 1;
1343 te.innerAttrs = attr_lo == 1 ? 0 :
1344 attr_lo == 2 ? 6 : 5;
1345 te.nonCacheable = (attr_hi == 1) || (attr_lo == 1);
1345 // Treat write-through memory as uncacheable, this is safe
1346 // but for performance reasons not optimal.
1347 te.nonCacheable = (attr_hi == 1) || (attr_hi == 2) ||
1348 (attr_lo == 1) || (attr_lo == 2);
1346 }
1347 } else {
1348 uint8_t attrIndx = lDescriptor.attrIndx();
1349
1350 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1351
1352 // Select MAIR
1353 uint64_t mair;
1354 switch (currState->el) {
1355 case EL0:
1356 case EL1:
1357 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1358 break;
1359 case EL2:
1360 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1361 break;
1362 case EL3:
1363 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1364 break;
1365 default:
1366 panic("Invalid exception level");
1367 break;
1368 }
1369
1370 // Select attributes
1371 attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1372 attr_lo = bits(attr, 3, 0);
1373 attr_hi = bits(attr, 7, 4);
1374
1375 // Memory type
1376 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1377
1378 // Cacheability
1379 te.nonCacheable = false;
1349 }
1350 } else {
1351 uint8_t attrIndx = lDescriptor.attrIndx();
1352
1353 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1354
1355 // Select MAIR
1356 uint64_t mair;
1357 switch (currState->el) {
1358 case EL0:
1359 case EL1:
1360 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1361 break;
1362 case EL2:
1363 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1364 break;
1365 case EL3:
1366 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1367 break;
1368 default:
1369 panic("Invalid exception level");
1370 break;
1371 }
1372
1373 // Select attributes
1374 attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1375 attr_lo = bits(attr, 3, 0);
1376 attr_hi = bits(attr, 7, 4);
1377
1378 // Memory type
1379 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1380
1381 // Cacheability
1382 te.nonCacheable = false;
1380 if (te.mtype == TlbEntry::MemoryType::Device || // Device memory
1381 attr_hi == 0x8 || // Normal memory, Outer Non-cacheable
1382 attr_lo == 0x8) { // Normal memory, Inner Non-cacheable
1383 if (te.mtype == TlbEntry::MemoryType::Device) { // Device memory
1383 te.nonCacheable = true;
1384 }
1384 te.nonCacheable = true;
1385 }
1386 // Treat write-through memory as uncacheable, this is safe
1387 // but for performance reasons not optimal.
1388 switch (attr_hi) {
1389 case 0x1 ... 0x3: // Normal Memory, Outer Write-through transient
1390 case 0x4: // Normal memory, Outer Non-cacheable
1391 case 0x8 ... 0xb: // Normal Memory, Outer Write-through non-transient
1392 te.nonCacheable = true;
1393 }
1394 switch (attr_lo) {
1395 case 0x1 ... 0x3: // Normal Memory, Inner Write-through transient
1396 case 0x9 ... 0xb: // Normal Memory, Inner Write-through non-transient
1397 warn_if(!attr_hi, "Unpredictable behavior");
1398 case 0x4: // Device-nGnRE memory or
1399 // Normal memory, Inner Non-cacheable
1400 case 0x8: // Device-nGRE memory or
1401 // Normal memory, Inner Write-through non-transient
1402 te.nonCacheable = true;
1403 }
1385
1386 te.shareable = sh == 2;
1387 te.outerShareable = (sh & 0x2) ? true : false;
1388 // Attributes formatted according to the 64-bit PAR
1389 te.attributes = ((uint64_t) attr << 56) |
1390 (1 << 11) | // LPAE bit
1391 (te.ns << 9) | // NS bit
1392 (sh << 7);
1393 }
1394}
1395
1396void
1397TableWalker::doL1Descriptor()
1398{
1399 if (currState->fault != NoFault) {
1400 return;
1401 }
1402
1403 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1404 currState->vaddr_tainted, currState->l1Desc.data);
1405 TlbEntry te;
1406
1407 switch (currState->l1Desc.type()) {
1408 case L1Descriptor::Ignore:
1409 case L1Descriptor::Reserved:
1410 if (!currState->timing) {
1411 currState->tc = NULL;
1412 currState->req = NULL;
1413 }
1414 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1415 if (currState->isFetch)
1416 currState->fault =
1417 std::make_shared<PrefetchAbort>(
1418 currState->vaddr_tainted,
1419 ArmFault::TranslationLL + L1,
1420 isStage2,
1421 ArmFault::VmsaTran);
1422 else
1423 currState->fault =
1424 std::make_shared<DataAbort>(
1425 currState->vaddr_tainted,
1426 TlbEntry::DomainType::NoAccess,
1427 currState->isWrite,
1428 ArmFault::TranslationLL + L1, isStage2,
1429 ArmFault::VmsaTran);
1430 return;
1431 case L1Descriptor::Section:
1432 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1433 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1434 * enabled if set, do l1.Desc.setAp0() instead of generating
1435 * AccessFlag0
1436 */
1437
1438 currState->fault = std::make_shared<DataAbort>(
1439 currState->vaddr_tainted,
1440 currState->l1Desc.domain(),
1441 currState->isWrite,
1442 ArmFault::AccessFlagLL + L1,
1443 isStage2,
1444 ArmFault::VmsaTran);
1445 }
1446 if (currState->l1Desc.supersection()) {
1447 panic("Haven't implemented supersections\n");
1448 }
1449 insertTableEntry(currState->l1Desc, false);
1450 return;
1451 case L1Descriptor::PageTable:
1452 {
1453 Addr l2desc_addr;
1454 l2desc_addr = currState->l1Desc.l2Addr() |
1455 (bits(currState->vaddr, 19, 12) << 2);
1456 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1457 l2desc_addr, currState->isSecure ? "s" : "ns");
1458
1459 // Trickbox address check
1460 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1461 currState->l1Desc.domain(), L2);
1462
1463 if (currState->fault) {
1464 if (!currState->timing) {
1465 currState->tc = NULL;
1466 currState->req = NULL;
1467 }
1468 return;
1469 }
1470
1471 Request::Flags flag = Request::PT_WALK;
1472 if (currState->isSecure)
1473 flag.set(Request::SECURE);
1474
1475 bool delayed;
1476 delayed = fetchDescriptor(l2desc_addr,
1477 (uint8_t*)&currState->l2Desc.data,
1478 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1479 &TableWalker::doL2Descriptor);
1480 if (delayed) {
1481 currState->delayed = true;
1482 }
1483
1484 return;
1485 }
1486 default:
1487 panic("A new type in a 2 bit field?\n");
1488 }
1489}
1490
1491void
1492TableWalker::doLongDescriptor()
1493{
1494 if (currState->fault != NoFault) {
1495 return;
1496 }
1497
1498 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1499 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1500 currState->longDesc.data,
1501 currState->aarch64 ? "AArch64" : "long-desc.");
1502
1503 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1504 (currState->longDesc.type() == LongDescriptor::Page)) {
