arm_cpu.cc (10857:d2d5212578db) arm_cpu.cc (11178:555325cbf464)
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40#include "arch/arm/kvm/arm_cpu.hh"
41
42#include <linux/kvm.h>
43
44#include <algorithm>
45#include <cerrno>
46#include <memory>
47
48#include "arch/registers.hh"
49#include "cpu/kvm/base.hh"
50#include "debug/Kvm.hh"
51#include "debug/KvmContext.hh"
52#include "debug/KvmInt.hh"
53#include "sim/pseudo_inst.hh"
54
55using namespace ArmISA;
56
57#define EXTRACT_FIELD(val, mask, shift) \
58 (((val) & (mask)) >> (shift))
59
60#define REG_IS_ARM(id) \
61 (((id) & KVM_REG_ARCH_MASK) == KVM_REG_ARM)
62
63#define REG_IS_32BIT(id) \
64 (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32)
65
66#define REG_IS_64BIT(id) \
67 (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64)
68
69#define REG_IS_CP(id, cp) \
70 (((id) & KVM_REG_ARM_COPROC_MASK) == (cp))
71
72#define REG_IS_CORE(id) REG_IS_CP((id), KVM_REG_ARM_CORE)
73
74#define REG_IS_VFP(id) REG_IS_CP((id), KVM_REG_ARM_VFP)
75#define REG_VFP_REG(id) ((id) & KVM_REG_ARM_VFP_MASK)
76// HACK: These aren't really defined in any of the headers, so we'll
77// assume some reasonable values for now.
78#define REG_IS_VFP_REG(id) (REG_VFP_REG(id) < 0x100)
79#define REG_IS_VFP_CTRL(id) (REG_VFP_REG(id) >= 0x100)
80
81#define REG_IS_DEMUX(id) REG_IS_CP((id), KVM_REG_ARM_DEMUX)
82
83
84// There is no constant in the kernel headers defining the mask to use
85// to get the core register index. We'll just do what they do
86// internally.
87#define REG_CORE_IDX(id) \
88 (~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE))
89
90#define REG_CP(id) \
91 EXTRACT_FIELD(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT)
92
93#define REG_CRN(id) \
94 EXTRACT_FIELD(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT)
95
96#define REG_OPC1(id) \
97 EXTRACT_FIELD(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT)
98
99#define REG_CRM(id) \
100 EXTRACT_FIELD(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT)
101
102#define REG_OPC2(id) \
103 EXTRACT_FIELD(id, KVM_REG_ARM_32_OPC2_MASK, KVM_REG_ARM_32_OPC2_SHIFT)
104
105#define REG_CP32(cpnum, crn, opc1, crm, opc2) ( \
106 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
107 ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
108 ((crn) << KVM_REG_ARM_32_CRN_SHIFT) | \
109 ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \
110 ((crm) << KVM_REG_ARM_CRM_SHIFT) | \
111 ((opc2) << KVM_REG_ARM_32_OPC2_SHIFT))
112
113#define REG_CP64(cpnum, opc1, crm) ( \
114 (KVM_REG_ARM | KVM_REG_SIZE_U64) | \
115 ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
116 ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \
117 ((crm) << KVM_REG_ARM_CRM_SHIFT))
118
119#define REG_CORE32(kname) ( \
120 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
121 (KVM_REG_ARM_CORE) | \
122 (KVM_REG_ARM_CORE_REG(kname)))
123
124#define REG_VFP32(regno) ( \
125 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
126 KVM_REG_ARM_VFP | (regno))
127
128#define REG_VFP64(regno) ( \
129 (KVM_REG_ARM | KVM_REG_SIZE_U64) | \
130 KVM_REG_ARM_VFP | (regno))
131
132#define REG_DEMUX32(dmxid, val) ( \
133 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
134 (dmxid) | (val))
135
136// Some of the co-processor registers are invariants and must have the
137// same value on both the host and the guest. We need to keep a list
138// of these to prevent gem5 from fiddling with them on the guest.
