table_walker.cc (11181:4daf60db14d7) table_walker.cc (11395:032bc62120eb)
1/*
2 * Copyright (c) 2010, 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : MemObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent(this), doL2DescEvent(this),
68 doL0LongDescEvent(this), doL1LongDescEvent(this), doL2LongDescEvent(this),
69 doL3LongDescEvent(this),
70 doProcessEvent(this)
71{
72 sctlr = 0;
73
74 // Cache system-level properties
75 if (FullSystem) {
76 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
77 assert(armSys);
78 haveSecurity = armSys->haveSecurity();
79 _haveLPAE = armSys->haveLPAE();
80 _haveVirtualization = armSys->haveVirtualization();
81 physAddrRange = armSys->physAddrRange();
82 _haveLargeAsid64 = armSys->haveLargeAsid64();
83 } else {
84 haveSecurity = _haveLPAE = _haveVirtualization = false;
85 _haveLargeAsid64 = false;
86 physAddrRange = 32;
87 }
88
89}
90
91TableWalker::~TableWalker()
92{
93 ;
94}
95
96void
97TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
98{
99 stage2Mmu = m;
100 port = &m->getPort();
101 masterId = master_id;
102}
103
104void
105TableWalker::init()
106{
107 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
108 fatal_if(!port, "Table walker must have a valid port\n");
109 fatal_if(!tlb, "Table walker must have a valid TLB\n");
110}
111
112BaseMasterPort&
113TableWalker::getMasterPort(const std::string &if_name, PortID idx)
114{
115 if (if_name == "port") {
116 if (!isStage2) {
117 return *port;
118 } else {
119 fatal("Cannot access table walker port through stage-two walker\n");
120 }
121 }
122 return MemObject::getMasterPort(if_name, idx);
123}
124
125TableWalker::WalkerState::WalkerState() :
126 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
127 asid(0), vmid(0), isHyp(false), transState(nullptr),
128 vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
129 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
130 pxnTable(false), stage2Req(false), doingStage2(false),
131 stage2Tran(nullptr), timing(false), functional(false),
132 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
133 delayed(false), tableWalker(nullptr)
134{
135}
136
137void
138TableWalker::completeDrain()
139{
140 if (drainState() == DrainState::Draining &&
141 stateQueues[L1].empty() && stateQueues[L2].empty() &&
142 pendingQueue.empty()) {
143
144 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
145 signalDrainDone();
146 }
147}
148
149DrainState
150TableWalker::drain()
151{
152 bool state_queues_not_empty = false;
153
154 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
155 if (!stateQueues[i].empty()) {
156 state_queues_not_empty = true;
157 break;
158 }
159 }
160
161 if (state_queues_not_empty || pendingQueue.size()) {
162 DPRINTF(Drain, "TableWalker not drained\n");
163 return DrainState::Draining;
164 } else {
165 DPRINTF(Drain, "TableWalker free, no need to drain\n");
166 return DrainState::Drained;
167 }
168}
169
170void
171TableWalker::drainResume()
172{
173 if (params()->sys->isTimingMode() && currState) {
174 delete currState;
175 currState = NULL;
176 pendingChange();
177 }
178}
179
180Fault
181TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
182 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
183 TLB::Translation *_trans, bool _timing, bool _functional,
184 bool secure, TLB::ArmTranslationType tranType)
185{
186 assert(!(_functional && _timing));
187 ++statWalks;
188
189 WalkerState *savedCurrState = NULL;
190
191 if (!currState && !_functional) {
192 // For atomic mode, a new WalkerState instance should be only created
193 // once per TLB. For timing mode, a new instance is generated for every
194 // TLB miss.
195 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
196
197 currState = new WalkerState();
198 currState->tableWalker = this;
199 } else if (_functional) {
200 // If we are mixing functional mode with timing (or even
201 // atomic), we need to to be careful and clean up after
202 // ourselves to not risk getting into an inconsistent state.
203 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
204 savedCurrState = currState;
205 currState = new WalkerState();
206 currState->tableWalker = this;
207 } else if (_timing) {
208 // This is a translation that was completed and then faulted again
209 // because some underlying parameters that affect the translation
210 // changed out from under us (e.g. asid). It will either be a
211 // misprediction, in which case nothing will happen or we'll use
212 // this fault to re-execute the faulting instruction which should clean
213 // up everything.
214 if (currState->vaddr_tainted == _req->getVaddr()) {
215 ++statSquashedBefore;
216 return std::make_shared<ReExec>();
217 }
218 }
219 pendingChange();
220
221 currState->startTime = curTick();
222 currState->tc = _tc;
223 currState->aarch64 = opModeIs64(currOpMode(_tc));
224 currState->el = currEL(_tc);
225 currState->transState = _trans;
226 currState->req = _req;
227 currState->fault = NoFault;
228 currState->asid = _asid;
229 currState->vmid = _vmid;
230 currState->isHyp = _isHyp;
231 currState->timing = _timing;
232 currState->functional = _functional;
233 currState->mode = _mode;
234 currState->tranType = tranType;
235 currState->isSecure = secure;
236 currState->physAddrRange = physAddrRange;
237
238 /** @todo These should be cached or grabbed from cached copies in
239 the TLB, all these miscreg reads are expensive */
240 currState->vaddr_tainted = currState->req->getVaddr();
241 if (currState->aarch64)
242 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
243 currState->tc, currState->el);
244 else
245 currState->vaddr = currState->vaddr_tainted;
246
247 if (currState->aarch64) {
248 switch (currState->el) {
249 case EL0:
250 case EL1:
251 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
252 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
253 break;
254 // @todo: uncomment this to enable Virtualization
255 // case EL2:
256 // assert(haveVirtualization);
257 // currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
258 // currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
259 // break;
260 case EL3:
261 assert(haveSecurity);
262 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
263 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
264 break;
265 default:
266 panic("Invalid exception level");
267 break;
268 }
269 } else {
270 currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
271 MISCREG_SCTLR, currState->tc, !currState->isSecure));
272 currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
273 MISCREG_TTBCR, currState->tc, !currState->isSecure));
274 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
275 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
276 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
277 }
278 sctlr = currState->sctlr;
279
280 currState->isFetch = (currState->mode == TLB::Execute);
281 currState->isWrite = (currState->mode == TLB::Write);
282
283 statRequestOrigin[REQUESTED][currState->isFetch]++;
284
285 // We only do a second stage of translation if we're not secure, or in
286 // hyp mode, the second stage MMU is enabled, and this table walker
287 // instance is the first stage.
288 currState->doingStage2 = false;
289 // @todo: for now disable this in AArch64 (HCR is not set)
290 currState->stage2Req = !currState->aarch64 && currState->hcr.vm &&
291 !isStage2 && !currState->isSecure && !currState->isHyp;
292
293 bool long_desc_format = currState->aarch64 ||
294 (_haveLPAE && currState->ttbcr.eae) ||
295 _isHyp || isStage2;
296
297 if (long_desc_format) {
298 // Helper variables used for hierarchical permissions
299 currState->secureLookup = currState->isSecure;
300 currState->rwTable = true;
301 currState->userTable = true;
302 currState->xnTable = false;
303 currState->pxnTable = false;
304
305 ++statWalksLongDescriptor;
306 } else {
307 ++statWalksShortDescriptor;
308 }
309
310 if (!currState->timing) {
311 Fault fault = NoFault;
312 if (currState->aarch64)
313 fault = processWalkAArch64();
314 else if (long_desc_format)
315 fault = processWalkLPAE();
316 else
317 fault = processWalk();
318
319 // If this was a functional non-timing access restore state to
320 // how we found it.
321 if (currState->functional) {
322 delete currState;
323 currState = savedCurrState;
324 }
325 return fault;
326 }
327
328 if (pending || pendingQueue.size()) {
329 pendingQueue.push_back(currState);
330 currState = NULL;
331 pendingChange();
332 } else {
333 pending = true;
334 pendingChange();
335 if (currState->aarch64)
336 return processWalkAArch64();
337 else if (long_desc_format)
338 return processWalkLPAE();
339 else
340 return processWalk();
341 }
342
343 return NoFault;
344}
345
346void
347TableWalker::processWalkWrapper()
348{
349 assert(!currState);
350 assert(pendingQueue.size());
351 pendingChange();
352 currState = pendingQueue.front();
353
354 ExceptionLevel target_el = EL0;
355 if (currState->aarch64)
356 target_el = currEL(currState->tc);
357 else
358 target_el = EL1;
359
360 // Check if a previous walk filled this request already
361 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
362 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
363 currState->vmid, currState->isHyp, currState->isSecure, true, false,
364 target_el);
365
366 // Check if we still need to have a walk for this request. If the requesting
367 // instruction has been squashed, or a previous walk has filled the TLB with
368 // a match, we just want to get rid of the walk. The latter could happen
369 // when there are multiple outstanding misses to a single page and a
370 // previous request has been successfully translated.
371 if (!currState->transState->squashed() && !te) {
372 // We've got a valid request, lets process it
373 pending = true;
374 pendingQueue.pop_front();
375 // Keep currState in case one of the processWalk... calls NULLs it
376 WalkerState *curr_state_copy = currState;
377 Fault f;
378 if (currState->aarch64)
379 f = processWalkAArch64();
380 else if ((_haveLPAE && currState->ttbcr.eae) || currState->isHyp || isStage2)
381 f = processWalkLPAE();
382 else
383 f = processWalk();
384
385 if (f != NoFault) {
386 curr_state_copy->transState->finish(f, curr_state_copy->req,
387 curr_state_copy->tc, curr_state_copy->mode);
388
389 delete curr_state_copy;
390 }
391 return;
392 }
393
394
395 // If the instruction that we were translating for has been
396 // squashed we shouldn't bother.
397 unsigned num_squashed = 0;
398 ThreadContext *tc = currState->tc;
399 while ((num_squashed < numSquashable) && currState &&
400 (currState->transState->squashed() || te)) {
401 pendingQueue.pop_front();
402 num_squashed++;
403 statSquashedBefore++;
404
405 DPRINTF(TLB, "Squashing table walk for address %#x\n",
406 currState->vaddr_tainted);
407
408 if (currState->transState->squashed()) {
409 // finish the translation which will delete the translation object
410 currState->transState->finish(
411 std::make_shared<UnimpFault>("Squashed Inst"),
412 currState->req, currState->tc, currState->mode);
413 } else {
414 // translate the request now that we know it will work
415 statWalkServiceTime.sample(curTick() - currState->startTime);
416 tlb->translateTiming(currState->req, currState->tc,
417 currState->transState, currState->mode);
418
419 }
420
421 // delete the current request
422 delete currState;
423
424 // peak at the next one
425 if (pendingQueue.size()) {
426 currState = pendingQueue.front();
427 te = tlb->lookup(currState->vaddr, currState->asid,
428 currState->vmid, currState->isHyp, currState->isSecure, true,
429 false, target_el);
430 } else {
431 // Terminate the loop, nothing more to do
432 currState = NULL;
433 }
434 }
435 pendingChange();
436
437 // if we still have pending translations, schedule more work
438 nextWalk(tc);
439 currState = NULL;
440}
441
442Fault
443TableWalker::processWalk()
444{
445 Addr ttbr = 0;
446
447 // If translation isn't enabled, we shouldn't be here
448 assert(currState->sctlr.m || isStage2);
449
450 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
451 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
452 32 - currState->ttbcr.n));
453
454 statWalkWaitTime.sample(curTick() - currState->startTime);
455
456 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
457 32 - currState->ttbcr.n)) {
458 DPRINTF(TLB, " - Selecting TTBR0\n");
459 // Check if table walk is allowed when Security Extensions are enabled
460 if (haveSecurity && currState->ttbcr.pd0) {
461 if (currState->isFetch)
462 return std::make_shared<PrefetchAbort>(
463 currState->vaddr_tainted,
464 ArmFault::TranslationLL + L1,
465 isStage2,
466 ArmFault::VmsaTran);
467 else
468 return std::make_shared<DataAbort>(
469 currState->vaddr_tainted,
470 TlbEntry::DomainType::NoAccess, currState->isWrite,
471 ArmFault::TranslationLL + L1, isStage2,
472 ArmFault::VmsaTran);
473 }
474 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
475 MISCREG_TTBR0, currState->tc, !currState->isSecure));
476 } else {
477 DPRINTF(TLB, " - Selecting TTBR1\n");
478 // Check if table walk is allowed when Security Extensions are enabled
479 if (haveSecurity && currState->ttbcr.pd1) {
480 if (currState->isFetch)
481 return std::make_shared<PrefetchAbort>(
482 currState->vaddr_tainted,
483 ArmFault::TranslationLL + L1,
484 isStage2,
485 ArmFault::VmsaTran);
486 else
487 return std::make_shared<DataAbort>(
488 currState->vaddr_tainted,
489 TlbEntry::DomainType::NoAccess, currState->isWrite,
490 ArmFault::TranslationLL + L1, isStage2,
491 ArmFault::VmsaTran);
492 }
493 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
494 MISCREG_TTBR1, currState->tc, !currState->isSecure));
495 currState->ttbcr.n = 0;
496 }
497
498 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
499 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
500 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
501 currState->isSecure ? "s" : "ns");
502
503 // Trickbox address check
504 Fault f;
1/*
2 * Copyright (c) 2010, 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 * Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60 : MemObject(p),
61 stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62 isStage2(p->is_stage2), tlb(NULL),
63 currState(NULL), pending(false),
64 numSquashable(p->num_squash_per_cycle),
65 pendingReqs(0),
66 pendingChangeTick(curTick()),
67 doL1DescEvent(this), doL2DescEvent(this),
68 doL0LongDescEvent(this), doL1LongDescEvent(this), doL2LongDescEvent(this),
69 doL3LongDescEvent(this),
70 doProcessEvent(this)
71{
72 sctlr = 0;
73
74 // Cache system-level properties
75 if (FullSystem) {
76 ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
77 assert(armSys);
78 haveSecurity = armSys->haveSecurity();
79 _haveLPAE = armSys->haveLPAE();
80 _haveVirtualization = armSys->haveVirtualization();
81 physAddrRange = armSys->physAddrRange();
82 _haveLargeAsid64 = armSys->haveLargeAsid64();
83 } else {
84 haveSecurity = _haveLPAE = _haveVirtualization = false;
85 _haveLargeAsid64 = false;
86 physAddrRange = 32;
87 }
88
89}
90
91TableWalker::~TableWalker()
92{
93 ;
94}
95
96void
97TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
98{
99 stage2Mmu = m;
100 port = &m->getPort();
101 masterId = master_id;
102}
103
104void
105TableWalker::init()
106{
107 fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
108 fatal_if(!port, "Table walker must have a valid port\n");
109 fatal_if(!tlb, "Table walker must have a valid TLB\n");
110}
111
112BaseMasterPort&
113TableWalker::getMasterPort(const std::string &if_name, PortID idx)
114{
115 if (if_name == "port") {
116 if (!isStage2) {
117 return *port;
118 } else {
119 fatal("Cannot access table walker port through stage-two walker\n");
120 }
121 }
122 return MemObject::getMasterPort(if_name, idx);
123}
124
125TableWalker::WalkerState::WalkerState() :
126 tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
127 asid(0), vmid(0), isHyp(false), transState(nullptr),
128 vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
129 secureLookup(false), rwTable(false), userTable(false), xnTable(false),
130 pxnTable(false), stage2Req(false), doingStage2(false),
131 stage2Tran(nullptr), timing(false), functional(false),
132 mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
133 delayed(false), tableWalker(nullptr)
134{
135}
136
137void
138TableWalker::completeDrain()
139{
140 if (drainState() == DrainState::Draining &&
141 stateQueues[L1].empty() && stateQueues[L2].empty() &&
142 pendingQueue.empty()) {
143
144 DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
145 signalDrainDone();
146 }
147}
148
149DrainState
150TableWalker::drain()
151{
152 bool state_queues_not_empty = false;
153
154 for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
155 if (!stateQueues[i].empty()) {
156 state_queues_not_empty = true;
157 break;
158 }
159 }
160
161 if (state_queues_not_empty || pendingQueue.size()) {
162 DPRINTF(Drain, "TableWalker not drained\n");
163 return DrainState::Draining;
164 } else {
165 DPRINTF(Drain, "TableWalker free, no need to drain\n");
166 return DrainState::Drained;
167 }
168}
169
170void
171TableWalker::drainResume()
172{
173 if (params()->sys->isTimingMode() && currState) {
174 delete currState;
175 currState = NULL;
176 pendingChange();
177 }
178}
179
180Fault
181TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
182 uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
183 TLB::Translation *_trans, bool _timing, bool _functional,
184 bool secure, TLB::ArmTranslationType tranType)
185{
186 assert(!(_functional && _timing));
187 ++statWalks;
188
189 WalkerState *savedCurrState = NULL;
190
191 if (!currState && !_functional) {
192 // For atomic mode, a new WalkerState instance should be only created
193 // once per TLB. For timing mode, a new instance is generated for every
194 // TLB miss.