1505 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1506 "xn: %d, ap: %d, af: %d, type: %d\n",
1507 currState->longDesc.lookupLevel,
1508 currState->longDesc.data,
1509 currState->longDesc.pxn(),
1510 currState->longDesc.xn(),
1511 currState->longDesc.ap(),
1512 currState->longDesc.af(),
1513 currState->longDesc.type());
1514 } else {
1515 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1516 currState->longDesc.lookupLevel,
1517 currState->longDesc.data,
1518 currState->longDesc.type());
1519 }
1520
1521 TlbEntry te;
1522
1523 switch (currState->longDesc.type()) {
1524 case LongDescriptor::Invalid:
1525 if (!currState->timing) {
1526 currState->tc = NULL;
1527 currState->req = NULL;
1528 }
1529
1530 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1531 currState->longDesc.lookupLevel,
1532 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1533 if (currState->isFetch)
1534 currState->fault = std::make_shared<PrefetchAbort>(
1535 currState->vaddr_tainted,
1536 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1537 isStage2,
1538 ArmFault::LpaeTran);
1539 else
1540 currState->fault = std::make_shared<DataAbort>(
1541 currState->vaddr_tainted,
1542 TlbEntry::DomainType::NoAccess,
1543 currState->isWrite,
1544 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1545 isStage2,
1546 ArmFault::LpaeTran);
1547 return;
1548 case LongDescriptor::Block:
1549 case LongDescriptor::Page:
1550 {
1551 bool fault = false;
1552 bool aff = false;
1553 // Check for address size fault
1554 if (checkAddrSizeFaultAArch64(
1555 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1556 currState->longDesc.offsetBits()),
1557 currState->physAddrRange)) {
1558 fault = true;
1559 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1560 currState->longDesc.lookupLevel);
1561 // Check for access fault
1562 } else if (currState->longDesc.af() == 0) {
1563 fault = true;
1564 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1565 currState->longDesc.lookupLevel);
1566 aff = true;
1567 }
1568 if (fault) {
1569 if (currState->isFetch)
1570 currState->fault = std::make_shared<PrefetchAbort>(
1571 currState->vaddr_tainted,
1572 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1573 currState->longDesc.lookupLevel,
1574 isStage2,
1575 ArmFault::LpaeTran);
1576 else
1577 currState->fault = std::make_shared<DataAbort>(
1578 currState->vaddr_tainted,
1579 TlbEntry::DomainType::NoAccess, currState->isWrite,
1580 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1581 currState->longDesc.lookupLevel,
1582 isStage2,
1583 ArmFault::LpaeTran);
1584 } else {
1585 insertTableEntry(currState->longDesc, true);
1586 }
1587 }
1588 return;
1589 case LongDescriptor::Table:
1590 {
1591 // Set hierarchical permission flags
1592 currState->secureLookup = currState->secureLookup &&
1593 currState->longDesc.secureTable();
1594 currState->rwTable = currState->rwTable &&
1595 currState->longDesc.rwTable();
1596 currState->userTable = currState->userTable &&
1597 currState->longDesc.userTable();
1598 currState->xnTable = currState->xnTable ||
1599 currState->longDesc.xnTable();
1600 currState->pxnTable = currState->pxnTable ||
1601 currState->longDesc.pxnTable();
1602
1603 // Set up next level lookup
1604 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1605 currState->vaddr);
1606
1607 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1608 currState->longDesc.lookupLevel,
1609 currState->longDesc.lookupLevel + 1,
1610 next_desc_addr,
1611 currState->secureLookup ? "s" : "ns");
1612
1613 // Check for address size fault
1614 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1615 next_desc_addr, currState->physAddrRange)) {
1616 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1617 currState->longDesc.lookupLevel);
1618 if (currState->isFetch)
1619 currState->fault = std::make_shared<PrefetchAbort>(
1620 currState->vaddr_tainted,
1621 ArmFault::AddressSizeLL
1622 + currState->longDesc.lookupLevel,
1623 isStage2,
1624 ArmFault::LpaeTran);
1625 else
1626 currState->fault = std::make_shared<DataAbort>(
1627 currState->vaddr_tainted,
1628 TlbEntry::DomainType::NoAccess, currState->isWrite,
1629 ArmFault::AddressSizeLL
1630 + currState->longDesc.lookupLevel,
1631 isStage2,
1632 ArmFault::LpaeTran);
1633 return;
1634 }
1635
1636 // Trickbox address check
1637 currState->fault = testWalk(
1638 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1639 toLookupLevel(currState->longDesc.lookupLevel +1));
1640
1641 if (currState->fault) {
1642 if (!currState->timing) {
1643 currState->tc = NULL;
1644 currState->req = NULL;
1645 }
1646 return;
1647 }
1648
1649 Request::Flags flag = Request::PT_WALK;
1650 if (currState->secureLookup)
1651 flag.set(Request::SECURE);
1652
1653 LookupLevel L = currState->longDesc.lookupLevel =
1654 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1655 Event *event = NULL;
1656 switch (L) {
1657 case L1:
1658 assert(currState->aarch64);
1659 case L2:
1660 case L3:
1661 event = LongDescEventByLevel[L];
1662 break;
1663 default:
1664 panic("Wrong lookup level in table walk\n");
1665 break;
1666 }
1667
1668 bool delayed;
1669 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1670 sizeof(uint64_t), flag, -1, event,
1671 &TableWalker::doLongDescriptor);
1672 if (delayed) {
1673 currState->delayed = true;
1674 }
1675 }
1676 return;
1677 default:
1678 panic("A new type in a 2 bit field?\n");
1679 }
1680}
1681
1682void
1683TableWalker::doL2Descriptor()
1684{
1685 if (currState->fault != NoFault) {
1686 return;
1687 }
1688
1689 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1690 currState->vaddr_tainted, currState->l2Desc.data);
1691 TlbEntry te;
1692
1693 if (currState->l2Desc.invalid()) {
1694 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1695 if (!currState->timing) {
1696 currState->tc = NULL;
1697 currState->req = NULL;
1698 }
1699 if (currState->isFetch)
1700 currState->fault = std::make_shared<PrefetchAbort>(
1701 currState->vaddr_tainted,
1702 ArmFault::TranslationLL + L2,
1703 isStage2,
1704 ArmFault::VmsaTran);
1705 else
1706 currState->fault = std::make_shared<DataAbort>(
1707 currState->vaddr_tainted, currState->l1Desc.domain(),
1708 currState->isWrite, ArmFault::TranslationLL + L2,
1709 isStage2,
1710 ArmFault::VmsaTran);
1711 return;
1712 }
1713
1714 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1715 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1716 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1717 */
