1/*
2 * Copyright (c) 2010, 2012 ARM Limited
2 * Copyright (c) 2010, 2012, 2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 * Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/logging.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "params/Process.hh"
55#include "sim/aux_vector.hh"
56#include "sim/byteswap.hh"
57#include "sim/process_impl.hh"
58#include "sim/syscall_return.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace ArmISA;
63
64ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
65 ObjectFile::Arch _arch)
66 : Process(params,
67 new EmulationPageTable(params->name, params->pid, PageBytes),
68 objFile),
69 arch(_arch)
70{
71 fatal_if(params->useArchPT, "Arch page tables not implemented.");
72}
73
74ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
75 ObjectFile::Arch _arch)
76 : ArmProcess(params, objFile, _arch)
77{
78 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
79 objFile->bssSize(), PageBytes);
80 Addr stack_base = 0xbf000000L;
81 Addr max_stack_size = 8 * 1024 * 1024;
82 Addr next_thread_stack_base = stack_base - max_stack_size;
83 Addr mmap_end = 0x40000000L;
84
85 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
86 next_thread_stack_base, mmap_end);
87}
88
89ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
90 ObjectFile::Arch _arch)
91 : ArmProcess(params, objFile, _arch)
92{
93 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
94 objFile->bssSize(), PageBytes);
95 Addr stack_base = 0x7fffff0000L;
96 Addr max_stack_size = 8 * 1024 * 1024;
97 Addr next_thread_stack_base = stack_base - max_stack_size;
98 Addr mmap_end = 0x4000000000L;
99
100 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
101 next_thread_stack_base, mmap_end);
102}
103
104void
105ArmProcess32::initState()
106{
107 Process::initState();
108 argsInit<uint32_t>(PageBytes, INTREG_SP);
109 for (int i = 0; i < contextIds.size(); i++) {
110 ThreadContext * tc = system->getThreadContext(contextIds[i]);
111 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
112 // Enable the floating point coprocessors.
113 cpacr.cp10 = 0x3;
114 cpacr.cp11 = 0x3;
115 tc->setMiscReg(MISCREG_CPACR, cpacr);
116 // Generically enable floating point support.
117 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
118 fpexc.en = 1;
119 tc->setMiscReg(MISCREG_FPEXC, fpexc);
120 }
121}
122
123void
124ArmProcess64::initState()
125{
126 Process::initState();
127 argsInit<uint64_t>(PageBytes, INTREG_SP0);
128 for (int i = 0; i < contextIds.size(); i++) {
129 ThreadContext * tc = system->getThreadContext(contextIds[i]);
130 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
131 cpsr.mode = MODE_EL0T;
132 tc->setMiscReg(MISCREG_CPSR, cpsr);
133 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
134 // Enable the floating point coprocessors.
135 cpacr.cp10 = 0x3;
136 cpacr.cp11 = 0x3;
137 tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
138 // Generically enable floating point support.
139 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
140 fpexc.en = 1;
141 tc->setMiscReg(MISCREG_FPEXC, fpexc);
142 }
143}
144
145uint32_t
146ArmProcess32::armHwcapImpl() const
147{
148 enum ArmCpuFeature {
149 Arm_Swp = 1 << 0,
150 Arm_Half = 1 << 1,
151 Arm_Thumb = 1 << 2,
152 Arm_26Bit = 1 << 3,
153 Arm_FastMult = 1 << 4,
154 Arm_Fpa = 1 << 5,
155 Arm_Vfp = 1 << 6,
156 Arm_Edsp = 1 << 7,
157 Arm_Java = 1 << 8,
158 Arm_Iwmmxt = 1 << 9,
159 Arm_Crunch = 1 << 10,
160 Arm_ThumbEE = 1 << 11,
161 Arm_Neon = 1 << 12,
162 Arm_Vfpv3 = 1 << 13,
163 Arm_Vfpv3d16 = 1 << 14
164 };
165
166 return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult |
167 Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon |
168 Arm_Vfpv3 | Arm_Vfpv3d16;
169}
170
171uint32_t
172ArmProcess64::armHwcapImpl() const
173{
174 // In order to know what these flags mean, please refer to Linux
175 // /Documentation/arm64/elf_hwcaps.txt text file.
