process.cc (7532:3f6413fc37a2) process.cc (7640:5286a8a469c5)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 * Ali Saidi
42 */
43
44#include "arch/arm/isa_traits.hh"
45#include "arch/arm/process.hh"
46#include "arch/arm/types.hh"
47#include "base/loader/elf_object.hh"
48#include "base/loader/object_file.hh"
49#include "base/misc.hh"
50#include "cpu/thread_context.hh"
51#include "mem/page_table.hh"
52#include "mem/translating_port.hh"
53#include "sim/process_impl.hh"
54#include "sim/system.hh"
55
56using namespace std;
57using namespace ArmISA;
58
59ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
60 ObjectFile::Arch _arch)
61 : LiveProcess(params, objFile), arch(_arch)
62{
63 stack_base = 0xbf000000L;
64
65 // Set pointer for next thread stack. Reserve 8M for main stack.
66 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
67
68 // Set up break point (Top of Heap)
69 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
70 brk_point = roundUp(brk_point, VMPageSize);
71
72 // Set up region for mmaps. For now, start at bottom of kuseg space.
73 mmap_start = mmap_end = 0x40000000L;
74}
75
76void
77ArmLiveProcess::startup()
78{
79 LiveProcess::startup();
80 argsInit(MachineBytes, VMPageSize);
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 * Ali Saidi
42 */
43
44#include "arch/arm/isa_traits.hh"
45#include "arch/arm/process.hh"
46#include "arch/arm/types.hh"
47#include "base/loader/elf_object.hh"
48#include "base/loader/object_file.hh"
49#include "base/misc.hh"
50#include "cpu/thread_context.hh"
51#include "mem/page_table.hh"
52#include "mem/translating_port.hh"
53#include "sim/process_impl.hh"
54#include "sim/system.hh"
55
56using namespace std;
57using namespace ArmISA;
58
59ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
60 ObjectFile::Arch _arch)
61 : LiveProcess(params, objFile), arch(_arch)
62{
63 stack_base = 0xbf000000L;
64
65 // Set pointer for next thread stack. Reserve 8M for main stack.
66 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
67
68 // Set up break point (Top of Heap)
69 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
70 brk_point = roundUp(brk_point, VMPageSize);
71
72 // Set up region for mmaps. For now, start at bottom of kuseg space.
73 mmap_start = mmap_end = 0x40000000L;
74}
75
76void
77ArmLiveProcess::startup()
78{
79 LiveProcess::startup();
80 argsInit(MachineBytes, VMPageSize);
81 for (int i = 0; i < contextIds.size(); i++) {
82 ThreadContext * tc = system->getThreadContext(contextIds[i]);
83 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
84 // Enable the floating point coprocessors.
85 cpacr.cp10 = 0x3;
86 cpacr.cp11 = 0x3;
87 tc->setMiscReg(MISCREG_CPACR, cpacr);
88 // Generically enable floating point support.
89 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
90 fpexc.en = 1;
91 tc->setMiscReg(MISCREG_FPEXC, fpexc);
92 }
81}
82
83void
84ArmLiveProcess::copyStringArray32(std::vector<std::string> &strings,
85 Addr array_ptr, Addr data_ptr,
86 TranslatingPort* memPort)
87{
88 Addr data_ptr_swap;
89 for (int i = 0; i < strings.size(); ++i) {
90 data_ptr_swap = htog(data_ptr);
91 memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap,
92 sizeof(uint32_t));
93 memPort->writeString(data_ptr, strings[i].c_str());
94 array_ptr += sizeof(uint32_t);
95 data_ptr += strings[i].size() + 1;
96 }
97 // add NULL terminator
98 data_ptr = 0;
99
100 memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, sizeof(uint32_t));
101}
102
103void
104ArmLiveProcess::argsInit(int intSize, int pageSize)
105{
106 typedef AuxVector<uint32_t> auxv_t;
107 std::vector<auxv_t> auxv;
108
109 string filename;
110 if (argv.size() < 1)
111 filename = "";
112 else
113 filename = argv[0];
114
115 //We want 16 byte alignment
116 uint64_t align = 16;
117
118 // load object file into target memory
119 objFile->loadSections(initVirtMem);
120
121 enum ArmCpuFeature {
122 Arm_Swp = 1 << 0,
123 Arm_Half = 1 << 1,
124 Arm_Thumb = 1 << 2,
125 Arm_26Bit = 1 << 3,
126 Arm_FastMult = 1 << 4,
127 Arm_Fpa = 1 << 5,
128 Arm_Vfp = 1 << 6,
129 Arm_Edsp = 1 << 7,
130 Arm_Java = 1 << 8,
131 Arm_Iwmmxt = 1 << 9,
132 Arm_Crunch = 1 << 10,
133 Arm_ThumbEE = 1 << 11,
134 Arm_Neon = 1 << 12,
135 Arm_Vfpv3 = 1 << 13,
136 Arm_Vfpv3d16 = 1 << 14
137 };
138
139 //Setup the auxilliary vectors. These will already have endian conversion.