1718 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1719 currState->sctlr.afe, currState->l2Desc.ap());
1720
1721 currState->fault = std::make_shared<DataAbort>(
1722 currState->vaddr_tainted,
1723 TlbEntry::DomainType::NoAccess, currState->isWrite,
1724 ArmFault::AccessFlagLL + L2, isStage2,
1725 ArmFault::VmsaTran);
1726 }
1727
1728 insertTableEntry(currState->l2Desc, false);
1729}
1730
1731void
1732TableWalker::doL1DescriptorWrapper()
1733{
1734 currState = stateQueues[L1].front();
1735 currState->delayed = false;
1736 // if there's a stage2 translation object we don't need it any more
1737 if (currState->stage2Tran) {
1738 delete currState->stage2Tran;
1739 currState->stage2Tran = NULL;
1740 }
1741
1742
1743 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1744 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1745
1746 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1747 doL1Descriptor();
1748
1749 stateQueues[L1].pop_front();
1750 // Check if fault was generated
1751 if (currState->fault != NoFault) {
1752 currState->transState->finish(currState->fault, currState->req,
1753 currState->tc, currState->mode);
1754 statWalksShortTerminatedAtLevel[0]++;
1755
1756 pending = false;
1757 nextWalk(currState->tc);
1758
1759 currState->req = NULL;
1760 currState->tc = NULL;
1761 currState->delayed = false;
1762 delete currState;
1763 }
1764 else if (!currState->delayed) {
1765 // delay is not set so there is no L2 to do
1766 // Don't finish the translation if a stage 2 look up is underway
1767 if (!currState->doingStage2) {
1768 statWalkServiceTime.sample(curTick() - currState->startTime);
1769 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1770 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1771 currState->transState, currState->mode);
1772 statWalksShortTerminatedAtLevel[0]++;
1773 }
1774
1775 pending = false;
1776 nextWalk(currState->tc);
1777
1778 currState->req = NULL;
1779 currState->tc = NULL;
1780 currState->delayed = false;
1781 delete currState;
1782 } else {
1783 // need to do L2 descriptor
1784 stateQueues[L2].push_back(currState);
1785 }
1786 currState = NULL;
1787}
1788
1789void
1790TableWalker::doL2DescriptorWrapper()
1791{
1792 currState = stateQueues[L2].front();
1793 assert(currState->delayed);
1794 // if there's a stage2 translation object we don't need it any more
1795 if (currState->stage2Tran) {
1796 delete currState->stage2Tran;
1797 currState->stage2Tran = NULL;
1798 }
1799
1800 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1801 currState->vaddr_tainted);
1802 doL2Descriptor();
1803
1804 // Check if fault was generated
1805 if (currState->fault != NoFault) {
1806 currState->transState->finish(currState->fault, currState->req,
1807 currState->tc, currState->mode);
1808 statWalksShortTerminatedAtLevel[1]++;
1809 }
1810 else {
1811 // Don't finish the translation if a stage 2 look up is underway
1812 if (!currState->doingStage2) {
1813 statWalkServiceTime.sample(curTick() - currState->startTime);
1814 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1815 currState->fault = tlb->translateTiming(currState->req,
1816 currState->tc, currState->transState, currState->mode);
1817 statWalksShortTerminatedAtLevel[1]++;
1818 }
1819 }
1820
1821
1822 stateQueues[L2].pop_front();
1823 pending = false;
1824 nextWalk(currState->tc);
1825
1826 currState->req = NULL;
1827 currState->tc = NULL;
1828 currState->delayed = false;
1829
1830 delete currState;
1831 currState = NULL;
1832}
1833
1834void
1835TableWalker::doL0LongDescriptorWrapper()
1836{
1837 doLongDescriptorWrapper(L0);
1838}
1839
1840void
1841TableWalker::doL1LongDescriptorWrapper()
1842{
1843 doLongDescriptorWrapper(L1);
1844}
1845
1846void
1847TableWalker::doL2LongDescriptorWrapper()
1848{
1849 doLongDescriptorWrapper(L2);
1850}
1851
1852void
1853TableWalker::doL3LongDescriptorWrapper()
1854{
1855 doLongDescriptorWrapper(L3);
1856}
1857
1858void
1859TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1860{
1861 currState = stateQueues[curr_lookup_level].front();
1862 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1863 currState->delayed = false;
1864
1865 // if there's a stage2 translation object we don't need it any more
1866 if (currState->stage2Tran) {
1867 delete currState->stage2Tran;
1868 currState->stage2Tran = NULL;
1869 }
1870
1871 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1872 currState->vaddr_tainted);
1873 doLongDescriptor();
1874
1875 stateQueues[curr_lookup_level].pop_front();
1876
1877 if (currState->fault != NoFault) {
1878 // A fault was generated
1879 currState->transState->finish(currState->fault, currState->req,
1880 currState->tc, currState->mode);
1881
1882 pending = false;
1883 nextWalk(currState->tc);
1884
1885 currState->req = NULL;
1886 currState->tc = NULL;
1887 currState->delayed = false;
1888 delete currState;
1889 } else if (!currState->delayed) {
1890 // No additional lookups required
1891 // Don't finish the translation if a stage 2 look up is underway
1892 if (!currState->doingStage2) {
1893 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1894 statWalkServiceTime.sample(curTick() - currState->startTime);
1895 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1896 currState->transState,
1897 currState->mode);
1898 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1899 }
1900
1901 pending = false;
1902 nextWalk(currState->tc);
1903
1904 currState->req = NULL;
1905 currState->tc = NULL;
1906 currState->delayed = false;
1907 delete currState;
1908 } else {
1909 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1910 panic("Max. number of lookups already reached in table walk\n");
1911 // Need to perform additional lookups
1912 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1913 }
1914 currState = NULL;
1915}
1916
1917
1918void
1919TableWalker::nextWalk(ThreadContext *tc)
1920{
1921 if (pendingQueue.size())
1922 schedule(doProcessEvent, clockEdge(Cycles(1)));
1923 else
1924 completeDrain();
1925}
1926
1927bool
1928TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1929 Request::Flags flags, int queueIndex, Event *event,
1930 void (TableWalker::*doDescriptor)())
1931{
1932 bool isTiming = currState->timing;
1933
1934 DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1935 descAddr, currState->stage2Req);
1936
1937 // If this translation has a stage 2 then we know descAddr is an IPA and
1938 // needs to be translated before we can access the page table. Do that
1939 // check here.