195 DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
196
197 currState = new WalkerState();
198 currState->tableWalker = this;
199 } else if (_functional) {
200 // If we are mixing functional mode with timing (or even
201 // atomic), we need to to be careful and clean up after
202 // ourselves to not risk getting into an inconsistent state.
203 DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
204 savedCurrState = currState;
205 currState = new WalkerState();
206 currState->tableWalker = this;
207 } else if (_timing) {
208 // This is a translation that was completed and then faulted again
209 // because some underlying parameters that affect the translation
210 // changed out from under us (e.g. asid). It will either be a
211 // misprediction, in which case nothing will happen or we'll use
212 // this fault to re-execute the faulting instruction which should clean
213 // up everything.
214 if (currState->vaddr_tainted == _req->getVaddr()) {
215 ++statSquashedBefore;
216 return std::make_shared<ReExec>();
217 }
218 }
219 pendingChange();
220
221 currState->startTime = curTick();
222 currState->tc = _tc;
223 currState->aarch64 = opModeIs64(currOpMode(_tc));
224 currState->el = currEL(_tc);
225 currState->transState = _trans;
226 currState->req = _req;
227 currState->fault = NoFault;
228 currState->asid = _asid;
229 currState->vmid = _vmid;
230 currState->isHyp = _isHyp;
231 currState->timing = _timing;
232 currState->functional = _functional;
233 currState->mode = _mode;
234 currState->tranType = tranType;
235 currState->isSecure = secure;
236 currState->physAddrRange = physAddrRange;
237
238 /** @todo These should be cached or grabbed from cached copies in
239 the TLB, all these miscreg reads are expensive */
240 currState->vaddr_tainted = currState->req->getVaddr();
241 if (currState->aarch64)
242 currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
243 currState->tc, currState->el);
244 else
245 currState->vaddr = currState->vaddr_tainted;
246
247 if (currState->aarch64) {
248 switch (currState->el) {
249 case EL0:
250 case EL1:
251 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
252 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
253 break;
254 // @todo: uncomment this to enable Virtualization
255 // case EL2:
256 // assert(haveVirtualization);
257 // currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
258 // currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
259 // break;
260 case EL3:
261 assert(haveSecurity);
262 currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
263 currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
264 break;
265 default:
266 panic("Invalid exception level");
267 break;
268 }
269 } else {
270 currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
271 MISCREG_SCTLR, currState->tc, !currState->isSecure));
272 currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
273 MISCREG_TTBCR, currState->tc, !currState->isSecure));
274 currState->htcr = currState->tc->readMiscReg(MISCREG_HTCR);
275 currState->hcr = currState->tc->readMiscReg(MISCREG_HCR);
276 currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR);
277 }
278 sctlr = currState->sctlr;
279
280 currState->isFetch = (currState->mode == TLB::Execute);
281 currState->isWrite = (currState->mode == TLB::Write);
282
283 statRequestOrigin[REQUESTED][currState->isFetch]++;
284
285 // We only do a second stage of translation if we're not secure, or in
286 // hyp mode, the second stage MMU is enabled, and this table walker
287 // instance is the first stage.
288 currState->doingStage2 = false;
289 // @todo: for now disable this in AArch64 (HCR is not set)
290 currState->stage2Req = !currState->aarch64 && currState->hcr.vm &&
291 !isStage2 && !currState->isSecure && !currState->isHyp;
292
293 bool long_desc_format = currState->aarch64 ||
294 (_haveLPAE && currState->ttbcr.eae) ||
295 _isHyp || isStage2;
296
297 if (long_desc_format) {
298 // Helper variables used for hierarchical permissions
299 currState->secureLookup = currState->isSecure;
300 currState->rwTable = true;
301 currState->userTable = true;
302 currState->xnTable = false;
303 currState->pxnTable = false;
304
305 ++statWalksLongDescriptor;
306 } else {
307 ++statWalksShortDescriptor;
308 }
309
310 if (!currState->timing) {
311 Fault fault = NoFault;
312 if (currState->aarch64)
313 fault = processWalkAArch64();
314 else if (long_desc_format)
315 fault = processWalkLPAE();
316 else
317 fault = processWalk();
318
319 // If this was a functional non-timing access restore state to
320 // how we found it.
321 if (currState->functional) {
322 delete currState;
323 currState = savedCurrState;
324 }
325 return fault;
326 }
327
328 if (pending || pendingQueue.size()) {
329 pendingQueue.push_back(currState);
330 currState = NULL;
331 pendingChange();
332 } else {
333 pending = true;
334 pendingChange();
335 if (currState->aarch64)
336 return processWalkAArch64();
337 else if (long_desc_format)
338 return processWalkLPAE();
339 else
340 return processWalk();
341 }
342
343 return NoFault;
344}
345
346void
347TableWalker::processWalkWrapper()
348{
349 assert(!currState);
350 assert(pendingQueue.size());
351 pendingChange();
352 currState = pendingQueue.front();
353
354 ExceptionLevel target_el = EL0;
355 if (currState->aarch64)
356 target_el = currEL(currState->tc);
357 else
358 target_el = EL1;
359
360 // Check if a previous walk filled this request already
361 // @TODO Should this always be the TLB or should we look in the stage2 TLB?
362 TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
363 currState->vmid, currState->isHyp, currState->isSecure, true, false,
364 target_el);
365
366 // Check if we still need to have a walk for this request. If the requesting
367 // instruction has been squashed, or a previous walk has filled the TLB with
368 // a match, we just want to get rid of the walk. The latter could happen
369 // when there are multiple outstanding misses to a single page and a
370 // previous request has been successfully translated.
371 if (!currState->transState->squashed() && !te) {
372 // We've got a valid request, lets process it
373 pending = true;
374 pendingQueue.pop_front();
375 // Keep currState in case one of the processWalk... calls NULLs it
376 WalkerState *curr_state_copy = currState;
377 Fault f;
378 if (currState->aarch64)
379 f = processWalkAArch64();
380 else if ((_haveLPAE && currState->ttbcr.eae) || currState->isHyp || isStage2)
381 f = processWalkLPAE();
382 else
383 f = processWalk();
384
385 if (f != NoFault) {
386 curr_state_copy->transState->finish(f, curr_state_copy->req,
387 curr_state_copy->tc, curr_state_copy->mode);
388
389 delete curr_state_copy;
390 }
391 return;
392 }
393
394
395 // If the instruction that we were translating for has been
396 // squashed we shouldn't bother.
397 unsigned num_squashed = 0;
398 ThreadContext *tc = currState->tc;
399 while ((num_squashed < numSquashable) && currState &&
400 (currState->transState->squashed() || te)) {
401 pendingQueue.pop_front();
402 num_squashed++;
403 statSquashedBefore++;
404
405 DPRINTF(TLB, "Squashing table walk for address %#x\n",
406 currState->vaddr_tainted);
407
408 if (currState->transState->squashed()) {
409 // finish the translation which will delete the translation object
410 currState->transState->finish(
411 std::make_shared<UnimpFault>("Squashed Inst"),
412 currState->req, currState->tc, currState->mode);
413 } else {
414 // translate the request now that we know it will work
415 statWalkServiceTime.sample(curTick() - currState->startTime);
416 tlb->translateTiming(currState->req, currState->tc,
417 currState->transState, currState->mode);
418
419 }
420
421 // delete the current request
422 delete currState;
423
424 // peak at the next one
425 if (pendingQueue.size()) {
426 currState = pendingQueue.front();
427 te = tlb->lookup(currState->vaddr, currState->asid,
428 currState->vmid, currState->isHyp, currState->isSecure, true,
429 false, target_el);
430 } else {
431 // Terminate the loop, nothing more to do
432 currState = NULL;
433 }
434 }
435 pendingChange();
436
437 // if we still have pending translations, schedule more work
438 nextWalk(tc);
439 currState = NULL;
440}
441
442Fault
443TableWalker::processWalk()
444{
445 Addr ttbr = 0;
446
447 // If translation isn't enabled, we shouldn't be here
448 assert(currState->sctlr.m || isStage2);
449
450 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
451 currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
452 32 - currState->ttbcr.n));
453
454 statWalkWaitTime.sample(curTick() - currState->startTime);
455
456 if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
457 32 - currState->ttbcr.n)) {
458 DPRINTF(TLB, " - Selecting TTBR0\n");
459 // Check if table walk is allowed when Security Extensions are enabled
460 if (haveSecurity && currState->ttbcr.pd0) {
461 if (currState->isFetch)
462 return std::make_shared<PrefetchAbort>(
463 currState->vaddr_tainted,
464 ArmFault::TranslationLL + L1,
465 isStage2,
466 ArmFault::VmsaTran);
467 else
468 return std::make_shared<DataAbort>(
469 currState->vaddr_tainted,
470 TlbEntry::DomainType::NoAccess, currState->isWrite,
471 ArmFault::TranslationLL + L1, isStage2,
472 ArmFault::VmsaTran);
473 }
474 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
475 MISCREG_TTBR0, currState->tc, !currState->isSecure));
476 } else {
477 DPRINTF(TLB, " - Selecting TTBR1\n");
478 // Check if table walk is allowed when Security Extensions are enabled
479 if (haveSecurity && currState->ttbcr.pd1) {
480 if (currState->isFetch)
481 return std::make_shared<PrefetchAbort>(
482 currState->vaddr_tainted,
483 ArmFault::TranslationLL + L1,
484 isStage2,
485 ArmFault::VmsaTran);
486 else
487 return std::make_shared<DataAbort>(
488 currState->vaddr_tainted,
489 TlbEntry::DomainType::NoAccess, currState->isWrite,
490 ArmFault::TranslationLL + L1, isStage2,
491 ArmFault::VmsaTran);
492 }
493 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
494 MISCREG_TTBR1, currState->tc, !currState->isSecure));
495 currState->ttbcr.n = 0;
496 }
497
498 Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
499 (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
500 DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
501 currState->isSecure ? "s" : "ns");
502
503 // Trickbox address check
504 Fault f;
505 f = tlb->walkTrickBoxCheck(l1desc_addr, currState->isSecure,
506 currState->vaddr, sizeof(uint32_t), currState->isFetch,
507 currState->isWrite, TlbEntry::DomainType::NoAccess, L1);
505 f = testWalk(l1desc_addr, sizeof(uint32_t),
506 TlbEntry::DomainType::NoAccess, L1);
508 if (f) {
509 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
510 if (currState->timing) {
511 pending = false;
512 nextWalk(currState->tc);
513 currState = NULL;
514 } else {
515 currState->tc = NULL;
516 currState->req = NULL;
517 }
518 return f;
519 }
520
521 Request::Flags flag = Request::PT_WALK;
522 if (currState->sctlr.c == 0) {
523 flag.set(Request::UNCACHEABLE);
524 }
525
526 if (currState->isSecure) {
527 flag.set(Request::SECURE);
528 }
529
530 bool delayed;
531 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
532 sizeof(uint32_t), flag, L1, &doL1DescEvent,
533 &TableWalker::doL1Descriptor);
534 if (!delayed) {
535 f = currState->fault;
536 }
537
538 return f;
539}
540
541Fault
542TableWalker::processWalkLPAE()
543{
544 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
545 int tsz, n;
546 LookupLevel start_lookup_level = L1;
547
548 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
549 currState->vaddr_tainted, currState->ttbcr);
550
551 statWalkWaitTime.sample(curTick() - currState->startTime);
552
553 Request::Flags flag = Request::PT_WALK;
554 if (currState->isSecure)
555 flag.set(Request::SECURE);
556
557 // work out which base address register to use, if in hyp mode we always
558 // use HTTBR
559 if (isStage2) {
560 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
561 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
562 tsz = sext<4>(currState->vtcr.t0sz);
563 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
564 } else if (currState->isHyp) {
565 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
566 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
567 tsz = currState->htcr.t0sz;
568 } else {
569 assert(_haveLPAE && currState->ttbcr.eae);
570
571 // Determine boundaries of TTBR0/1 regions
572 if (currState->ttbcr.t0sz)
573 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
574 else if (currState->ttbcr.t1sz)
575 ttbr0_max = (1ULL << 32) -
576 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
577 else
578 ttbr0_max = (1ULL << 32) - 1;
579 if (currState->ttbcr.t1sz)
580 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
581 else
582 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
583
584 // The following code snippet selects the appropriate translation table base
585 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
586 // depending on the address range supported by the translation table (ARM
587 // ARM issue C B3.6.4)
588 if (currState->vaddr <= ttbr0_max) {
589 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
590 // Check if table walk is allowed
591 if (currState->ttbcr.epd0) {
592 if (currState->isFetch)
593 return std::make_shared<PrefetchAbort>(
594 currState->vaddr_tainted,
595 ArmFault::TranslationLL + L1,
596 isStage2,
597 ArmFault::LpaeTran);
598 else
599 return std::make_shared<DataAbort>(
600 currState->vaddr_tainted,
601 TlbEntry::DomainType::NoAccess,
602 currState->isWrite,
603 ArmFault::TranslationLL + L1,
604 isStage2,
605 ArmFault::LpaeTran);
606 }
607 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
608 MISCREG_TTBR0, currState->tc, !currState->isSecure));
609 tsz = currState->ttbcr.t0sz;
610 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
611 start_lookup_level = L2;
612 } else if (currState->vaddr >= ttbr1_min) {
613 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
614 // Check if table walk is allowed
615 if (currState->ttbcr.epd1) {
616 if (currState->isFetch)
617 return std::make_shared<PrefetchAbort>(
618 currState->vaddr_tainted,
619 ArmFault::TranslationLL + L1,
620 isStage2,
621 ArmFault::LpaeTran);
622 else
623 return std::make_shared<DataAbort>(
624 currState->vaddr_tainted,
625 TlbEntry::DomainType::NoAccess,
626 currState->isWrite,
627 ArmFault::TranslationLL + L1,
628 isStage2,
629 ArmFault::LpaeTran);
630 }
631 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
632 MISCREG_TTBR1, currState->tc, !currState->isSecure));
633 tsz = currState->ttbcr.t1sz;
634 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
635 start_lookup_level = L2;
636 } else {
637 // Out of boundaries -> translation fault
638 if (currState->isFetch)
639 return std::make_shared<PrefetchAbort>(
640 currState->vaddr_tainted,
641 ArmFault::TranslationLL + L1,
642 isStage2,
643 ArmFault::LpaeTran);
644 else
645 return std::make_shared<DataAbort>(
646 currState->vaddr_tainted,
647 TlbEntry::DomainType::NoAccess,
648 currState->isWrite, ArmFault::TranslationLL + L1,
649 isStage2, ArmFault::LpaeTran);
650 }
651
652 }
653
654 // Perform lookup (ARM ARM issue C B3.6.6)
655 if (start_lookup_level == L1) {
656 n = 5 - tsz;
657 desc_addr = mbits(ttbr, 39, n) |
658 (bits(currState->vaddr, n + 26, 30) << 3);
659 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
660 desc_addr, currState->isSecure ? "s" : "ns");
661 } else {
662 // Skip first-level lookup
663 n = (tsz >= 2 ? 14 - tsz : 12);
664 desc_addr = mbits(ttbr, 39, n) |
665 (bits(currState->vaddr, n + 17, 21) << 3);
666 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
667 desc_addr, currState->isSecure ? "s" : "ns");
668 }
669
670 // Trickbox address check
507 if (f) {
508 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
509 if (currState->timing) {
510 pending = false;
511 nextWalk(currState->tc);
512 currState = NULL;
513 } else {
514 currState->tc = NULL;
515 currState->req = NULL;
516 }
517 return f;
518 }
519
520 Request::Flags flag = Request::PT_WALK;
521 if (currState->sctlr.c == 0) {
522 flag.set(Request::UNCACHEABLE);
523 }
524
525 if (currState->isSecure) {
526 flag.set(Request::SECURE);
527 }
528
529 bool delayed;
530 delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