140 //Auxilliary vectors are loaded only for elf formatted executables.
141 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
142 if (elfObject) {
143 uint32_t features =
144 Arm_Swp |
145 Arm_Half |
146 Arm_Thumb |
147// Arm_26Bit |
148 Arm_FastMult |
149// Arm_Fpa |
150 Arm_Vfp |
151 Arm_Edsp |
152// Arm_Java |
153// Arm_Iwmmxt |
154// Arm_Crunch |
155 Arm_ThumbEE |
156 Arm_Neon |
157 Arm_Vfpv3 |
158 Arm_Vfpv3d16 |
159 0;
160
161 //Bits which describe the system hardware capabilities
162 //XXX Figure out what these should be
163 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
164 //The system page size
165 auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::VMPageSize));
166 //Frequency at which times() increments
167 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
168 // For statically linked executables, this is the virtual address of the
169 // program header tables if they appear in the executable image
170 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
171 // This is the size of a program header entry from the elf file.
172 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
173 // This is the number of program headers from the original elf file.
174 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
175 //This is the address of the elf "interpreter", It should be set
176 //to 0 for regular executables. It should be something else
177 //(not sure what) for dynamic libraries.
178 auxv.push_back(auxv_t(M5_AT_BASE, 0));
179
180 //XXX Figure out what this should be.
181 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
182 //The entry point to the program
183 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
184 //Different user and group IDs
185 auxv.push_back(auxv_t(M5_AT_UID, uid()));
186 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
187 auxv.push_back(auxv_t(M5_AT_GID, gid()));
188 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
189 //Whether to enable "secure mode" in the executable
190 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
191
192 // Pointer to 16 bytes of random data
193 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
194
195 //The filename of the program
196 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
197 //The string "v71" -- ARM v7 architecture
198 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
199 }
200
201 //Figure out how big the initial stack nedes to be
202
203 // A sentry NULL void pointer at the top of the stack.
204 int sentry_size = intSize;
205
206 string platform = "v71";
207 int platform_size = platform.size() + 1;
208
209 // Bytes for AT_RANDOM above, we'll just keep them 0
210 int aux_random_size = 16; // as per the specification
211
212 // The aux vectors are put on the stack in two groups. The first group are
213 // the vectors that are generated as the elf is loaded. The second group
214 // are the ones that were computed ahead of time and include the platform
215 // string.
216 int aux_data_size = filename.size() + 1;
217
218 int env_data_size = 0;
219 for (int i = 0; i < envp.size(); ++i) {
220 env_data_size += envp[i].size() + 1;
221 }
222 int arg_data_size = 0;
223 for (int i = 0; i < argv.size(); ++i) {
224 arg_data_size += argv[i].size() + 1;
225 }
226
227 int info_block_size =
228 sentry_size + env_data_size + arg_data_size +
229 aux_data_size + platform_size + aux_random_size;
230
231 //Each auxilliary vector is two 4 byte words
232 int aux_array_size = intSize * 2 * (auxv.size() + 1);
233
234 int envp_array_size = intSize * (envp.size() + 1);
235 int argv_array_size = intSize * (argv.size() + 1);
236
237 int argc_size = intSize;
238
239 //Figure out the size of the contents of the actual initial frame
240 int frame_size =
241 info_block_size +
242 aux_array_size +
243 envp_array_size +
244 argv_array_size +
245 argc_size;
246
247 //There needs to be padding after the auxiliary vector data so that the
248 //very bottom of the stack is aligned properly.