1940 if (currState->stage2Req) {
1941 Fault fault;
1942 flags = flags | TLB::MustBeOne;
1943
1944 if (isTiming) {
1945 Stage2MMU::Stage2Translation *tran = new
1946 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1947 currState->vaddr);
1948 currState->stage2Tran = tran;
1949 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1950 flags);
1951 fault = tran->fault;
1952 } else {
1953 fault = stage2Mmu->readDataUntimed(currState->tc,
1954 currState->vaddr, descAddr, data, numBytes, flags,
1955 currState->functional);
1956 }
1957
1958 if (fault != NoFault) {
1959 currState->fault = fault;
1960 }
1961 if (isTiming) {
1962 if (queueIndex >= 0) {
1963 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1964 stateQueues[queueIndex].size());
1965 stateQueues[queueIndex].push_back(currState);
1966 currState = NULL;
1967 }
1968 } else {
1969 (this->*doDescriptor)();
1970 }
1971 } else {
1972 if (isTiming) {
1973 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1974 currState->tc->getCpuPtr()->clockPeriod(),flags);
1975 if (queueIndex >= 0) {
1976 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1977 stateQueues[queueIndex].size());
1978 stateQueues[queueIndex].push_back(currState);
1979 currState = NULL;
1980 }
1981 } else if (!currState->functional) {
1982 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
1983 currState->tc->getCpuPtr()->clockPeriod(), flags);
1984 (this->*doDescriptor)();
1985 } else {
1986 RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
1987 req->taskId(ContextSwitchTaskId::DMA);
1988 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
1989 pkt->dataStatic(data);
1990 port->sendFunctional(pkt);
1991 (this->*doDescriptor)();
1992 delete req;
1993 delete pkt;
1994 }
1995 }
1996 return (isTiming);
1997}
1998
1999void
2000TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2001{
2002 TlbEntry te;
2003
2004 // Create and fill a new page table entry
2005 te.valid = true;
2006 te.longDescFormat = longDescriptor;
2007 te.isHyp = currState->isHyp;
2008 te.asid = currState->asid;
2009 te.vmid = currState->vmid;
2010 te.N = descriptor.offsetBits();
2011 te.vpn = currState->vaddr >> te.N;
2012 te.size = (1<<te.N) - 1;
2013 te.pfn = descriptor.pfn();
2014 te.domain = descriptor.domain();
2015 te.lookupLevel = descriptor.lookupLevel;
2016 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
2017 te.nstid = !currState->isSecure;
2018 te.xn = descriptor.xn();
2019 if (currState->aarch64)
2020 te.el = currState->el;
2021 else
2022 te.el = 1;
2023
2024 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2025 statRequestOrigin[COMPLETED][currState->isFetch]++;
2026
2027 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2028 // as global
2029 te.global = descriptor.global(currState) || isStage2;
2030 if (longDescriptor) {
2031 LongDescriptor lDescriptor =
2032 dynamic_cast<LongDescriptor &>(descriptor);
2033
2034 te.xn |= currState->xnTable;
2035 te.pxn = currState->pxnTable || lDescriptor.pxn();
2036 if (isStage2) {
2037 // this is actually the HAP field, but its stored in the same bit
2038 // possitions as the AP field in a stage 1 translation.
2039 te.hap = lDescriptor.ap();
2040 } else {
2041 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2042 (currState->userTable && (descriptor.ap() & 0x1));
2043 }
2044 if (currState->aarch64)
2045 memAttrsAArch64(currState->tc, te, lDescriptor);
2046 else
2047 memAttrsLPAE(currState->tc, te, lDescriptor);
2048 } else {
2049 te.ap = descriptor.ap();
2050 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2051 descriptor.shareable());
2052 }
2053
2054 // Debug output
2055 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2056 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2057 te.N, te.pfn, te.size, te.global, te.valid);
2058 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2059 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2060 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2061 te.nonCacheable, te.ns);
2062 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2063 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2064 descriptor.getRawData());
2065
2066 // Insert the entry into the TLB
2067 tlb->insert(currState->vaddr, te);
2068 if (!currState->timing) {
2069 currState->tc = NULL;
2070 currState->req = NULL;
2071 }
2072}
2073
2074ArmISA::TableWalker *
2075ArmTableWalkerParams::create()
2076{
2077 return new ArmISA::TableWalker(this);
2078}
2079
2080LookupLevel
2081TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2082{
2083 switch (lookup_level_as_int) {
2084 case L1:
2085 return L1;
2086 case L2:
2087 return L2;
2088 case L3:
2089 return L3;
2090 default:
2091 panic("Invalid lookup level conversion");
2092 }
2093}
2094
2095/* this method keeps track of the table walker queue's residency, so
2096 * needs to be called whenever requests start and complete. */
2097void
2098TableWalker::pendingChange()
2099{
2100 unsigned n = pendingQueue.size();
2101 if ((currState != NULL) && (currState != pendingQueue.front())) {
2102 ++n;
2103 }
2104
2105 if (n != pendingReqs) {
2106 Tick now = curTick();
2107 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2108 pendingReqs = n;
2109 pendingChangeTick = now;
2110 }
2111}
2112
2113Fault
2114TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2115 LookupLevel lookup_level)
2116{
2117 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2118 currState->mode, domain, lookup_level);
2119}
2120
2121
2122uint8_t
2123TableWalker::pageSizeNtoStatBin(uint8_t N)
2124{
2125 /* for statPageSizes */
2126 switch(N) {
2127 case 12: return 0; // 4K
2128 case 14: return 1; // 16K (using 16K granule in v8-64)
2129 case 16: return 2; // 64K
2130 case 20: return 3; // 1M
2131 case 21: return 4; // 2M-LPAE
2132 case 24: return 5; // 16M
2133 case 25: return 6; // 32M (using 16K granule in v8-64)
2134 case 29: return 7; // 512M (using 64K granule in v8-64)
2135 case 30: return 8; // 1G-LPAE
2136 default:
2137 panic("unknown page size");
2138 return 255;
2139 }
2140}
2141
2142void
2143TableWalker::regStats()
2144{
2145 ClockedObject::regStats();
2146
2147 statWalks
2148 .name(name() + ".walks")
2149 .desc("Table walker walks requested")
2150 ;
2151
2152 statWalksShortDescriptor
2153 .name(name() + ".walksShort")
2154 .desc("Table walker walks initiated with short descriptors")
2155 .flags(Stats::nozero)
2156 ;
2157
2158 statWalksLongDescriptor
2159 .name(name() + ".walksLong")
2160 .desc("Table walker walks initiated with long descriptors")
2161 .flags(Stats::nozero)
2162 ;
2163
2164 statWalksShortTerminatedAtLevel
2165 .init(2)
2166 .name(name() + ".walksShortTerminationLevel")
2167 .desc("Level at which table walker walks "
2168 "with short descriptors terminate")
2169 .flags(Stats::nozero)
2170 ;
2171 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2172 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2173
2174 statWalksLongTerminatedAtLevel
2175 .init(4)
2176 .name(name() + ".walksLongTerminationLevel")
2177 .desc("Level at which table walker walks "
2178 "with long descriptors terminate")
2179 .flags(Stats::nozero)
2180 ;