139static uint64_t invariant_reg_vector[] = {
140 REG_CP32(15, 0, 0, 0, 0), // MIDR
141 REG_CP32(15, 0, 0, 0, 1), // CTR
142 REG_CP32(15, 0, 0, 0, 2), // TCMTR
143 REG_CP32(15, 0, 0, 0, 3), // TLBTR
144 REG_CP32(15, 0, 0, 0, 6), // REVIDR
145
146 REG_CP32(15, 0, 0, 1, 0), // ID_PFR0
147 REG_CP32(15, 0, 0, 1, 1), // ID_PFR1
148 REG_CP32(15, 0, 0, 1, 2), // ID_DFR0
149 REG_CP32(15, 0, 0, 1, 3), // ID_AFR0
150 REG_CP32(15, 0, 0, 1, 4), // ID_MMFR0
151 REG_CP32(15, 0, 0, 1, 5), // ID_MMFR1
152 REG_CP32(15, 0, 0, 1, 6), // ID_MMFR2
153 REG_CP32(15, 0, 0, 1, 7), // ID_MMFR3
154
155 REG_CP32(15, 0, 0, 2, 0), // ID_ISAR0
156 REG_CP32(15, 0, 0, 2, 1), // ID_ISAR1
157 REG_CP32(15, 0, 0, 2, 2), // ID_ISAR2
158 REG_CP32(15, 0, 0, 2, 3), // ID_ISAR3
159 REG_CP32(15, 0, 0, 2, 4), // ID_ISAR4
160 REG_CP32(15, 0, 0, 2, 5), // ID_ISAR5
161
162 REG_CP32(15, 0, 1, 0, 0), // CSSIDR
163 REG_CP32(15, 0, 1, 0, 1), // CLIDR
164 REG_CP32(15, 0, 1, 0, 7), // AIDR
165
166 REG_VFP32(KVM_REG_ARM_VFP_MVFR0),
167 REG_VFP32(KVM_REG_ARM_VFP_MVFR1),
168 REG_VFP32(KVM_REG_ARM_VFP_FPSID),
169
170 REG_DEMUX32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0),
171};
172
173const static uint64_t KVM_REG64_TTBR0(REG_CP64(15, 0, 2));
174const static uint64_t KVM_REG64_TTBR1(REG_CP64(15, 1, 2));
175
176#define INTERRUPT_ID(type, vcpu, irq) ( \
177 ((type) << KVM_ARM_IRQ_TYPE_SHIFT) | \
178 ((vcpu) << KVM_ARM_IRQ_VCPU_SHIFT) | \
179 ((irq) << KVM_ARM_IRQ_NUM_SHIFT))
180
181#define INTERRUPT_VCPU_IRQ(vcpu) \
182 INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ)
183
184#define INTERRUPT_VCPU_FIQ(vcpu) \
185 INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ)
186
187
188#define COUNT_OF(l) (sizeof(l) / sizeof(*l))
189
190const std::set<uint64_t> ArmKvmCPU::invariant_regs(
191 invariant_reg_vector,
192 invariant_reg_vector + COUNT_OF(invariant_reg_vector));
193
194
195ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = {
196 { REG_CORE32(usr_regs.ARM_r0), INTREG_R0, "R0" },
197 { REG_CORE32(usr_regs.ARM_r1), INTREG_R1, "R1" },
198 { REG_CORE32(usr_regs.ARM_r2), INTREG_R2, "R2" },
199 { REG_CORE32(usr_regs.ARM_r3), INTREG_R3, "R3" },
200 { REG_CORE32(usr_regs.ARM_r4), INTREG_R4, "R4" },
201 { REG_CORE32(usr_regs.ARM_r5), INTREG_R5, "R5" },
202 { REG_CORE32(usr_regs.ARM_r6), INTREG_R6, "R6" },
203 { REG_CORE32(usr_regs.ARM_r7), INTREG_R7, "R7" },
204 { REG_CORE32(usr_regs.ARM_r8), INTREG_R8, "R8" },
205 { REG_CORE32(usr_regs.ARM_r9), INTREG_R9, "R9" },
206 { REG_CORE32(usr_regs.ARM_r10), INTREG_R10, "R10" },
207 { REG_CORE32(usr_regs.ARM_fp), INTREG_R11, "R11" },
208 { REG_CORE32(usr_regs.ARM_ip), INTREG_R12, "R12" },
209 { REG_CORE32(usr_regs.ARM_sp), INTREG_R13, "R13(USR)" },
210 { REG_CORE32(usr_regs.ARM_lr), INTREG_R14, "R14(USR)" },
211
212 { REG_CORE32(svc_regs[0]), INTREG_SP_SVC, "R13(SVC)" },
213 { REG_CORE32(svc_regs[1]), INTREG_LR_SVC, "R14(SVC)" },
214
215 { REG_CORE32(abt_regs[0]), INTREG_SP_ABT, "R13(ABT)" },
216 { REG_CORE32(abt_regs[1]), INTREG_LR_ABT, "R14(ABT)" },
217
218 { REG_CORE32(und_regs[0]), INTREG_SP_UND, "R13(UND)" },
219 { REG_CORE32(und_regs[1]), INTREG_LR_UND, "R14(UND)" },
220
221 { REG_CORE32(irq_regs[0]), INTREG_SP_IRQ, "R13(IRQ)" },
222 { REG_CORE32(irq_regs[1]), INTREG_LR_IRQ, "R14(IRQ)" },
223
224
225 { REG_CORE32(fiq_regs[0]), INTREG_R8_FIQ, "R8(FIQ)" },
226 { REG_CORE32(fiq_regs[1]), INTREG_R9_FIQ, "R9(FIQ)" },
227 { REG_CORE32(fiq_regs[2]), INTREG_R10_FIQ, "R10(FIQ)" },
228 { REG_CORE32(fiq_regs[3]), INTREG_R11_FIQ, "R11(FIQ)" },
229 { REG_CORE32(fiq_regs[4]), INTREG_R12_FIQ, "R12(FIQ)" },
230 { REG_CORE32(fiq_regs[5]), INTREG_R13_FIQ, "R13(FIQ)" },
231 { REG_CORE32(fiq_regs[6]), INTREG_R14_FIQ, "R14(FIQ)" },
232 { 0, NUM_INTREGS, NULL }
233};
234
235ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = {
236 { REG_CORE32(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR" },