531 sizeof(uint32_t), flag, L1, &doL1DescEvent,
532 &TableWalker::doL1Descriptor);
533 if (!delayed) {
534 f = currState->fault;
535 }
536
537 return f;
538}
539
540Fault
541TableWalker::processWalkLPAE()
542{
543 Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
544 int tsz, n;
545 LookupLevel start_lookup_level = L1;
546
547 DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
548 currState->vaddr_tainted, currState->ttbcr);
549
550 statWalkWaitTime.sample(curTick() - currState->startTime);
551
552 Request::Flags flag = Request::PT_WALK;
553 if (currState->isSecure)
554 flag.set(Request::SECURE);
555
556 // work out which base address register to use, if in hyp mode we always
557 // use HTTBR
558 if (isStage2) {
559 DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
560 ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
561 tsz = sext<4>(currState->vtcr.t0sz);
562 start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
563 } else if (currState->isHyp) {
564 DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
565 ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
566 tsz = currState->htcr.t0sz;
567 } else {
568 assert(_haveLPAE && currState->ttbcr.eae);
569
570 // Determine boundaries of TTBR0/1 regions
571 if (currState->ttbcr.t0sz)
572 ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
573 else if (currState->ttbcr.t1sz)
574 ttbr0_max = (1ULL << 32) -
575 (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
576 else
577 ttbr0_max = (1ULL << 32) - 1;
578 if (currState->ttbcr.t1sz)
579 ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
580 else
581 ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
582
583 // The following code snippet selects the appropriate translation table base
584 // address (TTBR0 or TTBR1) and the appropriate starting lookup level
585 // depending on the address range supported by the translation table (ARM
586 // ARM issue C B3.6.4)
587 if (currState->vaddr <= ttbr0_max) {
588 DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
589 // Check if table walk is allowed
590 if (currState->ttbcr.epd0) {
591 if (currState->isFetch)
592 return std::make_shared<PrefetchAbort>(
593 currState->vaddr_tainted,
594 ArmFault::TranslationLL + L1,
595 isStage2,
596 ArmFault::LpaeTran);
597 else
598 return std::make_shared<DataAbort>(
599 currState->vaddr_tainted,
600 TlbEntry::DomainType::NoAccess,
601 currState->isWrite,
602 ArmFault::TranslationLL + L1,
603 isStage2,
604 ArmFault::LpaeTran);
605 }
606 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
607 MISCREG_TTBR0, currState->tc, !currState->isSecure));
608 tsz = currState->ttbcr.t0sz;
609 if (ttbr0_max < (1ULL << 30)) // Upper limit < 1 GB
610 start_lookup_level = L2;
611 } else if (currState->vaddr >= ttbr1_min) {
612 DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
613 // Check if table walk is allowed
614 if (currState->ttbcr.epd1) {
615 if (currState->isFetch)
616 return std::make_shared<PrefetchAbort>(
617 currState->vaddr_tainted,
618 ArmFault::TranslationLL + L1,
619 isStage2,
620 ArmFault::LpaeTran);
621 else
622 return std::make_shared<DataAbort>(
623 currState->vaddr_tainted,
624 TlbEntry::DomainType::NoAccess,
625 currState->isWrite,
626 ArmFault::TranslationLL + L1,
627 isStage2,
628 ArmFault::LpaeTran);
629 }
630 ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
631 MISCREG_TTBR1, currState->tc, !currState->isSecure));
632 tsz = currState->ttbcr.t1sz;
633 if (ttbr1_min >= (1ULL << 31) + (1ULL << 30)) // Lower limit >= 3 GB
634 start_lookup_level = L2;
635 } else {
636 // Out of boundaries -> translation fault
637 if (currState->isFetch)
638 return std::make_shared<PrefetchAbort>(
639 currState->vaddr_tainted,
640 ArmFault::TranslationLL + L1,
641 isStage2,
642 ArmFault::LpaeTran);
643 else
644 return std::make_shared<DataAbort>(
645 currState->vaddr_tainted,
646 TlbEntry::DomainType::NoAccess,
647 currState->isWrite, ArmFault::TranslationLL + L1,
648 isStage2, ArmFault::LpaeTran);
649 }
650
651 }
652
653 // Perform lookup (ARM ARM issue C B3.6.6)
654 if (start_lookup_level == L1) {
655 n = 5 - tsz;
656 desc_addr = mbits(ttbr, 39, n) |
657 (bits(currState->vaddr, n + 26, 30) << 3);
658 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
659 desc_addr, currState->isSecure ? "s" : "ns");
660 } else {
661 // Skip first-level lookup
662 n = (tsz >= 2 ? 14 - tsz : 12);
663 desc_addr = mbits(ttbr, 39, n) |
664 (bits(currState->vaddr, n + 17, 21) << 3);
665 DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
666 desc_addr, currState->isSecure ? "s" : "ns");
667 }
668
669 // Trickbox address check
671 Fault f = tlb->walkTrickBoxCheck(desc_addr, currState->isSecure,
672 currState->vaddr, sizeof(uint64_t), currState->isFetch,
673 currState->isWrite, TlbEntry::DomainType::NoAccess,
674 start_lookup_level);
670 Fault f = testWalk(desc_addr, sizeof(uint64_t),
671 TlbEntry::DomainType::NoAccess, start_lookup_level);
675 if (f) {
676 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
677 if (currState->timing) {
678 pending = false;
679 nextWalk(currState->tc);
680 currState = NULL;
681 } else {
682 currState->tc = NULL;
683 currState->req = NULL;
684 }
685 return f;
686 }
687
688 if (currState->sctlr.c == 0) {
689 flag.set(Request::UNCACHEABLE);
690 }
691
692 currState->longDesc.lookupLevel = start_lookup_level;
693 currState->longDesc.aarch64 = false;
694 currState->longDesc.grainSize = Grain4KB;
695
696 Event *event = start_lookup_level == L1 ? (Event *) &doL1LongDescEvent
697 : (Event *) &doL2LongDescEvent;
698
699 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
700 sizeof(uint64_t), flag, start_lookup_level,
701 event, &TableWalker::doLongDescriptor);
702 if (!delayed) {
703 f = currState->fault;
704 }
705
706 return f;
707}
708
709unsigned
710TableWalker::adjustTableSizeAArch64(unsigned tsz)
711{
712 if (tsz < 25)
713 return 25;
714 if (tsz > 48)
715 return 48;
716 return tsz;
717}
718
719bool
720TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
721{
722 return (currPhysAddrRange != MaxPhysAddrRange &&
723 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
724}
725
726Fault
727TableWalker::processWalkAArch64()
728{
729 assert(currState->aarch64);
730
731 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
732 currState->vaddr_tainted, currState->tcr);
733
734 static const GrainSize GrainMapDefault[] =
735 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
736 static const GrainSize GrainMap_EL1_tg1[] =
737 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
738
739 statWalkWaitTime.sample(curTick() - currState->startTime);
740
741 // Determine TTBR, table size, granule size and phys. address range
742 Addr ttbr = 0;
743 int tsz = 0, ps = 0;
744 GrainSize tg = Grain4KB; // grain size computed from tg* field
745 bool fault = false;
746 switch (currState->el) {
747 case EL0:
748 case EL1:
749 switch (bits(currState->vaddr, 63,48)) {
750 case 0:
751 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
752 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
753 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
754 tg = GrainMapDefault[currState->tcr.tg0];
755 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
756 currState->tcr.epd0)
757 fault = true;
758 break;
759 case 0xffff:
760 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
761 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
762 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
763 tg = GrainMap_EL1_tg1[currState->tcr.tg1];
764 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
765 currState->tcr.epd1)
766 fault = true;
767 break;
768 default:
769 // top two bytes must be all 0s or all 1s, else invalid addr
770 fault = true;
771 }
772 ps = currState->tcr.ips;
773 break;
774 case EL2:
775 case EL3:
776 switch(bits(currState->vaddr, 63,48)) {
777 case 0:
778 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
779 if (currState->el == EL2)
780 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
781 else
782 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
783 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
784 tg = GrainMapDefault[currState->tcr.tg0];
785 break;
786 default:
787 // invalid addr if top two bytes are not all 0s
788 fault = true;
789 }
790 ps = currState->tcr.ips;
791 break;
792 }
793
794 if (fault) {
795 Fault f;
796 if (currState->isFetch)
797 f = std::make_shared<PrefetchAbort>(
798 currState->vaddr_tainted,
799 ArmFault::TranslationLL + L0, isStage2,
800 ArmFault::LpaeTran);
801 else
802 f = std::make_shared<DataAbort>(
803 currState->vaddr_tainted,
804 TlbEntry::DomainType::NoAccess,
805 currState->isWrite,
806 ArmFault::TranslationLL + L0,
807 isStage2, ArmFault::LpaeTran);
808
809 if (currState->timing) {
810 pending = false;
811 nextWalk(currState->tc);
812 currState = NULL;
813 } else {
814 currState->tc = NULL;
815 currState->req = NULL;
816 }
817 return f;
818
819 }
820
821 if (tg == ReservedGrain) {
822 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
823 "DEFINED behavior takes this to mean 4KB granules\n");
824 tg = Grain4KB;
825 }
826
827 int stride = tg - 3;
828 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
829
830 // Determine starting lookup level
831 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
832 // in ARM DDI 0487A. These table values correspond to the cascading tests
833 // to compute the lookup level and are of the form
834 // (grain_size + N*stride), for N = {1, 2, 3}.
835 // A value of 64 will never succeed and a value of 0 will always succeed.
836 {
837 struct GrainMap {
838 GrainSize grain_size;
839 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
840 };
841 static const GrainMap GM[] = {
842 { Grain4KB, { 39, 30, 0, 0 } },
843 { Grain16KB, { 47, 36, 25, 0 } },
844 { Grain64KB, { 64, 42, 29, 0 } }
845 };
846
847 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
848
849 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
850 if (tg == GM[i].grain_size) {
851 lookup = GM[i].lookup_level_cutoff;
852 break;
853 }
854 }
855 assert(lookup);
856
857 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
858 if (tsz > lookup[L]) {
859 start_lookup_level = (LookupLevel) L;
860 break;
861 }
862 }
863 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
864 "Table walker couldn't find lookup level\n");
865 }
866
867 // Determine table base address
868 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
869 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
870
871 // Determine physical address size and raise an Address Size Fault if
872 // necessary
873 int pa_range = decodePhysAddrRange64(ps);
874 // Clamp to lower limit
875 if (pa_range > physAddrRange)
876 currState->physAddrRange = physAddrRange;
877 else
878 currState->physAddrRange = pa_range;
879 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
880 DPRINTF(TLB, "Address size fault before any lookup\n");
881 Fault f;
882 if (currState->isFetch)
883 f = std::make_shared<PrefetchAbort>(
884 currState->vaddr_tainted,
885 ArmFault::AddressSizeLL + start_lookup_level,
886 isStage2,
887 ArmFault::LpaeTran);
888 else
889 f = std::make_shared<DataAbort>(
890 currState->vaddr_tainted,
891 TlbEntry::DomainType::NoAccess,
892 currState->isWrite,
893 ArmFault::AddressSizeLL + start_lookup_level,
894 isStage2,
895 ArmFault::LpaeTran);
896
897
898 if (currState->timing) {
899 pending = false;
900 nextWalk(currState->tc);
901 currState = NULL;
902 } else {
903 currState->tc = NULL;
904 currState->req = NULL;
905 }
906 return f;
907
908 }
909
910 // Determine descriptor address
911 Addr desc_addr = base_addr |
912 (bits(currState->vaddr, tsz - 1,
913 stride * (3 - start_lookup_level) + tg) << 3);
914
915 // Trickbox address check
672 if (f) {
673 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
674 if (currState->timing) {
675 pending = false;
676 nextWalk(currState->tc);
677 currState = NULL;
678 } else {
679 currState->tc = NULL;
680 currState->req = NULL;
681 }
682 return f;
683 }
684
685 if (currState->sctlr.c == 0) {
686 flag.set(Request::UNCACHEABLE);
687 }
688
689 currState->longDesc.lookupLevel = start_lookup_level;
690 currState->longDesc.aarch64 = false;
691 currState->longDesc.grainSize = Grain4KB;
692
693 Event *event = start_lookup_level == L1 ? (Event *) &doL1LongDescEvent
694 : (Event *) &doL2LongDescEvent;
695
696 bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
697 sizeof(uint64_t), flag, start_lookup_level,
698 event, &TableWalker::doLongDescriptor);
699 if (!delayed) {
700 f = currState->fault;
701 }
702
703 return f;
704}
705
706unsigned
707TableWalker::adjustTableSizeAArch64(unsigned tsz)
708{
709 if (tsz < 25)
710 return 25;
711 if (tsz > 48)
712 return 48;
713 return tsz;
714}
715
716bool
717TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
718{
719 return (currPhysAddrRange != MaxPhysAddrRange &&
720 bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
721}
722
723Fault
724TableWalker::processWalkAArch64()
725{
726 assert(currState->aarch64);
727
728 DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
729 currState->vaddr_tainted, currState->tcr);
730
731 static const GrainSize GrainMapDefault[] =
732 { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
733 static const GrainSize GrainMap_EL1_tg1[] =
734 { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
735
736 statWalkWaitTime.sample(curTick() - currState->startTime);
737
738 // Determine TTBR, table size, granule size and phys. address range
739 Addr ttbr = 0;
740 int tsz = 0, ps = 0;
741 GrainSize tg = Grain4KB; // grain size computed from tg* field
742 bool fault = false;
743 switch (currState->el) {
744 case EL0:
745 case EL1:
746 switch (bits(currState->vaddr, 63,48)) {
747 case 0:
748 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
749 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
750 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
751 tg = GrainMapDefault[currState->tcr.tg0];
752 if (bits(currState->vaddr, 63, tsz) != 0x0 ||
753 currState->tcr.epd0)
754 fault = true;
755 break;
756 case 0xffff:
757 DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
758 ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
759 tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
760 tg = GrainMap_EL1_tg1[currState->tcr.tg1];
761 if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
762 currState->tcr.epd1)
763 fault = true;
764 break;
765 default:
766 // top two bytes must be all 0s or all 1s, else invalid addr
767 fault = true;
768 }
769 ps = currState->tcr.ips;
770 break;
771 case EL2:
772 case EL3:
773 switch(bits(currState->vaddr, 63,48)) {
774 case 0:
775 DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
776 if (currState->el == EL2)
777 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
778 else
779 ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
780 tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
781 tg = GrainMapDefault[currState->tcr.tg0];
782 break;
783 default:
784 // invalid addr if top two bytes are not all 0s
785 fault = true;
786 }
787 ps = currState->tcr.ips;
788 break;
789 }
790
791 if (fault) {
792 Fault f;
793 if (currState->isFetch)
794 f = std::make_shared<PrefetchAbort>(
795 currState->vaddr_tainted,
796 ArmFault::TranslationLL + L0, isStage2,
797 ArmFault::LpaeTran);
798 else
799 f = std::make_shared<DataAbort>(
800 currState->vaddr_tainted,
801 TlbEntry::DomainType::NoAccess,
802 currState->isWrite,
803 ArmFault::TranslationLL + L0,
804 isStage2, ArmFault::LpaeTran);
805
806 if (currState->timing) {
807 pending = false;
808 nextWalk(currState->tc);
809 currState = NULL;
810 } else {
811 currState->tc = NULL;
812 currState->req = NULL;
813 }
814 return f;
815
816 }
817
818 if (tg == ReservedGrain) {
819 warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
820 "DEFINED behavior takes this to mean 4KB granules\n");
821 tg = Grain4KB;
822 }
823
824 int stride = tg - 3;
825 LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
826
827 // Determine starting lookup level
828 // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
829 // in ARM DDI 0487A. These table values correspond to the cascading tests
830 // to compute the lookup level and are of the form
831 // (grain_size + N*stride), for N = {1, 2, 3}.
832 // A value of 64 will never succeed and a value of 0 will always succeed.