2181 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2182 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2183 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2184 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2185
2186 statSquashedBefore
2187 .name(name() + ".walksSquashedBefore")
2188 .desc("Table walks squashed before starting")
2189 .flags(Stats::nozero)
2190 ;
2191
2192 statSquashedAfter
2193 .name(name() + ".walksSquashedAfter")
2194 .desc("Table walks squashed after completion")
2195 .flags(Stats::nozero)
2196 ;
2197
2198 statWalkWaitTime
2199 .init(16)
2200 .name(name() + ".walkWaitTime")
2201 .desc("Table walker wait (enqueue to first request) latency")
2202 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2203 ;
2204
2205 statWalkServiceTime
2206 .init(16)
2207 .name(name() + ".walkCompletionTime")
2208 .desc("Table walker service (enqueue to completion) latency")
2209 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2210 ;
2211
2212 statPendingWalks
2213 .init(16)
2214 .name(name() + ".walksPending")
2215 .desc("Table walker pending requests distribution")
2216 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2217 ;
2218
2219 statPageSizes // see DDI 0487A D4-1661
2220 .init(9)
2221 .name(name() + ".walkPageSizes")
2222 .desc("Table walker page sizes translated")
2223 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2224 ;
2225 statPageSizes.subname(0, "4K");
2226 statPageSizes.subname(1, "16K");
2227 statPageSizes.subname(2, "64K");
2228 statPageSizes.subname(3, "1M");
2229 statPageSizes.subname(4, "2M");
2230 statPageSizes.subname(5, "16M");
2231 statPageSizes.subname(6, "32M");
2232 statPageSizes.subname(7, "512M");
2233 statPageSizes.subname(8, "1G");
2234
2235 statRequestOrigin
2236 .init(2,2) // Instruction/Data, requests/completed
2237 .name(name() + ".walkRequestOrigin")
2238 .desc("Table walker requests started/completed, data/inst")
2239 .flags(Stats::total)
2240 ;
2241 statRequestOrigin.subname(0,"Requested");
2242 statRequestOrigin.subname(1,"Completed");
2243 statRequestOrigin.ysubname(0,"Data");
2244 statRequestOrigin.ysubname(1,"Inst");
2245}
1404
1405 te.shareable = sh == 2;
1406 te.outerShareable = (sh & 0x2) ? true : false;
1407 // Attributes formatted according to the 64-bit PAR
1408 te.attributes = ((uint64_t) attr << 56) |
1409 (1 << 11) | // LPAE bit
1410 (te.ns << 9) | // NS bit
1411 (sh << 7);
1412 }
1413}
1414
1415void
1416TableWalker::doL1Descriptor()
1417{
1418 if (currState->fault != NoFault) {
1419 return;
1420 }
1421
1422 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1423 currState->vaddr_tainted, currState->l1Desc.data);
1424 TlbEntry te;
1425
1426 switch (currState->l1Desc.type()) {
1427 case L1Descriptor::Ignore:
1428 case L1Descriptor::Reserved:
1429 if (!currState->timing) {
1430 currState->tc = NULL;
1431 currState->req = NULL;
1432 }
1433 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1434 if (currState->isFetch)
1435 currState->fault =
1436 std::make_shared<PrefetchAbort>(
1437 currState->vaddr_tainted,
1438 ArmFault::TranslationLL + L1,
1439 isStage2,
1440 ArmFault::VmsaTran);
1441 else
1442 currState->fault =
1443 std::make_shared<DataAbort>(
1444 currState->vaddr_tainted,
1445 TlbEntry::DomainType::NoAccess,
1446 currState->isWrite,
1447 ArmFault::TranslationLL + L1, isStage2,
1448 ArmFault::VmsaTran);
1449 return;
1450 case L1Descriptor::Section:
1451 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1452 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1453 * enabled if set, do l1.Desc.setAp0() instead of generating
1454 * AccessFlag0
1455 */
1456
1457 currState->fault = std::make_shared<DataAbort>(
1458 currState->vaddr_tainted,
1459 currState->l1Desc.domain(),
1460 currState->isWrite,
1461 ArmFault::AccessFlagLL + L1,
1462 isStage2,
1463 ArmFault::VmsaTran);
1464 }
1465 if (currState->l1Desc.supersection()) {
1466 panic("Haven't implemented supersections\n");
1467 }
1468 insertTableEntry(currState->l1Desc, false);
1469 return;
1470 case L1Descriptor::PageTable:
1471 {
1472 Addr l2desc_addr;
1473 l2desc_addr = currState->l1Desc.l2Addr() |
1474 (bits(currState->vaddr, 19, 12) << 2);
1475 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1476 l2desc_addr, currState->isSecure ? "s" : "ns");
1477
1478 // Trickbox address check
1479 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1480 currState->l1Desc.domain(), L2);
1481
1482 if (currState->fault) {
1483 if (!currState->timing) {
1484 currState->tc = NULL;
1485 currState->req = NULL;
1486 }
1487 return;
1488 }
1489
1490 Request::Flags flag = Request::PT_WALK;
1491 if (currState->isSecure)
1492 flag.set(Request::SECURE);
1493
1494 bool delayed;
1495 delayed = fetchDescriptor(l2desc_addr,
1496 (uint8_t*)&currState->l2Desc.data,
1497 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1498 &TableWalker::doL2Descriptor);
1499 if (delayed) {
1500 currState->delayed = true;
1501 }
1502
1503 return;
1504 }
1505 default:
1506 panic("A new type in a 2 bit field?\n");
1507 }
1508}
1509
1510void
1511TableWalker::doLongDescriptor()
1512{
1513 if (currState->fault != NoFault) {
1514 return;
1515 }
1516
1517 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1518 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1519 currState->longDesc.data,
1520 currState->aarch64 ? "AArch64" : "long-desc.");
1521
1522 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1523 (currState->longDesc.type() == LongDescriptor::Page)) {
1524 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1525 "xn: %d, ap: %d, af: %d, type: %d\n",
1526 currState->longDesc.lookupLevel,
1527 currState->longDesc.data,
1528 currState->longDesc.pxn(),
1529 currState->longDesc.xn(),
1530 currState->longDesc.ap(),
1531 currState->longDesc.af(),
1532 currState->longDesc.type());
1533 } else {
1534 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1535 currState->longDesc.lookupLevel,
1536 currState->longDesc.data,
1537 currState->longDesc.type());
1538 }
1539
1540 TlbEntry te;
1541
1542 switch (currState->longDesc.type()) {
1543 case LongDescriptor::Invalid:
1544 if (!currState->timing) {
1545 currState->tc = NULL;
1546 currState->req = NULL;
1547 }
1548
1549 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1550 currState->longDesc.lookupLevel,
1551 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1552 if (currState->isFetch)
1553 currState->fault = std::make_shared<PrefetchAbort>(
1554 currState->vaddr_tainted,
1555 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1556 isStage2,
1557 ArmFault::LpaeTran);
1558 else
1559 currState->fault = std::make_shared<DataAbort>(
1560 currState->vaddr_tainted,
1561 TlbEntry::DomainType::NoAccess,
1562 currState->isWrite,
1563 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1564 isStage2,
1565 ArmFault::LpaeTran);
1566 return;
1567 case LongDescriptor::Block:
1568 case LongDescriptor::Page:
1569 {
1570 bool fault = false;
1571 bool aff = false;
1572 // Check for address size fault
1573 if (checkAddrSizeFaultAArch64(
1574 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1575 currState->longDesc.offsetBits()),
1576 currState->physAddrRange)) {
1577 fault = true;
1578 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1579 currState->longDesc.lookupLevel);