249 int partial_size = frame_size;
250 int aligned_partial_size = roundUp(partial_size, align);
251 int aux_padding = aligned_partial_size - partial_size;
252
253 int space_needed = frame_size + aux_padding;
254
255 stack_min = stack_base - space_needed;
256 stack_min = roundDown(stack_min, align);
257 stack_size = stack_base - stack_min;
258
259 // map memory
260 pTable->allocate(roundDown(stack_min, pageSize),
261 roundUp(stack_size, pageSize));
262
263 // map out initial stack contents
264 uint32_t sentry_base = stack_base - sentry_size;
265 uint32_t aux_data_base = sentry_base - aux_data_size;
266 uint32_t env_data_base = aux_data_base - env_data_size;
267 uint32_t arg_data_base = env_data_base - arg_data_size;
268 uint32_t platform_base = arg_data_base - platform_size;
269 uint32_t aux_random_base = platform_base - aux_random_size;
270 uint32_t auxv_array_base = aux_random_base - aux_array_size - aux_padding;
271 uint32_t envp_array_base = auxv_array_base - envp_array_size;
272 uint32_t argv_array_base = envp_array_base - argv_array_size;
273 uint32_t argc_base = argv_array_base - argc_size;
274
275 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
276 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
277 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
278 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
279 DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
280 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
281 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
282 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
283 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
284 DPRINTF(Stack, "0x%x - argc \n", argc_base);
285 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
286
287 // write contents to stack
288
289 // figure out argc
290 uint32_t argc = argv.size();
291 uint32_t guestArgc = ArmISA::htog(argc);
292
293 //Write out the sentry void *
294 uint32_t sentry_NULL = 0;
295 initVirtMem->writeBlob(sentry_base,
296 (uint8_t*)&sentry_NULL, sentry_size);
297
298 //Fix up the aux vectors which point to other data
299 for (int i = auxv.size() - 1; i >= 0; i--) {
300 if (auxv[i].a_type == M5_AT_PLATFORM) {
301 auxv[i].a_val = platform_base;
302 initVirtMem->writeString(platform_base, platform.c_str());
303 } else if (auxv[i].a_type == M5_AT_EXECFN) {
304 auxv[i].a_val = aux_data_base;
305 initVirtMem->writeString(aux_data_base, filename.c_str());
306 } else if (auxv[i].a_type == M5_AT_RANDOM) {
307 auxv[i].a_val = aux_random_base;
308 // Just leave the value 0, we don't want randomness
309 }
310 }
311
312 //Copy the aux stuff
313 for(int x = 0; x < auxv.size(); x++)
314 {
315 initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
316 (uint8_t*)&(auxv[x].a_type), intSize);
317 initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
318 (uint8_t*)&(auxv[x].a_val), intSize);
319 }
320 //Write out the terminating zeroed auxilliary vector
321 const uint64_t zero = 0;
322 initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
323 (uint8_t*)&zero, 2 * intSize);
324
325 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
326 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
327
328 initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
329
330 ThreadContext *tc = system->getThreadContext(contextIds[0]);
331 //Set the stack pointer register
332 tc->setIntReg(StackPointerReg, stack_min);
333 //A pointer to a function to run when the program exits. We'll set this
334 //to zero explicitly to make sure this isn't used.
335 tc->setIntReg(ArgumentReg0, 0);
336 //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
337 if (argv.size() > 0) {
338 tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
339 argv[argv.size() - 1].size() - 1);
340 } else {
341 tc->setIntReg(ArgumentReg1, 0);
342 }
343 if (envp.size() > 0) {
344 tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
345 envp[envp.size() - 1].size() - 1);
346 } else {
347 tc->setIntReg(ArgumentReg2, 0);
348 }
349
350 Addr prog_entry = objFile->entryPoint();
351 if (arch == ObjectFile::Thumb)
352 prog_entry = (prog_entry & ~mask(1)) | (ULL(1) << PcTBitShift);
353 tc->setPC(prog_entry);
354 tc->setNextPC(prog_entry + sizeof(MachInst));
355
356 //Align the "stack_min" to a page boundary.