833 {
834 struct GrainMap {
835 GrainSize grain_size;
836 unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
837 };
838 static const GrainMap GM[] = {
839 { Grain4KB, { 39, 30, 0, 0 } },
840 { Grain16KB, { 47, 36, 25, 0 } },
841 { Grain64KB, { 64, 42, 29, 0 } }
842 };
843
844 const unsigned *lookup = NULL; // points to a lookup_level_cutoff
845
846 for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
847 if (tg == GM[i].grain_size) {
848 lookup = GM[i].lookup_level_cutoff;
849 break;
850 }
851 }
852 assert(lookup);
853
854 for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
855 if (tsz > lookup[L]) {
856 start_lookup_level = (LookupLevel) L;
857 break;
858 }
859 }
860 panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
861 "Table walker couldn't find lookup level\n");
862 }
863
864 // Determine table base address
865 int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
866 Addr base_addr = mbits(ttbr, 47, base_addr_lo);
867
868 // Determine physical address size and raise an Address Size Fault if
869 // necessary
870 int pa_range = decodePhysAddrRange64(ps);
871 // Clamp to lower limit
872 if (pa_range > physAddrRange)
873 currState->physAddrRange = physAddrRange;
874 else
875 currState->physAddrRange = pa_range;
876 if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
877 DPRINTF(TLB, "Address size fault before any lookup\n");
878 Fault f;
879 if (currState->isFetch)
880 f = std::make_shared<PrefetchAbort>(
881 currState->vaddr_tainted,
882 ArmFault::AddressSizeLL + start_lookup_level,
883 isStage2,
884 ArmFault::LpaeTran);
885 else
886 f = std::make_shared<DataAbort>(
887 currState->vaddr_tainted,
888 TlbEntry::DomainType::NoAccess,
889 currState->isWrite,
890 ArmFault::AddressSizeLL + start_lookup_level,
891 isStage2,
892 ArmFault::LpaeTran);
893
894
895 if (currState->timing) {
896 pending = false;
897 nextWalk(currState->tc);
898 currState = NULL;
899 } else {
900 currState->tc = NULL;
901 currState->req = NULL;
902 }
903 return f;
904
905 }
906
907 // Determine descriptor address
908 Addr desc_addr = base_addr |
909 (bits(currState->vaddr, tsz - 1,
910 stride * (3 - start_lookup_level) + tg) << 3);
911
912 // Trickbox address check
916 Fault f = tlb->walkTrickBoxCheck(desc_addr, currState->isSecure,
917 currState->vaddr, sizeof(uint64_t), currState->isFetch,
918 currState->isWrite, TlbEntry::DomainType::NoAccess,
919 start_lookup_level);
913 Fault f = testWalk(desc_addr, sizeof(uint64_t),
914 TlbEntry::DomainType::NoAccess, start_lookup_level);
920 if (f) {
921 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
922 if (currState->timing) {
923 pending = false;
924 nextWalk(currState->tc);
925 currState = NULL;
926 } else {
927 currState->tc = NULL;
928 currState->req = NULL;
929 }
930 return f;
931 }
932
933 Request::Flags flag = Request::PT_WALK;
934 if (currState->sctlr.c == 0) {
935 flag.set(Request::UNCACHEABLE);
936 }
937
938 if (currState->isSecure) {
939 flag.set(Request::SECURE);
940 }
941
942 currState->longDesc.lookupLevel = start_lookup_level;
943 currState->longDesc.aarch64 = true;
944 currState->longDesc.grainSize = tg;
945
946 if (currState->timing) {
947 Event *event;
948 switch (start_lookup_level) {
949 case L0:
950 event = (Event *) &doL0LongDescEvent;
951 break;
952 case L1:
953 event = (Event *) &doL1LongDescEvent;
954 break;
955 case L2:
956 event = (Event *) &doL2LongDescEvent;
957 break;
958 case L3:
959 event = (Event *) &doL3LongDescEvent;
960 break;
961 default:
962 panic("Invalid table lookup level");
963 break;
964 }
965 port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
966 event, (uint8_t*) &currState->longDesc.data,
967 currState->tc->getCpuPtr()->clockPeriod(), flag);
968 DPRINTF(TLBVerbose,
969 "Adding to walker fifo: queue size before adding: %d\n",
970 stateQueues[start_lookup_level].size());
971 stateQueues[start_lookup_level].push_back(currState);
972 currState = NULL;
973 } else if (!currState->functional) {
974 port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
975 NULL, (uint8_t*) &currState->longDesc.data,
976 currState->tc->getCpuPtr()->clockPeriod(), flag);
977 doLongDescriptor();
978 f = currState->fault;
979 } else {
980 RequestPtr req = new Request(desc_addr, sizeof(uint64_t), flag,
981 masterId);
982 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
983 pkt->dataStatic((uint8_t*) &currState->longDesc.data);
984 port->sendFunctional(pkt);
985 doLongDescriptor();
986 delete req;
987 delete pkt;
988 f = currState->fault;
989 }
990
991 return f;
992}
993
994void
995TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
996 uint8_t texcb, bool s)
997{
998 // Note: tc and sctlr local variables are hiding tc and sctrl class
999 // variables
1000 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1001 te.shareable = false; // default value
1002 te.nonCacheable = false;
1003 te.outerShareable = false;
1004 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1005 switch(texcb) {
1006 case 0: // Stongly-ordered
1007 te.nonCacheable = true;
1008 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1009 te.shareable = true;
1010 te.innerAttrs = 1;
1011 te.outerAttrs = 0;
1012 break;
1013 case 1: // Shareable Device
1014 te.nonCacheable = true;
1015 te.mtype = TlbEntry::MemoryType::Device;
1016 te.shareable = true;
1017 te.innerAttrs = 3;
1018 te.outerAttrs = 0;
1019 break;
1020 case 2: // Outer and Inner Write-Through, no Write-Allocate
1021 te.mtype = TlbEntry::MemoryType::Normal;
1022 te.shareable = s;
1023 te.innerAttrs = 6;
1024 te.outerAttrs = bits(texcb, 1, 0);
1025 break;
1026 case 3: // Outer and Inner Write-Back, no Write-Allocate
1027 te.mtype = TlbEntry::MemoryType::Normal;
1028 te.shareable = s;
1029 te.innerAttrs = 7;
1030 te.outerAttrs = bits(texcb, 1, 0);
1031 break;
1032 case 4: // Outer and Inner Non-cacheable
1033 te.nonCacheable = true;
1034 te.mtype = TlbEntry::MemoryType::Normal;
1035 te.shareable = s;
1036 te.innerAttrs = 0;
1037 te.outerAttrs = bits(texcb, 1, 0);
1038 break;
1039 case 5: // Reserved
1040 panic("Reserved texcb value!\n");
1041 break;
1042 case 6: // Implementation Defined
1043 panic("Implementation-defined texcb value!\n");
1044 break;
1045 case 7: // Outer and Inner Write-Back, Write-Allocate
1046 te.mtype = TlbEntry::MemoryType::Normal;
1047 te.shareable = s;
1048 te.innerAttrs = 5;
1049 te.outerAttrs = 1;
1050 break;
1051 case 8: // Non-shareable Device
1052 te.nonCacheable = true;
1053 te.mtype = TlbEntry::MemoryType::Device;
1054 te.shareable = false;
1055 te.innerAttrs = 3;
1056 te.outerAttrs = 0;
1057 break;
1058 case 9 ... 15: // Reserved
1059 panic("Reserved texcb value!\n");
1060 break;
1061 case 16 ... 31: // Cacheable Memory
1062 te.mtype = TlbEntry::MemoryType::Normal;
1063 te.shareable = s;
1064 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1065 te.nonCacheable = true;
1066 te.innerAttrs = bits(texcb, 1, 0);
1067 te.outerAttrs = bits(texcb, 3, 2);
1068 break;
1069 default:
1070 panic("More than 32 states for 5 bits?\n");
1071 }
1072 } else {
1073 assert(tc);
1074 PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1075 currState->tc, !currState->isSecure));
1076 NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1077 currState->tc, !currState->isSecure));
1078 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1079 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1080 switch(bits(texcb, 2,0)) {
1081 case 0:
1082 curr_tr = prrr.tr0;
1083 curr_ir = nmrr.ir0;
1084 curr_or = nmrr.or0;
1085 te.outerShareable = (prrr.nos0 == 0);
1086 break;
1087 case 1:
1088 curr_tr = prrr.tr1;
1089 curr_ir = nmrr.ir1;
1090 curr_or = nmrr.or1;
1091 te.outerShareable = (prrr.nos1 == 0);
1092 break;
1093 case 2:
1094 curr_tr = prrr.tr2;
1095 curr_ir = nmrr.ir2;
1096 curr_or = nmrr.or2;
1097 te.outerShareable = (prrr.nos2 == 0);
1098 break;
1099 case 3:
1100 curr_tr = prrr.tr3;
1101 curr_ir = nmrr.ir3;
1102 curr_or = nmrr.or3;
1103 te.outerShareable = (prrr.nos3 == 0);
1104 break;
1105 case 4:
1106 curr_tr = prrr.tr4;
1107 curr_ir = nmrr.ir4;
1108 curr_or = nmrr.or4;
1109 te.outerShareable = (prrr.nos4 == 0);
1110 break;
1111 case 5:
1112 curr_tr = prrr.tr5;
1113 curr_ir = nmrr.ir5;
1114 curr_or = nmrr.or5;
1115 te.outerShareable = (prrr.nos5 == 0);
1116 break;
1117 case 6:
1118 panic("Imp defined type\n");
1119 case 7:
1120 curr_tr = prrr.tr7;
1121 curr_ir = nmrr.ir7;
1122 curr_or = nmrr.or7;
1123 te.outerShareable = (prrr.nos7 == 0);
1124 break;
1125 }
1126
1127 switch(curr_tr) {
1128 case 0:
1129 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1130 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1131 te.nonCacheable = true;
1132 te.innerAttrs = 1;
1133 te.outerAttrs = 0;
1134 te.shareable = true;
1135 break;
1136 case 1:
1137 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1138 prrr.ds1, prrr.ds0, s);
1139 te.mtype = TlbEntry::MemoryType::Device;
1140 te.nonCacheable = true;
1141 te.innerAttrs = 3;
1142 te.outerAttrs = 0;
1143 if (prrr.ds1 && s)
1144 te.shareable = true;
1145 if (prrr.ds0 && !s)
1146 te.shareable = true;
1147 break;
1148 case 2:
1149 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1150 prrr.ns1, prrr.ns0, s);
1151 te.mtype = TlbEntry::MemoryType::Normal;
1152 if (prrr.ns1 && s)
1153 te.shareable = true;
1154 if (prrr.ns0 && !s)
1155 te.shareable = true;
1156 break;
1157 case 3:
1158 panic("Reserved type");
1159 }
1160
1161 if (te.mtype == TlbEntry::MemoryType::Normal){
1162 switch(curr_ir) {
1163 case 0:
1164 te.nonCacheable = true;
1165 te.innerAttrs = 0;
1166 break;
1167 case 1:
1168 te.innerAttrs = 5;
1169 break;
1170 case 2:
1171 te.innerAttrs = 6;
1172 break;
1173 case 3:
1174 te.innerAttrs = 7;
1175 break;
1176 }
1177
1178 switch(curr_or) {
1179 case 0:
1180 te.nonCacheable = true;
1181 te.outerAttrs = 0;
1182 break;
1183 case 1:
1184 te.outerAttrs = 1;
1185 break;
1186 case 2:
1187 te.outerAttrs = 2;
1188 break;
1189 case 3:
1190 te.outerAttrs = 3;
1191 break;
1192 }
1193 }
1194 }
1195 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1196 "outerAttrs: %d\n",
1197 te.shareable, te.innerAttrs, te.outerAttrs);
1198 te.setAttributes(false);
1199}
1200
1201void
1202TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1203 LongDescriptor &lDescriptor)
1204{
1205 assert(_haveLPAE);
1206
1207 uint8_t attr;
1208 uint8_t sh = lDescriptor.sh();
1209 // Different format and source of attributes if this is a stage 2
1210 // translation
1211 if (isStage2) {
1212 attr = lDescriptor.memAttr();
1213 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1214 uint8_t attr_1_0 = attr & 0x3;
1215
1216 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1217
1218 if (attr_3_2 == 0) {
1219 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1220 : TlbEntry::MemoryType::Device;
1221 te.outerAttrs = 0;
1222 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1223 te.nonCacheable = true;
1224 } else {
1225 te.mtype = TlbEntry::MemoryType::Normal;
1226 te.outerAttrs = attr_3_2 == 1 ? 0 :
1227 attr_3_2 == 2 ? 2 : 1;
1228 te.innerAttrs = attr_1_0 == 1 ? 0 :
1229 attr_1_0 == 2 ? 6 : 5;
1230 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1231 }
1232 } else {
1233 uint8_t attrIndx = lDescriptor.attrIndx();
1234
1235 // LPAE always uses remapping of memory attributes, irrespective of the
1236 // value of SCTLR.TRE
1237 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1238 int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1239 !currState->isSecure);
1240 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1241 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1242 uint8_t attr_7_4 = bits(attr, 7, 4);
1243 uint8_t attr_3_0 = bits(attr, 3, 0);
1244 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1245
1246 // Note: the memory subsystem only cares about the 'cacheable' memory
1247 // attribute. The other attributes are only used to fill the PAR register
1248 // accordingly to provide the illusion of full support
1249 te.nonCacheable = false;
1250
1251 switch (attr_7_4) {
1252 case 0x0:
1253 // Strongly-ordered or Device memory
1254 if (attr_3_0 == 0x0)
1255 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1256 else if (attr_3_0 == 0x4)
1257 te.mtype = TlbEntry::MemoryType::Device;
1258 else
1259 panic("Unpredictable behavior\n");
1260 te.nonCacheable = true;
1261 te.outerAttrs = 0;
1262 break;
1263 case 0x4:
1264 // Normal memory, Outer Non-cacheable
1265 te.mtype = TlbEntry::MemoryType::Normal;
1266 te.outerAttrs = 0;
1267 if (attr_3_0 == 0x4)
1268 // Inner Non-cacheable
1269 te.nonCacheable = true;
1270 else if (attr_3_0 < 0x8)
1271 panic("Unpredictable behavior\n");
1272 break;
1273 case 0x8:
1274 case 0x9:
1275 case 0xa:
1276 case 0xb:
1277 case 0xc:
1278 case 0xd:
1279 case 0xe:
1280 case 0xf:
1281 if (attr_7_4 & 0x4) {
1282 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1283 } else {
1284 te.outerAttrs = 0x2;
1285 }
1286 // Normal memory, Outer Cacheable
1287 te.mtype = TlbEntry::MemoryType::Normal;
1288 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1289 panic("Unpredictable behavior\n");
1290 break;
1291 default:
1292 panic("Unpredictable behavior\n");
1293 break;
1294 }
1295
1296 switch (attr_3_0) {
1297 case 0x0:
1298 te.innerAttrs = 0x1;
1299 break;
1300 case 0x4:
1301 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1302 break;
1303 case 0x8:
1304 case 0x9:
1305 case 0xA:
1306 case 0xB:
1307 te.innerAttrs = 6;
1308 break;
1309 case 0xC:
1310 case 0xD:
1311 case 0xE:
1312 case 0xF:
1313 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1314 break;
1315 default:
1316 panic("Unpredictable behavior\n");
1317 break;
1318 }
1319 }
1320
1321 te.outerShareable = sh == 2;
1322 te.shareable = (sh & 0x2) ? true : false;
1323 te.setAttributes(true);
1324 te.attributes |= (uint64_t) attr << 56;
1325}
1326
1327void
1328TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te, uint8_t attrIndx,
1329 uint8_t sh)
1330{
1331 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1332
1333 // Select MAIR
1334 uint64_t mair;
1335 switch (currState->el) {
1336 case EL0:
1337 case EL1:
1338 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1339 break;
1340 case EL2:
1341 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1342 break;
1343 case EL3:
1344 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1345 break;
1346 default:
1347 panic("Invalid exception level");
1348 break;
1349 }
1350
1351 // Select attributes
1352 uint8_t attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1353 uint8_t attr_lo = bits(attr, 3, 0);
1354 uint8_t attr_hi = bits(attr, 7, 4);
1355
1356 // Memory type
1357 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1358
1359 // Cacheability
1360 te.nonCacheable = false;
1361 if (te.mtype == TlbEntry::MemoryType::Device || // Device memory
1362 attr_hi == 0x8 || // Normal memory, Outer Non-cacheable
1363 attr_lo == 0x8) { // Normal memory, Inner Non-cacheable
1364 te.nonCacheable = true;
1365 }
1366
1367 te.shareable = sh == 2;
1368 te.outerShareable = (sh & 0x2) ? true : false;
1369 // Attributes formatted according to the 64-bit PAR
1370 te.attributes = ((uint64_t) attr << 56) |
1371 (1 << 11) | // LPAE bit
1372 (te.ns << 9) | // NS bit
1373 (sh << 7);
1374}
1375
1376void
1377TableWalker::doL1Descriptor()
1378{
1379 if (currState->fault != NoFault) {
1380 return;
1381 }
1382
1383 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1384 currState->vaddr_tainted, currState->l1Desc.data);
1385 TlbEntry te;
1386
1387 switch (currState->l1Desc.type()) {
1388 case L1Descriptor::Ignore:
1389 case L1Descriptor::Reserved:
1390 if (!currState->timing) {
1391 currState->tc = NULL;
1392 currState->req = NULL;
1393 }