1580 // Check for access fault
1581 } else if (currState->longDesc.af() == 0) {
1582 fault = true;
1583 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1584 currState->longDesc.lookupLevel);
1585 aff = true;
1586 }
1587 if (fault) {
1588 if (currState->isFetch)
1589 currState->fault = std::make_shared<PrefetchAbort>(
1590 currState->vaddr_tainted,
1591 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1592 currState->longDesc.lookupLevel,
1593 isStage2,
1594 ArmFault::LpaeTran);
1595 else
1596 currState->fault = std::make_shared<DataAbort>(
1597 currState->vaddr_tainted,
1598 TlbEntry::DomainType::NoAccess, currState->isWrite,
1599 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1600 currState->longDesc.lookupLevel,
1601 isStage2,
1602 ArmFault::LpaeTran);
1603 } else {
1604 insertTableEntry(currState->longDesc, true);
1605 }
1606 }
1607 return;
1608 case LongDescriptor::Table:
1609 {
1610 // Set hierarchical permission flags
1611 currState->secureLookup = currState->secureLookup &&
1612 currState->longDesc.secureTable();
1613 currState->rwTable = currState->rwTable &&
1614 currState->longDesc.rwTable();
1615 currState->userTable = currState->userTable &&
1616 currState->longDesc.userTable();
1617 currState->xnTable = currState->xnTable ||
1618 currState->longDesc.xnTable();
1619 currState->pxnTable = currState->pxnTable ||
1620 currState->longDesc.pxnTable();
1621
1622 // Set up next level lookup
1623 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1624 currState->vaddr);
1625
1626 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1627 currState->longDesc.lookupLevel,
1628 currState->longDesc.lookupLevel + 1,
1629 next_desc_addr,
1630 currState->secureLookup ? "s" : "ns");
1631
1632 // Check for address size fault
1633 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1634 next_desc_addr, currState->physAddrRange)) {
1635 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1636 currState->longDesc.lookupLevel);
1637 if (currState->isFetch)
1638 currState->fault = std::make_shared<PrefetchAbort>(
1639 currState->vaddr_tainted,
1640 ArmFault::AddressSizeLL
1641 + currState->longDesc.lookupLevel,
1642 isStage2,
1643 ArmFault::LpaeTran);
1644 else
1645 currState->fault = std::make_shared<DataAbort>(
1646 currState->vaddr_tainted,
1647 TlbEntry::DomainType::NoAccess, currState->isWrite,
1648 ArmFault::AddressSizeLL
1649 + currState->longDesc.lookupLevel,
1650 isStage2,
1651 ArmFault::LpaeTran);
1652 return;
1653 }
1654
1655 // Trickbox address check
1656 currState->fault = testWalk(
1657 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1658 toLookupLevel(currState->longDesc.lookupLevel +1));
1659
1660 if (currState->fault) {
1661 if (!currState->timing) {
1662 currState->tc = NULL;
1663 currState->req = NULL;
1664 }
1665 return;
1666 }
1667
1668 Request::Flags flag = Request::PT_WALK;
1669 if (currState->secureLookup)
1670 flag.set(Request::SECURE);
1671
1672 LookupLevel L = currState->longDesc.lookupLevel =
1673 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1674 Event *event = NULL;
1675 switch (L) {
1676 case L1:
1677 assert(currState->aarch64);
1678 case L2:
1679 case L3:
1680 event = LongDescEventByLevel[L];
1681 break;
1682 default:
1683 panic("Wrong lookup level in table walk\n");
1684 break;
1685 }
1686
1687 bool delayed;
1688 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1689 sizeof(uint64_t), flag, -1, event,
1690 &TableWalker::doLongDescriptor);
1691 if (delayed) {
1692 currState->delayed = true;
1693 }
1694 }
1695 return;
1696 default:
1697 panic("A new type in a 2 bit field?\n");
1698 }
1699}
1700
1701void
1702TableWalker::doL2Descriptor()
1703{
1704 if (currState->fault != NoFault) {
1705 return;
1706 }
1707
1708 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1709 currState->vaddr_tainted, currState->l2Desc.data);
1710 TlbEntry te;
1711
1712 if (currState->l2Desc.invalid()) {
1713 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1714 if (!currState->timing) {
1715 currState->tc = NULL;
1716 currState->req = NULL;
1717 }
1718 if (currState->isFetch)
1719 currState->fault = std::make_shared<PrefetchAbort>(
1720 currState->vaddr_tainted,
1721 ArmFault::TranslationLL + L2,
1722 isStage2,
1723 ArmFault::VmsaTran);
1724 else
1725 currState->fault = std::make_shared<DataAbort>(
1726 currState->vaddr_tainted, currState->l1Desc.domain(),
1727 currState->isWrite, ArmFault::TranslationLL + L2,
1728 isStage2,
1729 ArmFault::VmsaTran);
1730 return;
1731 }
1732
1733 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1734 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1735 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1736 */
1737 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1738 currState->sctlr.afe, currState->l2Desc.ap());
1739
1740 currState->fault = std::make_shared<DataAbort>(
1741 currState->vaddr_tainted,
1742 TlbEntry::DomainType::NoAccess, currState->isWrite,
1743 ArmFault::AccessFlagLL + L2, isStage2,
1744 ArmFault::VmsaTran);
1745 }
1746
1747 insertTableEntry(currState->l2Desc, false);
1748}
1749
1750void
1751TableWalker::doL1DescriptorWrapper()
1752{
1753 currState = stateQueues[L1].front();
1754 currState->delayed = false;
1755 // if there's a stage2 translation object we don't need it any more
1756 if (currState->stage2Tran) {
1757 delete currState->stage2Tran;
1758 currState->stage2Tran = NULL;
1759 }
1760
1761
1762 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1763 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1764
1765 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1766 doL1Descriptor();
1767
1768 stateQueues[L1].pop_front();
1769 // Check if fault was generated
1770 if (currState->fault != NoFault) {
1771 currState->transState->finish(currState->fault, currState->req,
1772 currState->tc, currState->mode);
1773 statWalksShortTerminatedAtLevel[0]++;
1774
1775 pending = false;
1776 nextWalk(currState->tc);
1777
1778 currState->req = NULL;
1779 currState->tc = NULL;
1780 currState->delayed = false;
1781 delete currState;
1782 }
1783 else if (!currState->delayed) {
1784 // delay is not set so there is no L2 to do
1785 // Don't finish the translation if a stage 2 look up is underway
1786 if (!currState->doingStage2) {
1787 statWalkServiceTime.sample(curTick() - currState->startTime);
1788 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1789 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1790 currState->transState, currState->mode);
1791 statWalksShortTerminatedAtLevel[0]++;
1792 }
1793
1794 pending = false;
1795 nextWalk(currState->tc);
1796
1797 currState->req = NULL;
1798 currState->tc = NULL;
1799 currState->delayed = false;
1800 delete currState;
1801 } else {
1802 // need to do L2 descriptor
1803 stateQueues[L2].push_back(currState);
1804 }
1805 currState = NULL;
1806}
1807
1808void
1809TableWalker::doL2DescriptorWrapper()
1810{
1811 currState = stateQueues[L2].front();
1812 assert(currState->delayed);
1813 // if there's a stage2 translation object we don't need it any more
1814 if (currState->stage2Tran) {
1815 delete currState->stage2Tran;
1816 currState->stage2Tran = NULL;