357 stack_min = roundDown(stack_min, pageSize);
358}
359
360ArmISA::IntReg
361ArmLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
362{
363 assert(i < 6);
364 return tc->readIntReg(ArgumentReg0 + i++);
365}
366
367uint64_t
368ArmLiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
369{
370 assert(width == 32 || width == 64);
371 if (width == 32)
372 return getSyscallArg(tc, i);
373
374 // 64 bit arguments are passed starting in an even register
375 if (i % 2 != 0)
376 i++;
377
378 // Registers r0-r6 can be used
379 assert(i < 5);
380 uint64_t val;
381 val = tc->readIntReg(ArgumentReg0 + i++);
382 val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
383 return val;
384}
385
386
387void
388ArmLiveProcess::setSyscallArg(ThreadContext *tc,
389 int i, ArmISA::IntReg val)
390{
391 assert(i < 4);
392 tc->setIntReg(ArgumentReg0 + i, val);
393}
394
395void
396ArmLiveProcess::setSyscallReturn(ThreadContext *tc,
397 SyscallReturn return_value)
398{
399 tc->setIntReg(ReturnValueReg, return_value.value());
400}
93}
94
95void
96ArmLiveProcess::copyStringArray32(std::vector<std::string> &strings,
97 Addr array_ptr, Addr data_ptr,
98 TranslatingPort* memPort)
99{
100 Addr data_ptr_swap;
101 for (int i = 0; i < strings.size(); ++i) {
102 data_ptr_swap = htog(data_ptr);
103 memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap,
104 sizeof(uint32_t));
105 memPort->writeString(data_ptr, strings[i].c_str());
106 array_ptr += sizeof(uint32_t);
107 data_ptr += strings[i].size() + 1;
108 }
109 // add NULL terminator
110 data_ptr = 0;
111
112 memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, sizeof(uint32_t));
113}
114
115void
116ArmLiveProcess::argsInit(int intSize, int pageSize)
117{
118 typedef AuxVector<uint32_t> auxv_t;
119 std::vector<auxv_t> auxv;
120
121 string filename;
122 if (argv.size() < 1)
123 filename = "";
124 else
125 filename = argv[0];
126
127 //We want 16 byte alignment
128 uint64_t align = 16;
129
130 // load object file into target memory
131 objFile->loadSections(initVirtMem);
132
133 enum ArmCpuFeature {
134 Arm_Swp = 1 << 0,
135 Arm_Half = 1 << 1,
136 Arm_Thumb = 1 << 2,
137 Arm_26Bit = 1 << 3,
138 Arm_FastMult = 1 << 4,
139 Arm_Fpa = 1 << 5,
140 Arm_Vfp = 1 << 6,
141 Arm_Edsp = 1 << 7,
142 Arm_Java = 1 << 8,
143 Arm_Iwmmxt = 1 << 9,
144 Arm_Crunch = 1 << 10,
145 Arm_ThumbEE = 1 << 11,
146 Arm_Neon = 1 << 12,
147 Arm_Vfpv3 = 1 << 13,
148 Arm_Vfpv3d16 = 1 << 14
149 };
150
151 //Setup the auxilliary vectors. These will already have endian conversion.
152 //Auxilliary vectors are loaded only for elf formatted executables.
153 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
154 if (elfObject) {
155 uint32_t features =
156 Arm_Swp |
157 Arm_Half |
158 Arm_Thumb |
159// Arm_26Bit |
160 Arm_FastMult |
161// Arm_Fpa |
162 Arm_Vfp |
163 Arm_Edsp |
164// Arm_Java |
165// Arm_Iwmmxt |
166// Arm_Crunch |
167 Arm_ThumbEE |
168 Arm_Neon |
169 Arm_Vfpv3 |
170 Arm_Vfpv3d16 |
171 0;
172
173 //Bits which describe the system hardware capabilities
174 //XXX Figure out what these should be
175 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
176 //The system page size
177 auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::VMPageSize));
178 //Frequency at which times() increments
179 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
180 // For statically linked executables, this is the virtual address of the
181 // program header tables if they appear in the executable image
182 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
183 // This is the size of a program header entry from the elf file.