176 enum ArmCpuFeature {
177 Arm_Fp = 1 << 0,
178 Arm_Asimd = 1 << 1,
179 Arm_Evtstrm = 1 << 2,
180 Arm_Aes = 1 << 3,
181 Arm_Pmull = 1 << 4,
182 Arm_Sha1 = 1 << 5,
183 Arm_Sha2 = 1 << 6,
184 Arm_Crc32 = 1 << 7,
185 Arm_Atomics = 1 << 8,
186 Arm_Fphp = 1 << 9,
187 Arm_Asimdhp = 1 << 10,
188 Arm_Cpuid = 1 << 11,
189 Arm_Asimdrdm = 1 << 12,
190 Arm_Jscvt = 1 << 13,
191 Arm_Fcma = 1 << 14,
192 Arm_Lrcpc = 1 << 15,
193 Arm_Dcpop = 1 << 16,
194 Arm_Sha3 = 1 << 17,
195 Arm_Sm3 = 1 << 18,
196 Arm_Sm4 = 1 << 19,
197 Arm_Asimddp = 1 << 20,
198 Arm_Sha512 = 1 << 21,
199 Arm_Sve = 1 << 22,
200 Arm_Asimdfhm = 1 << 23,
201 Arm_Dit = 1 << 24,
202 Arm_Uscat = 1 << 25,
203 Arm_Ilrcpc = 1 << 26,
204 Arm_Flagm = 1 << 27
205 };
206
207 return Arm_Fp | Arm_Asimd | Arm_Evtstrm | Arm_Crc32;
208}
209
210template <class IntType>
211void
212ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
213{
214 int intSize = sizeof(IntType);
215
216 typedef AuxVector<IntType> auxv_t;
217 std::vector<auxv_t> auxv;
218
219 string filename;
220 if (argv.size() < 1)
221 filename = "";
222 else
223 filename = argv[0];
224
225 //We want 16 byte alignment
226 uint64_t align = 16;
227
228 // Patch the ld_bias for dynamic executables.
229 updateBias();
230
231 // load object file into target memory
232 objFile->loadSections(initVirtMem);
233
169 enum ArmCpuFeature {
170 Arm_Swp = 1 << 0,
171 Arm_Half = 1 << 1,
172 Arm_Thumb = 1 << 2,
173 Arm_26Bit = 1 << 3,
174 Arm_FastMult = 1 << 4,
175 Arm_Fpa = 1 << 5,
176 Arm_Vfp = 1 << 6,
177 Arm_Edsp = 1 << 7,
178 Arm_Java = 1 << 8,
179 Arm_Iwmmxt = 1 << 9,
180 Arm_Crunch = 1 << 10,
181 Arm_ThumbEE = 1 << 11,
182 Arm_Neon = 1 << 12,
183 Arm_Vfpv3 = 1 << 13,
184 Arm_Vfpv3d16 = 1 << 14
185 };
186
234 //Setup the auxilliary vectors. These will already have endian conversion.
235 //Auxilliary vectors are loaded only for elf formatted executables.
236 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
237 if (elfObject) {
238
239 if (objFile->getOpSys() == ObjectFile::Linux) {
193 IntType features =
194 Arm_Swp |
195 Arm_Half |
196 Arm_Thumb |
197// Arm_26Bit |
198 Arm_FastMult |
199// Arm_Fpa |
200 Arm_Vfp |
201 Arm_Edsp |
202// Arm_Java |
203// Arm_Iwmmxt |
204// Arm_Crunch |
205 Arm_ThumbEE |
206 Arm_Neon |
207 Arm_Vfpv3 |
208 Arm_Vfpv3d16 |
209 0;
240 IntType features = armHwcap<IntType>();
241
242 //Bits which describe the system hardware capabilities
243 //XXX Figure out what these should be
244 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
245 //Frequency at which times() increments
246 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
247 //Whether to enable "secure mode" in the executable
248 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
249 // Pointer to 16 bytes of random data
250 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
251 //The filename of the program
252 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
253 //The string "v71" -- ARM v7 architecture
254 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
255 }
256
257 //The system page size
258 auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
259 // For statically linked executables, this is the virtual address of the
260 // program header tables if they appear in the executable image
261 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
262 // This is the size of a program header entry from the elf file.