1817 }
1818
1819 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1820 currState->vaddr_tainted);
1821 doL2Descriptor();
1822
1823 // Check if fault was generated
1824 if (currState->fault != NoFault) {
1825 currState->transState->finish(currState->fault, currState->req,
1826 currState->tc, currState->mode);
1827 statWalksShortTerminatedAtLevel[1]++;
1828 }
1829 else {
1830 // Don't finish the translation if a stage 2 look up is underway
1831 if (!currState->doingStage2) {
1832 statWalkServiceTime.sample(curTick() - currState->startTime);
1833 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1834 currState->fault = tlb->translateTiming(currState->req,
1835 currState->tc, currState->transState, currState->mode);
1836 statWalksShortTerminatedAtLevel[1]++;
1837 }
1838 }
1839
1840
1841 stateQueues[L2].pop_front();
1842 pending = false;
1843 nextWalk(currState->tc);
1844
1845 currState->req = NULL;
1846 currState->tc = NULL;
1847 currState->delayed = false;
1848
1849 delete currState;
1850 currState = NULL;
1851}
1852
1853void
1854TableWalker::doL0LongDescriptorWrapper()
1855{
1856 doLongDescriptorWrapper(L0);
1857}
1858
1859void
1860TableWalker::doL1LongDescriptorWrapper()
1861{
1862 doLongDescriptorWrapper(L1);
1863}
1864
1865void
1866TableWalker::doL2LongDescriptorWrapper()
1867{
1868 doLongDescriptorWrapper(L2);
1869}
1870
1871void
1872TableWalker::doL3LongDescriptorWrapper()
1873{
1874 doLongDescriptorWrapper(L3);
1875}
1876
1877void
1878TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1879{
1880 currState = stateQueues[curr_lookup_level].front();
1881 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1882 currState->delayed = false;
1883
1884 // if there's a stage2 translation object we don't need it any more
1885 if (currState->stage2Tran) {
1886 delete currState->stage2Tran;
1887 currState->stage2Tran = NULL;
1888 }
1889
1890 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1891 currState->vaddr_tainted);
1892 doLongDescriptor();
1893
1894 stateQueues[curr_lookup_level].pop_front();
1895
1896 if (currState->fault != NoFault) {
1897 // A fault was generated
1898 currState->transState->finish(currState->fault, currState->req,
1899 currState->tc, currState->mode);
1900
1901 pending = false;
1902 nextWalk(currState->tc);
1903
1904 currState->req = NULL;
1905 currState->tc = NULL;
1906 currState->delayed = false;
1907 delete currState;
1908 } else if (!currState->delayed) {
1909 // No additional lookups required
1910 // Don't finish the translation if a stage 2 look up is underway
1911 if (!currState->doingStage2) {
1912 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1913 statWalkServiceTime.sample(curTick() - currState->startTime);
1914 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1915 currState->transState,
1916 currState->mode);
1917 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1918 }
1919
1920 pending = false;
1921 nextWalk(currState->tc);
1922
1923 currState->req = NULL;
1924 currState->tc = NULL;
1925 currState->delayed = false;
1926 delete currState;
1927 } else {
1928 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1929 panic("Max. number of lookups already reached in table walk\n");
1930 // Need to perform additional lookups
1931 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1932 }
1933 currState = NULL;
1934}
1935
1936
1937void
1938TableWalker::nextWalk(ThreadContext *tc)
1939{
1940 if (pendingQueue.size())
1941 schedule(doProcessEvent, clockEdge(Cycles(1)));
1942 else
1943 completeDrain();
1944}
1945
1946bool
1947TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1948 Request::Flags flags, int queueIndex, Event *event,
1949 void (TableWalker::*doDescriptor)())
1950{
1951 bool isTiming = currState->timing;
1952
1953 DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1954 descAddr, currState->stage2Req);
1955
1956 // If this translation has a stage 2 then we know descAddr is an IPA and
1957 // needs to be translated before we can access the page table. Do that
1958 // check here.
1959 if (currState->stage2Req) {
1960 Fault fault;
1961 flags = flags | TLB::MustBeOne;
1962
1963 if (isTiming) {
1964 Stage2MMU::Stage2Translation *tran = new
1965 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1966 currState->vaddr);
1967 currState->stage2Tran = tran;
1968 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1969 flags);
1970 fault = tran->fault;
1971 } else {
1972 fault = stage2Mmu->readDataUntimed(currState->tc,
1973 currState->vaddr, descAddr, data, numBytes, flags,
1974 currState->functional);
1975 }
1976
1977 if (fault != NoFault) {
1978 currState->fault = fault;
1979 }
1980 if (isTiming) {
1981 if (queueIndex >= 0) {
1982 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1983 stateQueues[queueIndex].size());
1984 stateQueues[queueIndex].push_back(currState);
1985 currState = NULL;
1986 }
1987 } else {
1988 (this->*doDescriptor)();
1989 }
1990 } else {
1991 if (isTiming) {
1992 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1993 currState->tc->getCpuPtr()->clockPeriod(),flags);
1994 if (queueIndex >= 0) {
1995 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1996 stateQueues[queueIndex].size());
1997 stateQueues[queueIndex].push_back(currState);
1998 currState = NULL;
1999 }
2000 } else if (!currState->functional) {
2001 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
2002 currState->tc->getCpuPtr()->clockPeriod(), flags);
2003 (this->*doDescriptor)();
2004 } else {
2005 RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
2006 req->taskId(ContextSwitchTaskId::DMA);
2007 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
2008 pkt->dataStatic(data);
2009 port->sendFunctional(pkt);
2010 (this->*doDescriptor)();
2011 delete req;
2012 delete pkt;
2013 }
2014 }
2015 return (isTiming);
2016}
2017
2018void
2019TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2020{
2021 TlbEntry te;
2022
2023 // Create and fill a new page table entry
2024 te.valid = true;
2025 te.longDescFormat = longDescriptor;
2026 te.isHyp = currState->isHyp;
2027 te.asid = currState->asid;
2028 te.vmid = currState->vmid;
2029 te.N = descriptor.offsetBits();
2030 te.vpn = currState->vaddr >> te.N;
2031 te.size = (1<<te.N) - 1;
2032 te.pfn = descriptor.pfn();
2033 te.domain = descriptor.domain();
2034 te.lookupLevel = descriptor.lookupLevel;
2035 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
2036 te.nstid = !currState->isSecure;
2037 te.xn = descriptor.xn();
2038 if (currState->aarch64)
2039 te.el = currState->el;
2040 else
2041 te.el = 1;
2042
2043 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2044 statRequestOrigin[COMPLETED][currState->isFetch]++;
2045
2046 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2047 // as global
2048 te.global = descriptor.global(currState) || isStage2;
2049 if (longDescriptor) {
2050 LongDescriptor lDescriptor =
2051 dynamic_cast<LongDescriptor &>(descriptor);
2052
2053 te.xn |= currState->xnTable;
2054 te.pxn = currState->pxnTable || lDescriptor.pxn();
2055 if (isStage2) {
2056 // this is actually the HAP field, but its stored in the same bit
2057 // possitions as the AP field in a stage 1 translation.