1394 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1395 if (currState->isFetch)
1396 currState->fault =
1397 std::make_shared<PrefetchAbort>(
1398 currState->vaddr_tainted,
1399 ArmFault::TranslationLL + L1,
1400 isStage2,
1401 ArmFault::VmsaTran);
1402 else
1403 currState->fault =
1404 std::make_shared<DataAbort>(
1405 currState->vaddr_tainted,
1406 TlbEntry::DomainType::NoAccess,
1407 currState->isWrite,
1408 ArmFault::TranslationLL + L1, isStage2,
1409 ArmFault::VmsaTran);
1410 return;
1411 case L1Descriptor::Section:
1412 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1413 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1414 * enabled if set, do l1.Desc.setAp0() instead of generating
1415 * AccessFlag0
1416 */
1417
1418 currState->fault = std::make_shared<DataAbort>(
1419 currState->vaddr_tainted,
1420 currState->l1Desc.domain(),
1421 currState->isWrite,
1422 ArmFault::AccessFlagLL + L1,
1423 isStage2,
1424 ArmFault::VmsaTran);
1425 }
1426 if (currState->l1Desc.supersection()) {
1427 panic("Haven't implemented supersections\n");
1428 }
1429 insertTableEntry(currState->l1Desc, false);
1430 return;
1431 case L1Descriptor::PageTable:
1432 {
1433 Addr l2desc_addr;
1434 l2desc_addr = currState->l1Desc.l2Addr() |
1435 (bits(currState->vaddr, 19, 12) << 2);
1436 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1437 l2desc_addr, currState->isSecure ? "s" : "ns");
1438
1439 // Trickbox address check
915 if (f) {
916 DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
917 if (currState->timing) {
918 pending = false;
919 nextWalk(currState->tc);
920 currState = NULL;
921 } else {
922 currState->tc = NULL;
923 currState->req = NULL;
924 }
925 return f;
926 }
927
928 Request::Flags flag = Request::PT_WALK;
929 if (currState->sctlr.c == 0) {
930 flag.set(Request::UNCACHEABLE);
931 }
932
933 if (currState->isSecure) {
934 flag.set(Request::SECURE);
935 }
936
937 currState->longDesc.lookupLevel = start_lookup_level;
938 currState->longDesc.aarch64 = true;
939 currState->longDesc.grainSize = tg;
940
941 if (currState->timing) {
942 Event *event;
943 switch (start_lookup_level) {
944 case L0:
945 event = (Event *) &doL0LongDescEvent;
946 break;
947 case L1:
948 event = (Event *) &doL1LongDescEvent;
949 break;
950 case L2:
951 event = (Event *) &doL2LongDescEvent;
952 break;
953 case L3:
954 event = (Event *) &doL3LongDescEvent;
955 break;
956 default:
957 panic("Invalid table lookup level");
958 break;
959 }
960 port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
961 event, (uint8_t*) &currState->longDesc.data,
962 currState->tc->getCpuPtr()->clockPeriod(), flag);
963 DPRINTF(TLBVerbose,
964 "Adding to walker fifo: queue size before adding: %d\n",
965 stateQueues[start_lookup_level].size());
966 stateQueues[start_lookup_level].push_back(currState);
967 currState = NULL;
968 } else if (!currState->functional) {
969 port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
970 NULL, (uint8_t*) &currState->longDesc.data,
971 currState->tc->getCpuPtr()->clockPeriod(), flag);
972 doLongDescriptor();
973 f = currState->fault;
974 } else {
975 RequestPtr req = new Request(desc_addr, sizeof(uint64_t), flag,
976 masterId);
977 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
978 pkt->dataStatic((uint8_t*) &currState->longDesc.data);
979 port->sendFunctional(pkt);
980 doLongDescriptor();
981 delete req;
982 delete pkt;
983 f = currState->fault;
984 }
985
986 return f;
987}
988
989void
990TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
991 uint8_t texcb, bool s)
992{
993 // Note: tc and sctlr local variables are hiding tc and sctrl class
994 // variables
995 DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
996 te.shareable = false; // default value
997 te.nonCacheable = false;
998 te.outerShareable = false;
999 if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1000 switch(texcb) {
1001 case 0: // Stongly-ordered
1002 te.nonCacheable = true;
1003 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1004 te.shareable = true;
1005 te.innerAttrs = 1;
1006 te.outerAttrs = 0;
1007 break;
1008 case 1: // Shareable Device
1009 te.nonCacheable = true;
1010 te.mtype = TlbEntry::MemoryType::Device;
1011 te.shareable = true;
1012 te.innerAttrs = 3;
1013 te.outerAttrs = 0;
1014 break;
1015 case 2: // Outer and Inner Write-Through, no Write-Allocate
1016 te.mtype = TlbEntry::MemoryType::Normal;
1017 te.shareable = s;
1018 te.innerAttrs = 6;
1019 te.outerAttrs = bits(texcb, 1, 0);
1020 break;
1021 case 3: // Outer and Inner Write-Back, no Write-Allocate
1022 te.mtype = TlbEntry::MemoryType::Normal;
1023 te.shareable = s;
1024 te.innerAttrs = 7;
1025 te.outerAttrs = bits(texcb, 1, 0);
1026 break;
1027 case 4: // Outer and Inner Non-cacheable
1028 te.nonCacheable = true;
1029 te.mtype = TlbEntry::MemoryType::Normal;
1030 te.shareable = s;
1031 te.innerAttrs = 0;
1032 te.outerAttrs = bits(texcb, 1, 0);
1033 break;
1034 case 5: // Reserved
1035 panic("Reserved texcb value!\n");
1036 break;
1037 case 6: // Implementation Defined
1038 panic("Implementation-defined texcb value!\n");
1039 break;
1040 case 7: // Outer and Inner Write-Back, Write-Allocate
1041 te.mtype = TlbEntry::MemoryType::Normal;
1042 te.shareable = s;
1043 te.innerAttrs = 5;
1044 te.outerAttrs = 1;
1045 break;
1046 case 8: // Non-shareable Device
1047 te.nonCacheable = true;
1048 te.mtype = TlbEntry::MemoryType::Device;
1049 te.shareable = false;
1050 te.innerAttrs = 3;
1051 te.outerAttrs = 0;
1052 break;
1053 case 9 ... 15: // Reserved
1054 panic("Reserved texcb value!\n");
1055 break;
1056 case 16 ... 31: // Cacheable Memory
1057 te.mtype = TlbEntry::MemoryType::Normal;
1058 te.shareable = s;
1059 if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1060 te.nonCacheable = true;
1061 te.innerAttrs = bits(texcb, 1, 0);
1062 te.outerAttrs = bits(texcb, 3, 2);
1063 break;
1064 default:
1065 panic("More than 32 states for 5 bits?\n");
1066 }
1067 } else {
1068 assert(tc);
1069 PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1070 currState->tc, !currState->isSecure));
1071 NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1072 currState->tc, !currState->isSecure));
1073 DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1074 uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1075 switch(bits(texcb, 2,0)) {
1076 case 0:
1077 curr_tr = prrr.tr0;
1078 curr_ir = nmrr.ir0;
1079 curr_or = nmrr.or0;
1080 te.outerShareable = (prrr.nos0 == 0);
1081 break;
1082 case 1:
1083 curr_tr = prrr.tr1;
1084 curr_ir = nmrr.ir1;
1085 curr_or = nmrr.or1;
1086 te.outerShareable = (prrr.nos1 == 0);
1087 break;
1088 case 2:
1089 curr_tr = prrr.tr2;
1090 curr_ir = nmrr.ir2;
1091 curr_or = nmrr.or2;
1092 te.outerShareable = (prrr.nos2 == 0);
1093 break;
1094 case 3:
1095 curr_tr = prrr.tr3;
1096 curr_ir = nmrr.ir3;
1097 curr_or = nmrr.or3;
1098 te.outerShareable = (prrr.nos3 == 0);
1099 break;
1100 case 4:
1101 curr_tr = prrr.tr4;
1102 curr_ir = nmrr.ir4;
1103 curr_or = nmrr.or4;
1104 te.outerShareable = (prrr.nos4 == 0);
1105 break;
1106 case 5:
1107 curr_tr = prrr.tr5;
1108 curr_ir = nmrr.ir5;
1109 curr_or = nmrr.or5;
1110 te.outerShareable = (prrr.nos5 == 0);
1111 break;
1112 case 6:
1113 panic("Imp defined type\n");
1114 case 7:
1115 curr_tr = prrr.tr7;
1116 curr_ir = nmrr.ir7;
1117 curr_or = nmrr.or7;
1118 te.outerShareable = (prrr.nos7 == 0);
1119 break;
1120 }
1121
1122 switch(curr_tr) {
1123 case 0:
1124 DPRINTF(TLBVerbose, "StronglyOrdered\n");
1125 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1126 te.nonCacheable = true;
1127 te.innerAttrs = 1;
1128 te.outerAttrs = 0;
1129 te.shareable = true;
1130 break;
1131 case 1:
1132 DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1133 prrr.ds1, prrr.ds0, s);
1134 te.mtype = TlbEntry::MemoryType::Device;
1135 te.nonCacheable = true;
1136 te.innerAttrs = 3;
1137 te.outerAttrs = 0;
1138 if (prrr.ds1 && s)
1139 te.shareable = true;
1140 if (prrr.ds0 && !s)
1141 te.shareable = true;
1142 break;
1143 case 2:
1144 DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1145 prrr.ns1, prrr.ns0, s);
1146 te.mtype = TlbEntry::MemoryType::Normal;
1147 if (prrr.ns1 && s)
1148 te.shareable = true;
1149 if (prrr.ns0 && !s)
1150 te.shareable = true;
1151 break;
1152 case 3:
1153 panic("Reserved type");
1154 }
1155
1156 if (te.mtype == TlbEntry::MemoryType::Normal){
1157 switch(curr_ir) {
1158 case 0:
1159 te.nonCacheable = true;
1160 te.innerAttrs = 0;
1161 break;
1162 case 1:
1163 te.innerAttrs = 5;
1164 break;
1165 case 2:
1166 te.innerAttrs = 6;
1167 break;
1168 case 3:
1169 te.innerAttrs = 7;
1170 break;
1171 }
1172
1173 switch(curr_or) {
1174 case 0:
1175 te.nonCacheable = true;
1176 te.outerAttrs = 0;
1177 break;
1178 case 1:
1179 te.outerAttrs = 1;
1180 break;
1181 case 2:
1182 te.outerAttrs = 2;
1183 break;
1184 case 3:
1185 te.outerAttrs = 3;
1186 break;
1187 }
1188 }
1189 }
1190 DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1191 "outerAttrs: %d\n",
1192 te.shareable, te.innerAttrs, te.outerAttrs);
1193 te.setAttributes(false);
1194}
1195
1196void
1197TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1198 LongDescriptor &lDescriptor)
1199{
1200 assert(_haveLPAE);
1201
1202 uint8_t attr;
1203 uint8_t sh = lDescriptor.sh();
1204 // Different format and source of attributes if this is a stage 2
1205 // translation
1206 if (isStage2) {
1207 attr = lDescriptor.memAttr();
1208 uint8_t attr_3_2 = (attr >> 2) & 0x3;
1209 uint8_t attr_1_0 = attr & 0x3;
1210
1211 DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1212
1213 if (attr_3_2 == 0) {
1214 te.mtype = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1215 : TlbEntry::MemoryType::Device;
1216 te.outerAttrs = 0;
1217 te.innerAttrs = attr_1_0 == 0 ? 1 : 3;
1218 te.nonCacheable = true;
1219 } else {
1220 te.mtype = TlbEntry::MemoryType::Normal;
1221 te.outerAttrs = attr_3_2 == 1 ? 0 :
1222 attr_3_2 == 2 ? 2 : 1;
1223 te.innerAttrs = attr_1_0 == 1 ? 0 :
1224 attr_1_0 == 2 ? 6 : 5;
1225 te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1226 }
1227 } else {
1228 uint8_t attrIndx = lDescriptor.attrIndx();
1229
1230 // LPAE always uses remapping of memory attributes, irrespective of the
1231 // value of SCTLR.TRE
1232 MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1233 int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1234 !currState->isSecure);
1235 uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1236 attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1237 uint8_t attr_7_4 = bits(attr, 7, 4);
1238 uint8_t attr_3_0 = bits(attr, 3, 0);
1239 DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1240
1241 // Note: the memory subsystem only cares about the 'cacheable' memory
1242 // attribute. The other attributes are only used to fill the PAR register
1243 // accordingly to provide the illusion of full support
1244 te.nonCacheable = false;
1245
1246 switch (attr_7_4) {
1247 case 0x0:
1248 // Strongly-ordered or Device memory
1249 if (attr_3_0 == 0x0)
1250 te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1251 else if (attr_3_0 == 0x4)
1252 te.mtype = TlbEntry::MemoryType::Device;
1253 else
1254 panic("Unpredictable behavior\n");
1255 te.nonCacheable = true;
1256 te.outerAttrs = 0;
1257 break;
1258 case 0x4:
1259 // Normal memory, Outer Non-cacheable
1260 te.mtype = TlbEntry::MemoryType::Normal;
1261 te.outerAttrs = 0;
1262 if (attr_3_0 == 0x4)
1263 // Inner Non-cacheable
1264 te.nonCacheable = true;
1265 else if (attr_3_0 < 0x8)
1266 panic("Unpredictable behavior\n");
1267 break;
1268 case 0x8:
1269 case 0x9:
1270 case 0xa:
1271 case 0xb:
1272 case 0xc:
1273 case 0xd:
1274 case 0xe:
1275 case 0xf:
1276 if (attr_7_4 & 0x4) {
1277 te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1278 } else {
1279 te.outerAttrs = 0x2;
1280 }
1281 // Normal memory, Outer Cacheable
1282 te.mtype = TlbEntry::MemoryType::Normal;
1283 if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1284 panic("Unpredictable behavior\n");
1285 break;
1286 default:
1287 panic("Unpredictable behavior\n");
1288 break;
1289 }
1290
1291 switch (attr_3_0) {
1292 case 0x0:
1293 te.innerAttrs = 0x1;
1294 break;
1295 case 0x4:
1296 te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1297 break;
1298 case 0x8:
1299 case 0x9:
1300 case 0xA:
1301 case 0xB:
1302 te.innerAttrs = 6;
1303 break;
1304 case 0xC:
1305 case 0xD:
1306 case 0xE:
1307 case 0xF:
1308 te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1309 break;
1310 default:
1311 panic("Unpredictable behavior\n");
1312 break;
1313 }
1314 }
1315
1316 te.outerShareable = sh == 2;
1317 te.shareable = (sh & 0x2) ? true : false;
1318 te.setAttributes(true);
1319 te.attributes |= (uint64_t) attr << 56;
1320}
1321
1322void
1323TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te, uint8_t attrIndx,
1324 uint8_t sh)
1325{
1326 DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1327
1328 // Select MAIR
1329 uint64_t mair;
1330 switch (currState->el) {
1331 case EL0:
1332 case EL1:
1333 mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1334 break;
1335 case EL2:
1336 mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1337 break;
1338 case EL3:
1339 mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1340 break;
1341 default:
1342 panic("Invalid exception level");
1343 break;
1344 }
1345
1346 // Select attributes
1347 uint8_t attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1348 uint8_t attr_lo = bits(attr, 3, 0);
1349 uint8_t attr_hi = bits(attr, 7, 4);
1350
1351 // Memory type
1352 te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1353
1354 // Cacheability
1355 te.nonCacheable = false;
1356 if (te.mtype == TlbEntry::MemoryType::Device || // Device memory
1357 attr_hi == 0x8 || // Normal memory, Outer Non-cacheable
1358 attr_lo == 0x8) { // Normal memory, Inner Non-cacheable
1359 te.nonCacheable = true;
1360 }
1361
1362 te.shareable = sh == 2;
1363 te.outerShareable = (sh & 0x2) ? true : false;
1364 // Attributes formatted according to the 64-bit PAR
1365 te.attributes = ((uint64_t) attr << 56) |
1366 (1 << 11) | // LPAE bit
1367 (te.ns << 9) | // NS bit
1368 (sh << 7);
1369}
1370
1371void
1372TableWalker::doL1Descriptor()
1373{
1374 if (currState->fault != NoFault) {
1375 return;
1376 }
1377
1378 DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1379 currState->vaddr_tainted, currState->l1Desc.data);
1380 TlbEntry te;
1381
1382 switch (currState->l1Desc.type()) {
1383 case L1Descriptor::Ignore:
1384 case L1Descriptor::Reserved:
1385 if (!currState->timing) {
1386 currState->tc = NULL;
1387 currState->req = NULL;
1388 }
1389 DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1390 if (currState->isFetch)
1391 currState->fault =
1392 std::make_shared<PrefetchAbort>(
1393 currState->vaddr_tainted,
1394 ArmFault::TranslationLL + L1,
1395 isStage2,
1396 ArmFault::VmsaTran);
1397 else
1398 currState->fault =
1399 std::make_shared<DataAbort>(
1400 currState->vaddr_tainted,
1401 TlbEntry::DomainType::NoAccess,
1402 currState->isWrite,
1403 ArmFault::TranslationLL + L1, isStage2,
1404 ArmFault::VmsaTran);
1405 return;
1406 case L1Descriptor::Section:
1407 if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1408 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1409 * enabled if set, do l1.Desc.setAp0() instead of generating
1410 * AccessFlag0
1411 */
1412
1413 currState->fault = std::make_shared<DataAbort>(
1414 currState->vaddr_tainted,
1415 currState->l1Desc.domain(),
1416 currState->isWrite,
1417 ArmFault::AccessFlagLL + L1,
1418 isStage2,
1419 ArmFault::VmsaTran);
1420 }
1421 if (currState->l1Desc.supersection()) {
1422 panic("Haven't implemented supersections\n");
1423 }
1424 insertTableEntry(currState->l1Desc, false);
1425 return;