184 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
185 // This is the number of program headers from the original elf file.
186 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
187 //This is the address of the elf "interpreter", It should be set
188 //to 0 for regular executables. It should be something else
189 //(not sure what) for dynamic libraries.
190 auxv.push_back(auxv_t(M5_AT_BASE, 0));
191
192 //XXX Figure out what this should be.
193 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
194 //The entry point to the program
195 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
196 //Different user and group IDs
197 auxv.push_back(auxv_t(M5_AT_UID, uid()));
198 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
199 auxv.push_back(auxv_t(M5_AT_GID, gid()));
200 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
201 //Whether to enable "secure mode" in the executable
202 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
203
204 // Pointer to 16 bytes of random data
205 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
206
207 //The filename of the program
208 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
209 //The string "v71" -- ARM v7 architecture
210 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
211 }
212
213 //Figure out how big the initial stack nedes to be
214
215 // A sentry NULL void pointer at the top of the stack.
216 int sentry_size = intSize;
217
218 string platform = "v71";
219 int platform_size = platform.size() + 1;
220
221 // Bytes for AT_RANDOM above, we'll just keep them 0
222 int aux_random_size = 16; // as per the specification
223
224 // The aux vectors are put on the stack in two groups. The first group are
225 // the vectors that are generated as the elf is loaded. The second group
226 // are the ones that were computed ahead of time and include the platform
227 // string.
228 int aux_data_size = filename.size() + 1;
229
230 int env_data_size = 0;
231 for (int i = 0; i < envp.size(); ++i) {
232 env_data_size += envp[i].size() + 1;
233 }
234 int arg_data_size = 0;
235 for (int i = 0; i < argv.size(); ++i) {
236 arg_data_size += argv[i].size() + 1;
237 }
238
239 int info_block_size =
240 sentry_size + env_data_size + arg_data_size +
241 aux_data_size + platform_size + aux_random_size;
242
243 //Each auxilliary vector is two 4 byte words
244 int aux_array_size = intSize * 2 * (auxv.size() + 1);
245
246 int envp_array_size = intSize * (envp.size() + 1);
247 int argv_array_size = intSize * (argv.size() + 1);
248
249 int argc_size = intSize;
250
251 //Figure out the size of the contents of the actual initial frame
252 int frame_size =
253 info_block_size +
254 aux_array_size +
255 envp_array_size +
256 argv_array_size +
257 argc_size;
258
259 //There needs to be padding after the auxiliary vector data so that the
260 //very bottom of the stack is aligned properly.