2058 te.hap = lDescriptor.ap();
2059 } else {
2060 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2061 (currState->userTable && (descriptor.ap() & 0x1));
2062 }
2063 if (currState->aarch64)
2064 memAttrsAArch64(currState->tc, te, lDescriptor);
2065 else
2066 memAttrsLPAE(currState->tc, te, lDescriptor);
2067 } else {
2068 te.ap = descriptor.ap();
2069 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2070 descriptor.shareable());
2071 }
2072
2073 // Debug output
2074 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2075 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2076 te.N, te.pfn, te.size, te.global, te.valid);
2077 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2078 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2079 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2080 te.nonCacheable, te.ns);
2081 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2082 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2083 descriptor.getRawData());
2084
2085 // Insert the entry into the TLB
2086 tlb->insert(currState->vaddr, te);
2087 if (!currState->timing) {
2088 currState->tc = NULL;
2089 currState->req = NULL;
2090 }
2091}
2092
2093ArmISA::TableWalker *
2094ArmTableWalkerParams::create()
2095{
2096 return new ArmISA::TableWalker(this);
2097}
2098
2099LookupLevel
2100TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2101{
2102 switch (lookup_level_as_int) {
2103 case L1:
2104 return L1;
2105 case L2:
2106 return L2;
2107 case L3:
2108 return L3;
2109 default:
2110 panic("Invalid lookup level conversion");
2111 }
2112}
2113
2114/* this method keeps track of the table walker queue's residency, so
2115 * needs to be called whenever requests start and complete. */
2116void
2117TableWalker::pendingChange()
2118{
2119 unsigned n = pendingQueue.size();
2120 if ((currState != NULL) && (currState != pendingQueue.front())) {
2121 ++n;
2122 }
2123
2124 if (n != pendingReqs) {
2125 Tick now = curTick();
2126 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2127 pendingReqs = n;
2128 pendingChangeTick = now;
2129 }
2130}
2131
2132Fault
2133TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2134 LookupLevel lookup_level)
2135{
2136 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2137 currState->mode, domain, lookup_level);
2138}
2139
2140
2141uint8_t
2142TableWalker::pageSizeNtoStatBin(uint8_t N)
2143{
2144 /* for statPageSizes */
2145 switch(N) {
2146 case 12: return 0; // 4K
2147 case 14: return 1; // 16K (using 16K granule in v8-64)
2148 case 16: return 2; // 64K
2149 case 20: return 3; // 1M
2150 case 21: return 4; // 2M-LPAE
2151 case 24: return 5; // 16M
2152 case 25: return 6; // 32M (using 16K granule in v8-64)
2153 case 29: return 7; // 512M (using 64K granule in v8-64)
2154 case 30: return 8; // 1G-LPAE
2155 default:
2156 panic("unknown page size");
2157 return 255;
2158 }
2159}
2160
2161void
2162TableWalker::regStats()
2163{
2164 ClockedObject::regStats();
2165
2166 statWalks
2167 .name(name() + ".walks")
2168 .desc("Table walker walks requested")
2169 ;
2170
2171 statWalksShortDescriptor
2172 .name(name() + ".walksShort")
2173 .desc("Table walker walks initiated with short descriptors")
2174 .flags(Stats::nozero)
2175 ;
2176
2177 statWalksLongDescriptor
2178 .name(name() + ".walksLong")
2179 .desc("Table walker walks initiated with long descriptors")
2180 .flags(Stats::nozero)
2181 ;
2182
2183 statWalksShortTerminatedAtLevel
2184 .init(2)
2185 .name(name() + ".walksShortTerminationLevel")
2186 .desc("Level at which table walker walks "
2187 "with short descriptors terminate")
2188 .flags(Stats::nozero)
2189 ;
2190 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2191 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2192
2193 statWalksLongTerminatedAtLevel
2194 .init(4)
2195 .name(name() + ".walksLongTerminationLevel")
2196 .desc("Level at which table walker walks "
2197 "with long descriptors terminate")
2198 .flags(Stats::nozero)
2199 ;
2200 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2201 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2202 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2203 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2204
2205 statSquashedBefore
2206 .name(name() + ".walksSquashedBefore")
2207 .desc("Table walks squashed before starting")
2208 .flags(Stats::nozero)
2209 ;
2210
2211 statSquashedAfter
2212 .name(name() + ".walksSquashedAfter")
2213 .desc("Table walks squashed after completion")
2214 .flags(Stats::nozero)
2215 ;
2216
2217 statWalkWaitTime
2218 .init(16)
2219 .name(name() + ".walkWaitTime")
2220 .desc("Table walker wait (enqueue to first request) latency")
2221 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2222 ;
2223
2224 statWalkServiceTime
2225 .init(16)
2226 .name(name() + ".walkCompletionTime")
2227 .desc("Table walker service (enqueue to completion) latency")
2228 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2229 ;
2230
2231 statPendingWalks
2232 .init(16)
2233 .name(name() + ".walksPending")
2234 .desc("Table walker pending requests distribution")
2235 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2236 ;
2237
2238 statPageSizes // see DDI 0487A D4-1661
2239 .init(9)
2240 .name(name() + ".walkPageSizes")
2241 .desc("Table walker page sizes translated")
2242 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2243 ;
2244 statPageSizes.subname(0, "4K");
2245 statPageSizes.subname(1, "16K");
2246 statPageSizes.subname(2, "64K");
2247 statPageSizes.subname(3, "1M");
2248 statPageSizes.subname(4, "2M");
2249 statPageSizes.subname(5, "16M");
2250 statPageSizes.subname(6, "32M");
2251 statPageSizes.subname(7, "512M");
2252 statPageSizes.subname(8, "1G");
2253
2254 statRequestOrigin
2255 .init(2,2) // Instruction/Data, requests/completed
2256 .name(name() + ".walkRequestOrigin")
2257 .desc("Table walker requests started/completed, data/inst")
2258 .flags(Stats::total)
2259 ;
2260 statRequestOrigin.subname(0,"Requested");
2261 statRequestOrigin.subname(1,"Completed");
2262 statRequestOrigin.ysubname(0,"Data");
2263 statRequestOrigin.ysubname(1,"Inst");
2264}