1426 case L1Descriptor::PageTable:
1427 {
1428 Addr l2desc_addr;
1429 l2desc_addr = currState->l1Desc.l2Addr() |
1430 (bits(currState->vaddr, 19, 12) << 2);
1431 DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1432 l2desc_addr, currState->isSecure ? "s" : "ns");
1433
1434 // Trickbox address check
1440 currState->fault = tlb->walkTrickBoxCheck(
1441 l2desc_addr, currState->isSecure, currState->vaddr,
1442 sizeof(uint32_t), currState->isFetch, currState->isWrite,
1443 currState->l1Desc.domain(), L2);
1435 currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1436 currState->l1Desc.domain(), L2);
1444
1445 if (currState->fault) {
1446 if (!currState->timing) {
1447 currState->tc = NULL;
1448 currState->req = NULL;
1449 }
1450 return;
1451 }
1452
1453 Request::Flags flag = Request::PT_WALK;
1454 if (currState->isSecure)
1455 flag.set(Request::SECURE);
1456
1457 bool delayed;
1458 delayed = fetchDescriptor(l2desc_addr,
1459 (uint8_t*)&currState->l2Desc.data,
1460 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1461 &TableWalker::doL2Descriptor);
1462 if (delayed) {
1463 currState->delayed = true;
1464 }
1465
1466 return;
1467 }
1468 default:
1469 panic("A new type in a 2 bit field?\n");
1470 }
1471}
1472
1473void
1474TableWalker::doLongDescriptor()
1475{
1476 if (currState->fault != NoFault) {
1477 return;
1478 }
1479
1480 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1481 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1482 currState->longDesc.data,
1483 currState->aarch64 ? "AArch64" : "long-desc.");
1484
1485 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1486 (currState->longDesc.type() == LongDescriptor::Page)) {
1487 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1488 "xn: %d, ap: %d, af: %d, type: %d\n",
1489 currState->longDesc.lookupLevel,
1490 currState->longDesc.data,
1491 currState->longDesc.pxn(),
1492 currState->longDesc.xn(),
1493 currState->longDesc.ap(),
1494 currState->longDesc.af(),
1495 currState->longDesc.type());
1496 } else {
1497 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1498 currState->longDesc.lookupLevel,
1499 currState->longDesc.data,
1500 currState->longDesc.type());
1501 }
1502
1503 TlbEntry te;
1504
1505 switch (currState->longDesc.type()) {
1506 case LongDescriptor::Invalid:
1507 if (!currState->timing) {
1508 currState->tc = NULL;
1509 currState->req = NULL;
1510 }
1511
1512 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1513 currState->longDesc.lookupLevel,
1514 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1515 if (currState->isFetch)
1516 currState->fault = std::make_shared<PrefetchAbort>(
1517 currState->vaddr_tainted,
1518 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1519 isStage2,
1520 ArmFault::LpaeTran);
1521 else
1522 currState->fault = std::make_shared<DataAbort>(
1523 currState->vaddr_tainted,
1524 TlbEntry::DomainType::NoAccess,
1525 currState->isWrite,
1526 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1527 isStage2,
1528 ArmFault::LpaeTran);
1529 return;
1530 case LongDescriptor::Block:
1531 case LongDescriptor::Page:
1532 {
1533 bool fault = false;
1534 bool aff = false;
1535 // Check for address size fault
1536 if (checkAddrSizeFaultAArch64(
1537 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1538 currState->longDesc.offsetBits()),
1539 currState->physAddrRange)) {
1540 fault = true;
1541 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1542 currState->longDesc.lookupLevel);
1543 // Check for access fault
1544 } else if (currState->longDesc.af() == 0) {
1545 fault = true;
1546 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1547 currState->longDesc.lookupLevel);
1548 aff = true;
1549 }
1550 if (fault) {
1551 if (currState->isFetch)
1552 currState->fault = std::make_shared<PrefetchAbort>(
1553 currState->vaddr_tainted,
1554 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1555 currState->longDesc.lookupLevel,
1556 isStage2,
1557 ArmFault::LpaeTran);
1558 else
1559 currState->fault = std::make_shared<DataAbort>(
1560 currState->vaddr_tainted,
1561 TlbEntry::DomainType::NoAccess, currState->isWrite,
1562 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1563 currState->longDesc.lookupLevel,
1564 isStage2,
1565 ArmFault::LpaeTran);
1566 } else {
1567 insertTableEntry(currState->longDesc, true);
1568 }
1569 }
1570 return;
1571 case LongDescriptor::Table:
1572 {
1573 // Set hierarchical permission flags
1574 currState->secureLookup = currState->secureLookup &&
1575 currState->longDesc.secureTable();
1576 currState->rwTable = currState->rwTable &&
1577 currState->longDesc.rwTable();
1578 currState->userTable = currState->userTable &&
1579 currState->longDesc.userTable();
1580 currState->xnTable = currState->xnTable ||
1581 currState->longDesc.xnTable();
1582 currState->pxnTable = currState->pxnTable ||
1583 currState->longDesc.pxnTable();
1584
1585 // Set up next level lookup
1586 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1587 currState->vaddr);
1588
1589 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1590 currState->longDesc.lookupLevel,
1591 currState->longDesc.lookupLevel + 1,
1592 next_desc_addr,
1593 currState->secureLookup ? "s" : "ns");
1594
1595 // Check for address size fault
1596 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1597 next_desc_addr, currState->physAddrRange)) {
1598 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1599 currState->longDesc.lookupLevel);
1600 if (currState->isFetch)
1601 currState->fault = std::make_shared<PrefetchAbort>(
1602 currState->vaddr_tainted,
1603 ArmFault::AddressSizeLL
1604 + currState->longDesc.lookupLevel,
1605 isStage2,
1606 ArmFault::LpaeTran);
1607 else
1608 currState->fault = std::make_shared<DataAbort>(
1609 currState->vaddr_tainted,
1610 TlbEntry::DomainType::NoAccess, currState->isWrite,
1611 ArmFault::AddressSizeLL
1612 + currState->longDesc.lookupLevel,
1613 isStage2,
1614 ArmFault::LpaeTran);
1615 return;
1616 }
1617
1618 // Trickbox address check
1437
1438 if (currState->fault) {
1439 if (!currState->timing) {
1440 currState->tc = NULL;
1441 currState->req = NULL;
1442 }
1443 return;
1444 }
1445
1446 Request::Flags flag = Request::PT_WALK;
1447 if (currState->isSecure)
1448 flag.set(Request::SECURE);
1449
1450 bool delayed;
1451 delayed = fetchDescriptor(l2desc_addr,
1452 (uint8_t*)&currState->l2Desc.data,
1453 sizeof(uint32_t), flag, -1, &doL2DescEvent,
1454 &TableWalker::doL2Descriptor);
1455 if (delayed) {
1456 currState->delayed = true;
1457 }
1458
1459 return;
1460 }
1461 default:
1462 panic("A new type in a 2 bit field?\n");
1463 }
1464}
1465
1466void
1467TableWalker::doLongDescriptor()
1468{
1469 if (currState->fault != NoFault) {
1470 return;
1471 }
1472
1473 DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1474 currState->longDesc.lookupLevel, currState->vaddr_tainted,
1475 currState->longDesc.data,
1476 currState->aarch64 ? "AArch64" : "long-desc.");
1477
1478 if ((currState->longDesc.type() == LongDescriptor::Block) ||
1479 (currState->longDesc.type() == LongDescriptor::Page)) {
1480 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1481 "xn: %d, ap: %d, af: %d, type: %d\n",
1482 currState->longDesc.lookupLevel,
1483 currState->longDesc.data,
1484 currState->longDesc.pxn(),
1485 currState->longDesc.xn(),
1486 currState->longDesc.ap(),
1487 currState->longDesc.af(),
1488 currState->longDesc.type());
1489 } else {
1490 DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1491 currState->longDesc.lookupLevel,
1492 currState->longDesc.data,
1493 currState->longDesc.type());
1494 }
1495
1496 TlbEntry te;
1497
1498 switch (currState->longDesc.type()) {
1499 case LongDescriptor::Invalid:
1500 if (!currState->timing) {
1501 currState->tc = NULL;
1502 currState->req = NULL;
1503 }
1504
1505 DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1506 currState->longDesc.lookupLevel,
1507 ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1508 if (currState->isFetch)
1509 currState->fault = std::make_shared<PrefetchAbort>(
1510 currState->vaddr_tainted,
1511 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1512 isStage2,
1513 ArmFault::LpaeTran);
1514 else
1515 currState->fault = std::make_shared<DataAbort>(
1516 currState->vaddr_tainted,
1517 TlbEntry::DomainType::NoAccess,
1518 currState->isWrite,
1519 ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1520 isStage2,
1521 ArmFault::LpaeTran);
1522 return;
1523 case LongDescriptor::Block:
1524 case LongDescriptor::Page:
1525 {
1526 bool fault = false;
1527 bool aff = false;
1528 // Check for address size fault
1529 if (checkAddrSizeFaultAArch64(
1530 mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1531 currState->longDesc.offsetBits()),
1532 currState->physAddrRange)) {
1533 fault = true;
1534 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1535 currState->longDesc.lookupLevel);
1536 // Check for access fault
1537 } else if (currState->longDesc.af() == 0) {
1538 fault = true;
1539 DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1540 currState->longDesc.lookupLevel);
1541 aff = true;
1542 }
1543 if (fault) {
1544 if (currState->isFetch)
1545 currState->fault = std::make_shared<PrefetchAbort>(
1546 currState->vaddr_tainted,
1547 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1548 currState->longDesc.lookupLevel,
1549 isStage2,
1550 ArmFault::LpaeTran);
1551 else
1552 currState->fault = std::make_shared<DataAbort>(
1553 currState->vaddr_tainted,
1554 TlbEntry::DomainType::NoAccess, currState->isWrite,
1555 (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1556 currState->longDesc.lookupLevel,
1557 isStage2,
1558 ArmFault::LpaeTran);
1559 } else {
1560 insertTableEntry(currState->longDesc, true);
1561 }
1562 }
1563 return;
1564 case LongDescriptor::Table:
1565 {
1566 // Set hierarchical permission flags
1567 currState->secureLookup = currState->secureLookup &&
1568 currState->longDesc.secureTable();
1569 currState->rwTable = currState->rwTable &&
1570 currState->longDesc.rwTable();
1571 currState->userTable = currState->userTable &&
1572 currState->longDesc.userTable();
1573 currState->xnTable = currState->xnTable ||
1574 currState->longDesc.xnTable();
1575 currState->pxnTable = currState->pxnTable ||
1576 currState->longDesc.pxnTable();
1577
1578 // Set up next level lookup
1579 Addr next_desc_addr = currState->longDesc.nextDescAddr(
1580 currState->vaddr);
1581
1582 DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1583 currState->longDesc.lookupLevel,
1584 currState->longDesc.lookupLevel + 1,
1585 next_desc_addr,
1586 currState->secureLookup ? "s" : "ns");
1587
1588 // Check for address size fault
1589 if (currState->aarch64 && checkAddrSizeFaultAArch64(
1590 next_desc_addr, currState->physAddrRange)) {
1591 DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1592 currState->longDesc.lookupLevel);
1593 if (currState->isFetch)
1594 currState->fault = std::make_shared<PrefetchAbort>(
1595 currState->vaddr_tainted,
1596 ArmFault::AddressSizeLL
1597 + currState->longDesc.lookupLevel,
1598 isStage2,
1599 ArmFault::LpaeTran);
1600 else
1601 currState->fault = std::make_shared<DataAbort>(
1602 currState->vaddr_tainted,
1603 TlbEntry::DomainType::NoAccess, currState->isWrite,
1604 ArmFault::AddressSizeLL
1605 + currState->longDesc.lookupLevel,
1606 isStage2,
1607 ArmFault::LpaeTran);
1608 return;
1609 }
1610
1611 // Trickbox address check
1619 currState->fault = tlb->walkTrickBoxCheck(
1620 next_desc_addr, currState->vaddr,
1621 currState->vaddr, sizeof(uint64_t),
1622 currState->isFetch, currState->isWrite,
1623 TlbEntry::DomainType::Client,
1624 toLookupLevel(currState->longDesc.lookupLevel +1));
1612 currState->fault = testWalk(
1613 next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1614 toLookupLevel(currState->longDesc.lookupLevel +1));
1625
1626 if (currState->fault) {
1627 if (!currState->timing) {
1628 currState->tc = NULL;
1629 currState->req = NULL;
1630 }
1631 return;
1632 }
1633
1634 Request::Flags flag = Request::PT_WALK;
1635 if (currState->secureLookup)
1636 flag.set(Request::SECURE);
1637
1638 currState->longDesc.lookupLevel =
1639 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1640 Event *event = NULL;
1641 switch (currState->longDesc.lookupLevel) {
1642 case L1:
1643 assert(currState->aarch64);
1644 event = &doL1LongDescEvent;
1645 break;
1646 case L2:
1647 event = &doL2LongDescEvent;
1648 break;
1649 case L3:
1650 event = &doL3LongDescEvent;
1651 break;
1652 default:
1653 panic("Wrong lookup level in table walk\n");
1654 break;
1655 }
1656
1657 bool delayed;
1658 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1659 sizeof(uint64_t), flag, -1, event,
1660 &TableWalker::doLongDescriptor);
1661 if (delayed) {
1662 currState->delayed = true;
1663 }
1664 }
1665 return;
1666 default:
1667 panic("A new type in a 2 bit field?\n");
1668 }
1669}
1670
1671void
1672TableWalker::doL2Descriptor()
1673{
1674 if (currState->fault != NoFault) {
1675 return;
1676 }
1677
1678 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1679 currState->vaddr_tainted, currState->l2Desc.data);
1680 TlbEntry te;
1681
1682 if (currState->l2Desc.invalid()) {
1683 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1684 if (!currState->timing) {
1685 currState->tc = NULL;
1686 currState->req = NULL;
1687 }
1688 if (currState->isFetch)
1689 currState->fault = std::make_shared<PrefetchAbort>(
1690 currState->vaddr_tainted,
1691 ArmFault::TranslationLL + L2,
1692 isStage2,
1693 ArmFault::VmsaTran);
1694 else
1695 currState->fault = std::make_shared<DataAbort>(
1696 currState->vaddr_tainted, currState->l1Desc.domain(),
1697 currState->isWrite, ArmFault::TranslationLL + L2,
1698 isStage2,
1699 ArmFault::VmsaTran);
1700 return;
1701 }
1702
1703 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1704 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1705 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1706 */
1707 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1708 currState->sctlr.afe, currState->l2Desc.ap());
1709
1710 currState->fault = std::make_shared<DataAbort>(
1711 currState->vaddr_tainted,
1712 TlbEntry::DomainType::NoAccess, currState->isWrite,
1713 ArmFault::AccessFlagLL + L2, isStage2,
1714 ArmFault::VmsaTran);
1715 }
1716
1717 insertTableEntry(currState->l2Desc, false);
1718}
1719
1720void
1721TableWalker::doL1DescriptorWrapper()
1722{
1723 currState = stateQueues[L1].front();
1724 currState->delayed = false;
1725 // if there's a stage2 translation object we don't need it any more
1726 if (currState->stage2Tran) {
1727 delete currState->stage2Tran;
1728 currState->stage2Tran = NULL;
1729 }
1730
1731
1732 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1733 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1734
1735 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1736 doL1Descriptor();
1737
1738 stateQueues[L1].pop_front();
1739 // Check if fault was generated
1740 if (currState->fault != NoFault) {
1741 currState->transState->finish(currState->fault, currState->req,
1742 currState->tc, currState->mode);
1743 statWalksShortTerminatedAtLevel[0]++;
1744
1745 pending = false;
1746 nextWalk(currState->tc);
1747
1748 currState->req = NULL;
1749 currState->tc = NULL;
1750 currState->delayed = false;
1751 delete currState;
1752 }
1753 else if (!currState->delayed) {
1754 // delay is not set so there is no L2 to do
1755 // Don't finish the translation if a stage 2 look up is underway
1756 if (!currState->doingStage2) {
1757 statWalkServiceTime.sample(curTick() - currState->startTime);
1758 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1759 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1760 currState->transState, currState->mode);