263 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
264 // This is the number of program headers from the original elf file.
265 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
266 // This is the base address of the ELF interpreter; it should be
267 // zero for static executables or contain the base address for
268 // dynamic executables.
269 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
270 //XXX Figure out what this should be.
271 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
272 //The entry point to the program
273 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
274 //Different user and group IDs
275 auxv.push_back(auxv_t(M5_AT_UID, uid()));
276 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
277 auxv.push_back(auxv_t(M5_AT_GID, gid()));
278 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
279 }
280
281 //Figure out how big the initial stack nedes to be
282
283 // A sentry NULL void pointer at the top of the stack.
284 int sentry_size = intSize;
285
286 string platform = "v71";
287 int platform_size = platform.size() + 1;
288
289 // Bytes for AT_RANDOM above, we'll just keep them 0
290 int aux_random_size = 16; // as per the specification
291
292 // The aux vectors are put on the stack in two groups. The first group are
293 // the vectors that are generated as the elf is loaded. The second group
294 // are the ones that were computed ahead of time and include the platform
295 // string.
296 int aux_data_size = filename.size() + 1;
297
298 int env_data_size = 0;
299 for (int i = 0; i < envp.size(); ++i) {
300 env_data_size += envp[i].size() + 1;
301 }
302 int arg_data_size = 0;
303 for (int i = 0; i < argv.size(); ++i) {
304 arg_data_size += argv[i].size() + 1;
305 }
306
307 int info_block_size =
308 sentry_size + env_data_size + arg_data_size +
309 aux_data_size + platform_size + aux_random_size;
310
311 //Each auxilliary vector is two 4 byte words
312 int aux_array_size = intSize * 2 * (auxv.size() + 1);
313
314 int envp_array_size = intSize * (envp.size() + 1);
315 int argv_array_size = intSize * (argv.size() + 1);
316
317 int argc_size = intSize;
318
319 //Figure out the size of the contents of the actual initial frame
320 int frame_size =
321 info_block_size +
322 aux_array_size +
323 envp_array_size +
324 argv_array_size +
325 argc_size;
326
327 //There needs to be padding after the auxiliary vector data so that the
328 //very bottom of the stack is aligned properly.
329 int partial_size = frame_size;
330 int aligned_partial_size = roundUp(partial_size, align);
331 int aux_padding = aligned_partial_size - partial_size;
332
333 int space_needed = frame_size + aux_padding;
334
335 memState->setStackMin(memState->getStackBase() - space_needed);
336 memState->setStackMin(roundDown(memState->getStackMin(), align));
337 memState->setStackSize(memState->getStackBase() - memState->getStackMin());
338
339 // map memory
340 allocateMem(roundDown(memState->getStackMin(), pageSize),
341 roundUp(memState->getStackSize(), pageSize));
342
343 // map out initial stack contents
344 IntType sentry_base = memState->getStackBase() - sentry_size;
345 IntType aux_data_base = sentry_base - aux_data_size;
346 IntType env_data_base = aux_data_base - env_data_size;
347 IntType arg_data_base = env_data_base - arg_data_size;
348 IntType platform_base = arg_data_base - platform_size;
349 IntType aux_random_base = platform_base - aux_random_size;
350 IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
351 IntType envp_array_base = auxv_array_base - envp_array_size;
352 IntType argv_array_base = envp_array_base - argv_array_size;
353 IntType argc_base = argv_array_base - argc_size;
354
355 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
356 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
357 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
358 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
359 DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
360 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
361 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
362 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
363 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
364 DPRINTF(Stack, "0x%x - argc \n", argc_base);
365 DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
366
367 // write contents to stack
368
369 // figure out argc
370 IntType argc = argv.size();
371 IntType guestArgc = ArmISA::htog(argc);
372
373 //Write out the sentry void *