261 int partial_size = frame_size;
262 int aligned_partial_size = roundUp(partial_size, align);
263 int aux_padding = aligned_partial_size - partial_size;
264
265 int space_needed = frame_size + aux_padding;
266
267 stack_min = stack_base - space_needed;
268 stack_min = roundDown(stack_min, align);
269 stack_size = stack_base - stack_min;
270
271 // map memory
272 pTable->allocate(roundDown(stack_min, pageSize),
273 roundUp(stack_size, pageSize));
274
275 // map out initial stack contents
276 uint32_t sentry_base = stack_base - sentry_size;
277 uint32_t aux_data_base = sentry_base - aux_data_size;
278 uint32_t env_data_base = aux_data_base - env_data_size;
279 uint32_t arg_data_base = env_data_base - arg_data_size;
280 uint32_t platform_base = arg_data_base - platform_size;
281 uint32_t aux_random_base = platform_base - aux_random_size;
282 uint32_t auxv_array_base = aux_random_base - aux_array_size - aux_padding;
283 uint32_t envp_array_base = auxv_array_base - envp_array_size;
284 uint32_t argv_array_base = envp_array_base - argv_array_size;
285 uint32_t argc_base = argv_array_base - argc_size;
286
287 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
288 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
289 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
290 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
291 DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
292 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
293 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
294 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
295 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
296 DPRINTF(Stack, "0x%x - argc \n", argc_base);
297 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
298
299 // write contents to stack
300
301 // figure out argc
302 uint32_t argc = argv.size();
303 uint32_t guestArgc = ArmISA::htog(argc);
304
305 //Write out the sentry void *
306 uint32_t sentry_NULL = 0;
307 initVirtMem->writeBlob(sentry_base,
308 (uint8_t*)&sentry_NULL, sentry_size);
309
310 //Fix up the aux vectors which point to other data
311 for (int i = auxv.size() - 1; i >= 0; i--) {
312 if (auxv[i].a_type == M5_AT_PLATFORM) {
313 auxv[i].a_val = platform_base;
314 initVirtMem->writeString(platform_base, platform.c_str());
315 } else if (auxv[i].a_type == M5_AT_EXECFN) {
316 auxv[i].a_val = aux_data_base;
317 initVirtMem->writeString(aux_data_base, filename.c_str());
318 } else if (auxv[i].a_type == M5_AT_RANDOM) {
319 auxv[i].a_val = aux_random_base;
320 // Just leave the value 0, we don't want randomness
321 }
322 }
323
324 //Copy the aux stuff
325 for(int x = 0; x < auxv.size(); x++)
326 {
327 initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
328 (uint8_t*)&(auxv[x].a_type), intSize);
329 initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
330 (uint8_t*)&(auxv[x].a_val), intSize);
331 }
332 //Write out the terminating zeroed auxilliary vector
333 const uint64_t zero = 0;
334 initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
335 (uint8_t*)&zero, 2 * intSize);
336
337 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
338 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
339
340 initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
341
342 ThreadContext *tc = system->getThreadContext(contextIds[0]);
343 //Set the stack pointer register
344 tc->setIntReg(StackPointerReg, stack_min);
345 //A pointer to a function to run when the program exits. We'll set this
346 //to zero explicitly to make sure this isn't used.
347 tc->setIntReg(ArgumentReg0, 0);
348 //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
349 if (argv.size() > 0) {
350 tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
351 argv[argv.size() - 1].size() - 1);
352 } else {
353 tc->setIntReg(ArgumentReg1, 0);
354 }
355 if (envp.size() > 0) {
356 tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
357 envp[envp.size() - 1].size() - 1);
358 } else {
359 tc->setIntReg(ArgumentReg2, 0);
360 }
361
362 Addr prog_entry = objFile->entryPoint();
363 if (arch == ObjectFile::Thumb)
364 prog_entry = (prog_entry & ~mask(1)) | (ULL(1) << PcTBitShift);
365 tc->setPC(prog_entry);
366 tc->setNextPC(prog_entry + sizeof(MachInst));
367
368 //Align the "stack_min" to a page boundary.
369 stack_min = roundDown(stack_min, pageSize);
370}
371
372ArmISA::IntReg
373ArmLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
374{
375 assert(i < 6);
376 return tc->readIntReg(ArgumentReg0 + i++);
377}
378
379uint64_t
380ArmLiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
381{
382 assert(width == 32 || width == 64);
383 if (width == 32)
384 return getSyscallArg(tc, i);
385
386 // 64 bit arguments are passed starting in an even register
387 if (i % 2 != 0)
388 i++;
389
390 // Registers r0-r6 can be used
391 assert(i < 5);
392 uint64_t val;
393 val = tc->readIntReg(ArgumentReg0 + i++);
394 val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
395 return val;
396}
397
398
399void
400ArmLiveProcess::setSyscallArg(ThreadContext *tc,
401 int i, ArmISA::IntReg val)
402{
403 assert(i < 4);
404 tc->setIntReg(ArgumentReg0 + i, val);
405}
406
407void
408ArmLiveProcess::setSyscallReturn(ThreadContext *tc,
409 SyscallReturn return_value)
410{
411 tc->setIntReg(ReturnValueReg, return_value.value());
412}