1761 statWalksShortTerminatedAtLevel[0]++;
1762 }
1763
1764 pending = false;
1765 nextWalk(currState->tc);
1766
1767 currState->req = NULL;
1768 currState->tc = NULL;
1769 currState->delayed = false;
1770 delete currState;
1771 } else {
1772 // need to do L2 descriptor
1773 stateQueues[L2].push_back(currState);
1774 }
1775 currState = NULL;
1776}
1777
1778void
1779TableWalker::doL2DescriptorWrapper()
1780{
1781 currState = stateQueues[L2].front();
1782 assert(currState->delayed);
1783 // if there's a stage2 translation object we don't need it any more
1784 if (currState->stage2Tran) {
1785 delete currState->stage2Tran;
1786 currState->stage2Tran = NULL;
1787 }
1788
1789 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1790 currState->vaddr_tainted);
1791 doL2Descriptor();
1792
1793 // Check if fault was generated
1794 if (currState->fault != NoFault) {
1795 currState->transState->finish(currState->fault, currState->req,
1796 currState->tc, currState->mode);
1797 statWalksShortTerminatedAtLevel[1]++;
1798 }
1799 else {
1800 // Don't finish the translation if a stage 2 look up is underway
1801 if (!currState->doingStage2) {
1802 statWalkServiceTime.sample(curTick() - currState->startTime);
1803 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1804 currState->fault = tlb->translateTiming(currState->req,
1805 currState->tc, currState->transState, currState->mode);
1806 statWalksShortTerminatedAtLevel[1]++;
1807 }
1808 }
1809
1810
1811 stateQueues[L2].pop_front();
1812 pending = false;
1813 nextWalk(currState->tc);
1814
1815 currState->req = NULL;
1816 currState->tc = NULL;
1817 currState->delayed = false;
1818
1819 delete currState;
1820 currState = NULL;
1821}
1822
1823void
1824TableWalker::doL0LongDescriptorWrapper()
1825{
1826 doLongDescriptorWrapper(L0);
1827}
1828
1829void
1830TableWalker::doL1LongDescriptorWrapper()
1831{
1832 doLongDescriptorWrapper(L1);
1833}
1834
1835void
1836TableWalker::doL2LongDescriptorWrapper()
1837{
1838 doLongDescriptorWrapper(L2);
1839}
1840
1841void
1842TableWalker::doL3LongDescriptorWrapper()
1843{
1844 doLongDescriptorWrapper(L3);
1845}
1846
1847void
1848TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1849{
1850 currState = stateQueues[curr_lookup_level].front();
1851 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1852 currState->delayed = false;
1853
1854 // if there's a stage2 translation object we don't need it any more
1855 if (currState->stage2Tran) {
1856 delete currState->stage2Tran;
1857 currState->stage2Tran = NULL;
1858 }
1859
1860 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1861 currState->vaddr_tainted);
1862 doLongDescriptor();
1863
1864 stateQueues[curr_lookup_level].pop_front();
1865
1866 if (currState->fault != NoFault) {
1867 // A fault was generated
1868 currState->transState->finish(currState->fault, currState->req,
1869 currState->tc, currState->mode);
1870
1871 pending = false;
1872 nextWalk(currState->tc);
1873
1874 currState->req = NULL;
1875 currState->tc = NULL;
1876 currState->delayed = false;
1877 delete currState;
1878 } else if (!currState->delayed) {
1879 // No additional lookups required
1880 // Don't finish the translation if a stage 2 look up is underway
1881 if (!currState->doingStage2) {
1882 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1883 statWalkServiceTime.sample(curTick() - currState->startTime);
1884 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1885 currState->transState,
1886 currState->mode);
1887 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1888 }
1889
1890 pending = false;
1891 nextWalk(currState->tc);
1892
1893 currState->req = NULL;
1894 currState->tc = NULL;
1895 currState->delayed = false;
1896 delete currState;
1897 } else {
1898 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1899 panic("Max. number of lookups already reached in table walk\n");
1900 // Need to perform additional lookups
1901 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1902 }
1903 currState = NULL;
1904}
1905
1906
1907void
1908TableWalker::nextWalk(ThreadContext *tc)
1909{
1910 if (pendingQueue.size())
1911 schedule(doProcessEvent, clockEdge(Cycles(1)));
1912 else
1913 completeDrain();
1914}
1915
1916bool
1917TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1918 Request::Flags flags, int queueIndex, Event *event,
1919 void (TableWalker::*doDescriptor)())
1920{
1921 bool isTiming = currState->timing;
1922
1923 // do the requests for the page table descriptors have to go through the
1924 // second stage MMU
1925 if (currState->stage2Req) {
1926 Fault fault;
1927 flags = flags | TLB::MustBeOne;
1928
1929 if (isTiming) {
1930 Stage2MMU::Stage2Translation *tran = new
1931 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1932 currState->vaddr);
1933 currState->stage2Tran = tran;
1934 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1935 flags);
1936 fault = tran->fault;
1937 } else {
1938 fault = stage2Mmu->readDataUntimed(currState->tc,
1939 currState->vaddr, descAddr, data, numBytes, flags,
1940 currState->functional);
1941 }
1942
1943 if (fault != NoFault) {
1944 currState->fault = fault;
1945 }
1946 if (isTiming) {
1947 if (queueIndex >= 0) {
1948 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1949 stateQueues[queueIndex].size());
1950 stateQueues[queueIndex].push_back(currState);
1951 currState = NULL;
1952 }
1953 } else {
1954 (this->*doDescriptor)();
1955 }
1956 } else {
1957 if (isTiming) {
1958 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1959 currState->tc->getCpuPtr()->clockPeriod(),flags);
1960 if (queueIndex >= 0) {
1961 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1962 stateQueues[queueIndex].size());
1963 stateQueues[queueIndex].push_back(currState);
1964 currState = NULL;
1965 }
1966 } else if (!currState->functional) {
1967 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
1968 currState->tc->getCpuPtr()->clockPeriod(), flags);
1969 (this->*doDescriptor)();
1970 } else {
1971 RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
1972 req->taskId(ContextSwitchTaskId::DMA);
1973 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
1974 pkt->dataStatic(data);
1975 port->sendFunctional(pkt);
1976 (this->*doDescriptor)();
1977 delete req;
1978 delete pkt;
1979 }
1980 }
1981 return (isTiming);
1982}
1983
1984void
1985TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
1986{
1987 TlbEntry te;
1988
1989 // Create and fill a new page table entry
1990 te.valid = true;
1991 te.longDescFormat = longDescriptor;
1992 te.isHyp = currState->isHyp;
1993 te.asid = currState->asid;
1994 te.vmid = currState->vmid;
1995 te.N = descriptor.offsetBits();
1996 te.vpn = currState->vaddr >> te.N;
1997 te.size = (1<<te.N) - 1;
1998 te.pfn = descriptor.pfn();
1999 te.domain = descriptor.domain();
2000 te.lookupLevel = descriptor.lookupLevel;
2001 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
2002 te.nstid = !currState->isSecure;
2003 te.xn = descriptor.xn();
2004 if (currState->aarch64)
2005 te.el = currState->el;
2006 else
2007 te.el = 1;
2008
2009 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2010 statRequestOrigin[COMPLETED][currState->isFetch]++;
2011
2012 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2013 // as global
2014 te.global = descriptor.global(currState) || isStage2;
2015 if (longDescriptor) {
2016 LongDescriptor lDescriptor =
2017 dynamic_cast<LongDescriptor &>(descriptor);
2018
2019 te.xn |= currState->xnTable;
2020 te.pxn = currState->pxnTable || lDescriptor.pxn();
2021 if (isStage2) {
2022 // this is actually the HAP field, but its stored in the same bit
2023 // possitions as the AP field in a stage 1 translation.
2024 te.hap = lDescriptor.ap();
2025 } else {
2026 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2027 (currState->userTable && (descriptor.ap() & 0x1));
2028 }
2029 if (currState->aarch64)
2030 memAttrsAArch64(currState->tc, te, currState->longDesc.attrIndx(),
2031 currState->longDesc.sh());
2032 else
2033 memAttrsLPAE(currState->tc, te, lDescriptor);
2034 } else {
2035 te.ap = descriptor.ap();
2036 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2037 descriptor.shareable());
2038 }
2039
2040 // Debug output
2041 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2042 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2043 te.N, te.pfn, te.size, te.global, te.valid);
2044 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2045 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2046 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2047 te.nonCacheable, te.ns);
2048 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2049 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2050 descriptor.getRawData());
2051
2052 // Insert the entry into the TLB
2053 tlb->insert(currState->vaddr, te);
2054 if (!currState->timing) {
2055 currState->tc = NULL;
2056 currState->req = NULL;
2057 }
2058}
2059
2060ArmISA::TableWalker *
2061ArmTableWalkerParams::create()
2062{
2063 return new ArmISA::TableWalker(this);
2064}
2065
2066LookupLevel
2067TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2068{
2069 switch (lookup_level_as_int) {
2070 case L1:
2071 return L1;
2072 case L2:
2073 return L2;
2074 case L3:
2075 return L3;
2076 default:
2077 panic("Invalid lookup level conversion");
2078 }
2079}
2080
2081/* this method keeps track of the table walker queue's residency, so
2082 * needs to be called whenever requests start and complete. */
2083void
2084TableWalker::pendingChange()
2085{
2086 unsigned n = pendingQueue.size();
2087 if ((currState != NULL) && (currState != pendingQueue.front())) {
2088 ++n;
2089 }
2090
2091 if (n != pendingReqs) {
2092 Tick now = curTick();
2093 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2094 pendingReqs = n;
2095 pendingChangeTick = now;
2096 }
2097}
2098
1615
1616 if (currState->fault) {
1617 if (!currState->timing) {
1618 currState->tc = NULL;
1619 currState->req = NULL;
1620 }
1621 return;
1622 }
1623
1624 Request::Flags flag = Request::PT_WALK;
1625 if (currState->secureLookup)
1626 flag.set(Request::SECURE);
1627
1628 currState->longDesc.lookupLevel =
1629 (LookupLevel) (currState->longDesc.lookupLevel + 1);
1630 Event *event = NULL;
1631 switch (currState->longDesc.lookupLevel) {
1632 case L1:
1633 assert(currState->aarch64);
1634 event = &doL1LongDescEvent;
1635 break;
1636 case L2:
1637 event = &doL2LongDescEvent;
1638 break;
1639 case L3:
1640 event = &doL3LongDescEvent;
1641 break;
1642 default:
1643 panic("Wrong lookup level in table walk\n");
1644 break;
1645 }
1646
1647 bool delayed;
1648 delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1649 sizeof(uint64_t), flag, -1, event,
1650 &TableWalker::doLongDescriptor);
1651 if (delayed) {
1652 currState->delayed = true;
1653 }
1654 }
1655 return;
1656 default:
1657 panic("A new type in a 2 bit field?\n");
1658 }
1659}
1660
1661void
1662TableWalker::doL2Descriptor()
1663{
1664 if (currState->fault != NoFault) {
1665 return;
1666 }
1667
1668 DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1669 currState->vaddr_tainted, currState->l2Desc.data);
1670 TlbEntry te;
1671
1672 if (currState->l2Desc.invalid()) {
1673 DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1674 if (!currState->timing) {
1675 currState->tc = NULL;
1676 currState->req = NULL;
1677 }
1678 if (currState->isFetch)
1679 currState->fault = std::make_shared<PrefetchAbort>(
1680 currState->vaddr_tainted,
1681 ArmFault::TranslationLL + L2,
1682 isStage2,
1683 ArmFault::VmsaTran);
1684 else
1685 currState->fault = std::make_shared<DataAbort>(
1686 currState->vaddr_tainted, currState->l1Desc.domain(),
1687 currState->isWrite, ArmFault::TranslationLL + L2,
1688 isStage2,
1689 ArmFault::VmsaTran);
1690 return;
1691 }
1692
1693 if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1694 /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1695 * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1696 */
1697 DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1698 currState->sctlr.afe, currState->l2Desc.ap());
1699
1700 currState->fault = std::make_shared<DataAbort>(
1701 currState->vaddr_tainted,
1702 TlbEntry::DomainType::NoAccess, currState->isWrite,
1703 ArmFault::AccessFlagLL + L2, isStage2,
1704 ArmFault::VmsaTran);
1705 }
1706
1707 insertTableEntry(currState->l2Desc, false);
1708}
1709
1710void
1711TableWalker::doL1DescriptorWrapper()
1712{
1713 currState = stateQueues[L1].front();
1714 currState->delayed = false;
1715 // if there's a stage2 translation object we don't need it any more
1716 if (currState->stage2Tran) {
1717 delete currState->stage2Tran;
1718 currState->stage2Tran = NULL;
1719 }
1720
1721
1722 DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1723 DPRINTF(TLBVerbose, "L1 Desc object data: %08x\n",currState->l1Desc.data);
1724
1725 DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1726 doL1Descriptor();
1727
1728 stateQueues[L1].pop_front();
1729 // Check if fault was generated
1730 if (currState->fault != NoFault) {
1731 currState->transState->finish(currState->fault, currState->req,
1732 currState->tc, currState->mode);
1733 statWalksShortTerminatedAtLevel[0]++;
1734
1735 pending = false;
1736 nextWalk(currState->tc);
1737
1738 currState->req = NULL;
1739 currState->tc = NULL;
1740 currState->delayed = false;
1741 delete currState;
1742 }
1743 else if (!currState->delayed) {
1744 // delay is not set so there is no L2 to do
1745 // Don't finish the translation if a stage 2 look up is underway
1746 if (!currState->doingStage2) {
1747 statWalkServiceTime.sample(curTick() - currState->startTime);
1748 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1749 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1750 currState->transState, currState->mode);
1751 statWalksShortTerminatedAtLevel[0]++;
1752 }
1753
1754 pending = false;
1755 nextWalk(currState->tc);
1756
1757 currState->req = NULL;
1758 currState->tc = NULL;
1759 currState->delayed = false;
1760 delete currState;
1761 } else {
1762 // need to do L2 descriptor
1763 stateQueues[L2].push_back(currState);
1764 }
1765 currState = NULL;
1766}
1767
1768void
1769TableWalker::doL2DescriptorWrapper()
1770{
1771 currState = stateQueues[L2].front();
1772 assert(currState->delayed);
1773 // if there's a stage2 translation object we don't need it any more
1774 if (currState->stage2Tran) {
1775 delete currState->stage2Tran;
1776 currState->stage2Tran = NULL;
1777 }
1778
1779 DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1780 currState->vaddr_tainted);
1781 doL2Descriptor();
1782
1783 // Check if fault was generated
1784 if (currState->fault != NoFault) {
1785 currState->transState->finish(currState->fault, currState->req,
1786 currState->tc, currState->mode);
1787 statWalksShortTerminatedAtLevel[1]++;
1788 }
1789 else {
1790 // Don't finish the translation if a stage 2 look up is underway
1791 if (!currState->doingStage2) {
1792 statWalkServiceTime.sample(curTick() - currState->startTime);
1793 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1794 currState->fault = tlb->translateTiming(currState->req,
1795 currState->tc, currState->transState, currState->mode);
1796 statWalksShortTerminatedAtLevel[1]++;
1797 }
1798 }
1799
1800
1801 stateQueues[L2].pop_front();
1802 pending = false;
1803 nextWalk(currState->tc);
1804
1805 currState->req = NULL;
1806 currState->tc = NULL;
1807 currState->delayed = false;
1808
1809 delete currState;
1810 currState = NULL;
1811}
1812
1813void
1814TableWalker::doL0LongDescriptorWrapper()
1815{
1816 doLongDescriptorWrapper(L0);
1817}
1818
1819void
1820TableWalker::doL1LongDescriptorWrapper()
1821{
1822 doLongDescriptorWrapper(L1);
1823}
1824
1825void