374 IntType sentry_NULL = 0;
375 initVirtMem.writeBlob(sentry_base,
376 (uint8_t*)&sentry_NULL, sentry_size);
377
378 //Fix up the aux vectors which point to other data
379 for (int i = auxv.size() - 1; i >= 0; i--) {
380 if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) {
381 auxv[i].setAuxVal(platform_base);
382 initVirtMem.writeString(platform_base, platform.c_str());
383 } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) {
384 auxv[i].setAuxVal(aux_data_base);
385 initVirtMem.writeString(aux_data_base, filename.c_str());
386 } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) {
387 auxv[i].setAuxVal(aux_random_base);
388 // Just leave the value 0, we don't want randomness
389 }
390 }
391
392 //Copy the aux stuff
393 for (int x = 0; x < auxv.size(); x++) {
394 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
395 (uint8_t*)&(auxv[x].getAuxType()),
396 intSize);
397 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
398 (uint8_t*)&(auxv[x].getAuxVal()),
399 intSize);
400 }
401 //Write out the terminating zeroed auxilliary vector
402 const uint64_t zero = 0;
403 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
404 (uint8_t*)&zero, 2 * intSize);
405
406 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
407 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
408
409 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
410
411 ThreadContext *tc = system->getThreadContext(contextIds[0]);
412 //Set the stack pointer register
413 tc->setIntReg(spIndex, memState->getStackMin());
414 //A pointer to a function to run when the program exits. We'll set this
415 //to zero explicitly to make sure this isn't used.
416 tc->setIntReg(ArgumentReg0, 0);
417 //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
418 if (argv.size() > 0) {
419 tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
420 argv[argv.size() - 1].size() - 1);
421 } else {
422 tc->setIntReg(ArgumentReg1, 0);
423 }
424 if (envp.size() > 0) {
425 tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
426 envp[envp.size() - 1].size() - 1);
427 } else {
428 tc->setIntReg(ArgumentReg2, 0);
429 }
430
431 PCState pc;
432 pc.thumb(arch == ObjectFile::Thumb);
433 pc.nextThumb(pc.thumb());
434 pc.aarch64(arch == ObjectFile::Arm64);
435 pc.nextAArch64(pc.aarch64());
436 pc.set(getStartPC() & ~mask(1));
437 tc->pcState(pc);
438
439 //Align the "stackMin" to a page boundary.
440 memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
441}
442
443ArmISA::IntReg
444ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
445{
446 assert(i < 6);
447 return tc->readIntReg(ArgumentReg0 + i++);
448}
449
450ArmISA::IntReg
451ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
452{
453 assert(i < 8);
454 return tc->readIntReg(ArgumentReg0 + i++);
455}
456
457ArmISA::IntReg
458ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
459{
460 assert(width == 32 || width == 64);
461 if (width == 32)
462 return getSyscallArg(tc, i);
463
464 // 64 bit arguments are passed starting in an even register
465 if (i % 2 != 0)
466 i++;
467
468 // Registers r0-r6 can be used
469 assert(i < 5);
470 uint64_t val;
471 val = tc->readIntReg(ArgumentReg0 + i++);
472 val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
473 return val;
474}
475
476ArmISA::IntReg
477ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
478{
479 return getSyscallArg(tc, i);
480}
481
482
483void
484ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
485{
486 assert(i < 6);
487 tc->setIntReg(ArgumentReg0 + i, val);
488}
489
490void
491ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
492{
493 assert(i < 8);
494 tc->setIntReg(ArgumentReg0 + i, val);
495}
496
497void
498ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
499{
500
501 if (objFile->getOpSys() == ObjectFile::FreeBSD) {
502 // Decode return value
503 if (sysret.encodedValue() >= 0)
504 // FreeBSD checks the carry bit to determine if syscall is succeeded
505 tc->setCCReg(CCREG_C, 0);
506 else {
507 sysret = -sysret.encodedValue();
508 }
509 }
510
511 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
512}
513
514void
515ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
516{
517
518 if (objFile->getOpSys() == ObjectFile::FreeBSD) {
519 // Decode return value
520 if (sysret.encodedValue() >= 0)
521 // FreeBSD checks the carry bit to determine if syscall is succeeded
522 tc->setCCReg(CCREG_C, 0);
523 else {
524 sysret = -sysret.encodedValue();
525 }
526 }
527
528 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
529}