1826TableWalker::doL2LongDescriptorWrapper()
1827{
1828 doLongDescriptorWrapper(L2);
1829}
1830
1831void
1832TableWalker::doL3LongDescriptorWrapper()
1833{
1834 doLongDescriptorWrapper(L3);
1835}
1836
1837void
1838TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1839{
1840 currState = stateQueues[curr_lookup_level].front();
1841 assert(curr_lookup_level == currState->longDesc.lookupLevel);
1842 currState->delayed = false;
1843
1844 // if there's a stage2 translation object we don't need it any more
1845 if (currState->stage2Tran) {
1846 delete currState->stage2Tran;
1847 currState->stage2Tran = NULL;
1848 }
1849
1850 DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1851 currState->vaddr_tainted);
1852 doLongDescriptor();
1853
1854 stateQueues[curr_lookup_level].pop_front();
1855
1856 if (currState->fault != NoFault) {
1857 // A fault was generated
1858 currState->transState->finish(currState->fault, currState->req,
1859 currState->tc, currState->mode);
1860
1861 pending = false;
1862 nextWalk(currState->tc);
1863
1864 currState->req = NULL;
1865 currState->tc = NULL;
1866 currState->delayed = false;
1867 delete currState;
1868 } else if (!currState->delayed) {
1869 // No additional lookups required
1870 // Don't finish the translation if a stage 2 look up is underway
1871 if (!currState->doingStage2) {
1872 DPRINTF(TLBVerbose, "calling translateTiming again\n");
1873 statWalkServiceTime.sample(curTick() - currState->startTime);
1874 currState->fault = tlb->translateTiming(currState->req, currState->tc,
1875 currState->transState,
1876 currState->mode);
1877 statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1878 }
1879
1880 pending = false;
1881 nextWalk(currState->tc);
1882
1883 currState->req = NULL;
1884 currState->tc = NULL;
1885 currState->delayed = false;
1886 delete currState;
1887 } else {
1888 if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1889 panic("Max. number of lookups already reached in table walk\n");
1890 // Need to perform additional lookups
1891 stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1892 }
1893 currState = NULL;
1894}
1895
1896
1897void
1898TableWalker::nextWalk(ThreadContext *tc)
1899{
1900 if (pendingQueue.size())
1901 schedule(doProcessEvent, clockEdge(Cycles(1)));
1902 else
1903 completeDrain();
1904}
1905
1906bool
1907TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1908 Request::Flags flags, int queueIndex, Event *event,
1909 void (TableWalker::*doDescriptor)())
1910{
1911 bool isTiming = currState->timing;
1912
1913 // do the requests for the page table descriptors have to go through the
1914 // second stage MMU
1915 if (currState->stage2Req) {
1916 Fault fault;
1917 flags = flags | TLB::MustBeOne;
1918
1919 if (isTiming) {
1920 Stage2MMU::Stage2Translation *tran = new
1921 Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1922 currState->vaddr);
1923 currState->stage2Tran = tran;
1924 stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1925 flags);
1926 fault = tran->fault;
1927 } else {
1928 fault = stage2Mmu->readDataUntimed(currState->tc,
1929 currState->vaddr, descAddr, data, numBytes, flags,
1930 currState->functional);
1931 }
1932
1933 if (fault != NoFault) {
1934 currState->fault = fault;
1935 }
1936 if (isTiming) {
1937 if (queueIndex >= 0) {
1938 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1939 stateQueues[queueIndex].size());
1940 stateQueues[queueIndex].push_back(currState);
1941 currState = NULL;
1942 }
1943 } else {
1944 (this->*doDescriptor)();
1945 }
1946 } else {
1947 if (isTiming) {
1948 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1949 currState->tc->getCpuPtr()->clockPeriod(),flags);
1950 if (queueIndex >= 0) {
1951 DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1952 stateQueues[queueIndex].size());
1953 stateQueues[queueIndex].push_back(currState);
1954 currState = NULL;
1955 }
1956 } else if (!currState->functional) {
1957 port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
1958 currState->tc->getCpuPtr()->clockPeriod(), flags);
1959 (this->*doDescriptor)();
1960 } else {
1961 RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
1962 req->taskId(ContextSwitchTaskId::DMA);
1963 PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
1964 pkt->dataStatic(data);
1965 port->sendFunctional(pkt);
1966 (this->*doDescriptor)();
1967 delete req;
1968 delete pkt;
1969 }
1970 }
1971 return (isTiming);
1972}
1973
1974void
1975TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
1976{
1977 TlbEntry te;
1978
1979 // Create and fill a new page table entry
1980 te.valid = true;
1981 te.longDescFormat = longDescriptor;
1982 te.isHyp = currState->isHyp;
1983 te.asid = currState->asid;
1984 te.vmid = currState->vmid;
1985 te.N = descriptor.offsetBits();
1986 te.vpn = currState->vaddr >> te.N;
1987 te.size = (1<<te.N) - 1;
1988 te.pfn = descriptor.pfn();
1989 te.domain = descriptor.domain();
1990 te.lookupLevel = descriptor.lookupLevel;
1991 te.ns = !descriptor.secure(haveSecurity, currState) || isStage2;
1992 te.nstid = !currState->isSecure;
1993 te.xn = descriptor.xn();
1994 if (currState->aarch64)
1995 te.el = currState->el;
1996 else
1997 te.el = 1;
1998
1999 statPageSizes[pageSizeNtoStatBin(te.N)]++;
2000 statRequestOrigin[COMPLETED][currState->isFetch]++;
2001
2002 // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2003 // as global
2004 te.global = descriptor.global(currState) || isStage2;
2005 if (longDescriptor) {
2006 LongDescriptor lDescriptor =
2007 dynamic_cast<LongDescriptor &>(descriptor);
2008
2009 te.xn |= currState->xnTable;
2010 te.pxn = currState->pxnTable || lDescriptor.pxn();
2011 if (isStage2) {
2012 // this is actually the HAP field, but its stored in the same bit
2013 // possitions as the AP field in a stage 1 translation.
2014 te.hap = lDescriptor.ap();
2015 } else {
2016 te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2017 (currState->userTable && (descriptor.ap() & 0x1));
2018 }
2019 if (currState->aarch64)
2020 memAttrsAArch64(currState->tc, te, currState->longDesc.attrIndx(),
2021 currState->longDesc.sh());
2022 else
2023 memAttrsLPAE(currState->tc, te, lDescriptor);
2024 } else {
2025 te.ap = descriptor.ap();
2026 memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2027 descriptor.shareable());
2028 }
2029
2030 // Debug output
2031 DPRINTF(TLB, descriptor.dbgHeader().c_str());
2032 DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2033 te.N, te.pfn, te.size, te.global, te.valid);
2034 DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2035 "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2036 te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2037 te.nonCacheable, te.ns);
2038 DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2039 descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2040 descriptor.getRawData());
2041
2042 // Insert the entry into the TLB
2043 tlb->insert(currState->vaddr, te);
2044 if (!currState->timing) {
2045 currState->tc = NULL;
2046 currState->req = NULL;
2047 }
2048}
2049
2050ArmISA::TableWalker *
2051ArmTableWalkerParams::create()
2052{
2053 return new ArmISA::TableWalker(this);
2054}
2055
2056LookupLevel
2057TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2058{
2059 switch (lookup_level_as_int) {
2060 case L1:
2061 return L1;
2062 case L2:
2063 return L2;
2064 case L3:
2065 return L3;
2066 default:
2067 panic("Invalid lookup level conversion");
2068 }
2069}
2070
2071/* this method keeps track of the table walker queue's residency, so
2072 * needs to be called whenever requests start and complete. */
2073void
2074TableWalker::pendingChange()
2075{
2076 unsigned n = pendingQueue.size();
2077 if ((currState != NULL) && (currState != pendingQueue.front())) {
2078 ++n;
2079 }
2080
2081 if (n != pendingReqs) {
2082 Tick now = curTick();
2083 statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2084 pendingReqs = n;
2085 pendingChangeTick = now;
2086 }
2087}
2088
2089Fault
2090TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2091 LookupLevel lookup_level)
2092{
2093 return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2094 currState->mode, domain, lookup_level);
2095}
2096
2097
2099uint8_t
2100TableWalker::pageSizeNtoStatBin(uint8_t N)
2101{
2102 /* for statPageSizes */
2103 switch(N) {
2104 case 12: return 0; // 4K
2105 case 14: return 1; // 16K (using 16K granule in v8-64)
2106 case 16: return 2; // 64K
2107 case 20: return 3; // 1M
2108 case 21: return 4; // 2M-LPAE
2109 case 24: return 5; // 16M
2110 case 25: return 6; // 32M (using 16K granule in v8-64)
2111 case 29: return 7; // 512M (using 64K granule in v8-64)
2112 case 30: return 8; // 1G-LPAE
2113 default:
2114 panic("unknown page size");
2115 return 255;
2116 }
2117}
2118
2119void
2120TableWalker::regStats()
2121{
2122 statWalks
2123 .name(name() + ".walks")
2124 .desc("Table walker walks requested")
2125 ;
2126
2127 statWalksShortDescriptor
2128 .name(name() + ".walksShort")
2129 .desc("Table walker walks initiated with short descriptors")
2130 .flags(Stats::nozero)
2131 ;
2132
2133 statWalksLongDescriptor
2134 .name(name() + ".walksLong")
2135 .desc("Table walker walks initiated with long descriptors")
2136 .flags(Stats::nozero)
2137 ;
2138
2139 statWalksShortTerminatedAtLevel
2140 .init(2)
2141 .name(name() + ".walksShortTerminationLevel")
2142 .desc("Level at which table walker walks "
2143 "with short descriptors terminate")
2144 .flags(Stats::nozero)
2145 ;
2146 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2147 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2148
2149 statWalksLongTerminatedAtLevel
2150 .init(4)
2151 .name(name() + ".walksLongTerminationLevel")
2152 .desc("Level at which table walker walks "
2153 "with long descriptors terminate")
2154 .flags(Stats::nozero)
2155 ;
2156 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2157 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2158 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2159 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2160
2161 statSquashedBefore
2162 .name(name() + ".walksSquashedBefore")
2163 .desc("Table walks squashed before starting")
2164 .flags(Stats::nozero)
2165 ;
2166
2167 statSquashedAfter
2168 .name(name() + ".walksSquashedAfter")
2169 .desc("Table walks squashed after completion")
2170 .flags(Stats::nozero)
2171 ;
2172
2173 statWalkWaitTime
2174 .init(16)
2175 .name(name() + ".walkWaitTime")
2176 .desc("Table walker wait (enqueue to first request) latency")
2177 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2178 ;
2179
2180 statWalkServiceTime
2181 .init(16)
2182 .name(name() + ".walkCompletionTime")
2183 .desc("Table walker service (enqueue to completion) latency")
2184 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2185 ;
2186
2187 statPendingWalks
2188 .init(16)
2189 .name(name() + ".walksPending")
2190 .desc("Table walker pending requests distribution")
2191 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2192 ;
2193
2194 statPageSizes // see DDI 0487A D4-1661
2195 .init(9)
2196 .name(name() + ".walkPageSizes")
2197 .desc("Table walker page sizes translated")
2198 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2199 ;
2200 statPageSizes.subname(0, "4K");
2201 statPageSizes.subname(1, "16K");
2202 statPageSizes.subname(2, "64K");
2203 statPageSizes.subname(3, "1M");
2204 statPageSizes.subname(4, "2M");
2205 statPageSizes.subname(5, "16M");
2206 statPageSizes.subname(6, "32M");
2207 statPageSizes.subname(7, "512M");
2208 statPageSizes.subname(8, "1G");
2209
2210 statRequestOrigin
2211 .init(2,2) // Instruction/Data, requests/completed
2212 .name(name() + ".walkRequestOrigin")
2213 .desc("Table walker requests started/completed, data/inst")
2214 .flags(Stats::total)
2215 ;
2216 statRequestOrigin.subname(0,"Requested");
2217 statRequestOrigin.subname(1,"Completed");
2218 statRequestOrigin.ysubname(0,"Data");
2219 statRequestOrigin.ysubname(1,"Inst");
2220}
2098uint8_t
2099TableWalker::pageSizeNtoStatBin(uint8_t N)
2100{
2101 /* for statPageSizes */
2102 switch(N) {
2103 case 12: return 0; // 4K
2104 case 14: return 1; // 16K (using 16K granule in v8-64)
2105 case 16: return 2; // 64K
2106 case 20: return 3; // 1M
2107 case 21: return 4; // 2M-LPAE
2108 case 24: return 5; // 16M
2109 case 25: return 6; // 32M (using 16K granule in v8-64)
2110 case 29: return 7; // 512M (using 64K granule in v8-64)
2111 case 30: return 8; // 1G-LPAE
2112 default:
2113 panic("unknown page size");
2114 return 255;
2115 }
2116}
2117
2118void
2119TableWalker::regStats()
2120{
2121 statWalks
2122 .name(name() + ".walks")
2123 .desc("Table walker walks requested")
2124 ;
2125
2126 statWalksShortDescriptor
2127 .name(name() + ".walksShort")
2128 .desc("Table walker walks initiated with short descriptors")
2129 .flags(Stats::nozero)
2130 ;
2131
2132 statWalksLongDescriptor
2133 .name(name() + ".walksLong")
2134 .desc("Table walker walks initiated with long descriptors")
2135 .flags(Stats::nozero)
2136 ;
2137
2138 statWalksShortTerminatedAtLevel
2139 .init(2)
2140 .name(name() + ".walksShortTerminationLevel")
2141 .desc("Level at which table walker walks "
2142 "with short descriptors terminate")
2143 .flags(Stats::nozero)
2144 ;
2145 statWalksShortTerminatedAtLevel.subname(0, "Level1");
2146 statWalksShortTerminatedAtLevel.subname(1, "Level2");
2147
2148 statWalksLongTerminatedAtLevel
2149 .init(4)
2150 .name(name() + ".walksLongTerminationLevel")
2151 .desc("Level at which table walker walks "
2152 "with long descriptors terminate")
2153 .flags(Stats::nozero)
2154 ;
2155 statWalksLongTerminatedAtLevel.subname(0, "Level0");
2156 statWalksLongTerminatedAtLevel.subname(1, "Level1");
2157 statWalksLongTerminatedAtLevel.subname(2, "Level2");
2158 statWalksLongTerminatedAtLevel.subname(3, "Level3");
2159
2160 statSquashedBefore
2161 .name(name() + ".walksSquashedBefore")
2162 .desc("Table walks squashed before starting")
2163 .flags(Stats::nozero)
2164 ;
2165
2166 statSquashedAfter
2167 .name(name() + ".walksSquashedAfter")
2168 .desc("Table walks squashed after completion")
2169 .flags(Stats::nozero)
2170 ;
2171
2172 statWalkWaitTime
2173 .init(16)
2174 .name(name() + ".walkWaitTime")
2175 .desc("Table walker wait (enqueue to first request) latency")
2176 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2177 ;
2178
2179 statWalkServiceTime
2180 .init(16)
2181 .name(name() + ".walkCompletionTime")
2182 .desc("Table walker service (enqueue to completion) latency")
2183 .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2184 ;
2185
2186 statPendingWalks
2187 .init(16)
2188 .name(name() + ".walksPending")
2189 .desc("Table walker pending requests distribution")
2190 .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2191 ;
2192
2193 statPageSizes // see DDI 0487A D4-1661
2194 .init(9)
2195 .name(name() + ".walkPageSizes")
2196 .desc("Table walker page sizes translated")
2197 .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2198 ;
2199 statPageSizes.subname(0, "4K");
2200 statPageSizes.subname(1, "16K");
2201 statPageSizes.subname(2, "64K");
2202 statPageSizes.subname(3, "1M");
2203 statPageSizes.subname(4, "2M");
2204 statPageSizes.subname(5, "16M");
2205 statPageSizes.subname(6, "32M");
2206 statPageSizes.subname(7, "512M");
2207 statPageSizes.subname(8, "1G");
2208
2209 statRequestOrigin
2210 .init(2,2) // Instruction/Data, requests/completed
2211 .name(name() + ".walkRequestOrigin")
2212 .desc("Table walker requests started/completed, data/inst")
2213 .flags(Stats::total)
2214 ;
2215 statRequestOrigin.subname(0,"Requested");
2216 statRequestOrigin.subname(1,"Completed");
2217 statRequestOrigin.ysubname(0,"Data");
2218 statRequestOrigin.ysubname(1,"Inst");
2219}