237 { REG_CORE32(svc_regs[2]), MISCREG_SPSR_SVC, "SPSR(SVC)" },
238 { REG_CORE32(abt_regs[2]), MISCREG_SPSR_ABT, "SPSR(ABT)" },
239 { REG_CORE32(und_regs[2]), MISCREG_SPSR_UND, "SPSR(UND)" },
240 { REG_CORE32(irq_regs[2]), MISCREG_SPSR_IRQ, "SPSR(IRQ)" },
241 { REG_CORE32(fiq_regs[2]), MISCREG_SPSR_FIQ, "SPSR(FIQ)" },
242 { 0, NUM_MISCREGS }
243};
244
245ArmKvmCPU::ArmKvmCPU(ArmKvmCPUParams *params)
246 : BaseKvmCPU(params),
247 irqAsserted(false), fiqAsserted(false)
248{
249}
250
251ArmKvmCPU::~ArmKvmCPU()
252{
253}
254
255void
256ArmKvmCPU::startup()
257{
258 BaseKvmCPU::startup();
259
260 /* TODO: This needs to be moved when we start to support VMs with
261 * multiple threads since kvmArmVCpuInit requires that all CPUs in
262 * the VM have been created.
263 */
264 /* TODO: The CPU type needs to be configurable once KVM on ARM
265 * starts to support more CPUs.
266 */
267 kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15);
268}
269
270Tick
271ArmKvmCPU::kvmRun(Tick ticks)
272{
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40#include "arch/arm/kvm/arm_cpu.hh"
41
42#include <linux/kvm.h>
43
44#include <algorithm>
45#include <cerrno>
46#include <memory>
47
48#include "arch/registers.hh"
49#include "cpu/kvm/base.hh"
50#include "debug/Kvm.hh"
51#include "debug/KvmContext.hh"
52#include "debug/KvmInt.hh"
53#include "sim/pseudo_inst.hh"
54
55using namespace ArmISA;
56
57#define EXTRACT_FIELD(val, mask, shift) \
58 (((val) & (mask)) >> (shift))
59
60#define REG_IS_ARM(id) \
61 (((id) & KVM_REG_ARCH_MASK) == KVM_REG_ARM)
62
63#define REG_IS_32BIT(id) \
64 (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32)
65
66#define REG_IS_64BIT(id) \
67 (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64)
68
69#define REG_IS_CP(id, cp) \
70 (((id) & KVM_REG_ARM_COPROC_MASK) == (cp))
71
72#define REG_IS_CORE(id) REG_IS_CP((id), KVM_REG_ARM_CORE)
73
74#define REG_IS_VFP(id) REG_IS_CP((id), KVM_REG_ARM_VFP)
75#define REG_VFP_REG(id) ((id) & KVM_REG_ARM_VFP_MASK)
76// HACK: These aren't really defined in any of the headers, so we'll
77// assume some reasonable values for now.
78#define REG_IS_VFP_REG(id) (REG_VFP_REG(id) < 0x100)
79#define REG_IS_VFP_CTRL(id) (REG_VFP_REG(id) >= 0x100)
80
81#define REG_IS_DEMUX(id) REG_IS_CP((id), KVM_REG_ARM_DEMUX)
82
83
84// There is no constant in the kernel headers defining the mask to use
85// to get the core register index. We'll just do what they do
86// internally.
87#define REG_CORE_IDX(id) \
88 (~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE))
89
90#define REG_CP(id) \
91 EXTRACT_FIELD(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT)
92
93#define REG_CRN(id) \
94 EXTRACT_FIELD(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT)
95
96#define REG_OPC1(id) \
97 EXTRACT_FIELD(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT)
98
99#define REG_CRM(id) \
100 EXTRACT_FIELD(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT)
101
102#define REG_OPC2(id) \
103 EXTRACT_FIELD(id, KVM_REG_ARM_32_OPC2_MASK, KVM_REG_ARM_32_OPC2_SHIFT)
104
105#define REG_CP32(cpnum, crn, opc1, crm, opc2) ( \
106 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
107 ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
108 ((crn) << KVM_REG_ARM_32_CRN_SHIFT) | \
109 ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \
110 ((crm) << KVM_REG_ARM_CRM_SHIFT) | \
111 ((opc2) << KVM_REG_ARM_32_OPC2_SHIFT))
112
113#define REG_CP64(cpnum, opc1, crm) ( \
114 (KVM_REG_ARM | KVM_REG_SIZE_U64) | \
115 ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
116 ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \
117 ((crm) << KVM_REG_ARM_CRM_SHIFT))
118
119#define REG_CORE32(kname) ( \
120 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
121 (KVM_REG_ARM_CORE) | \
122 (KVM_REG_ARM_CORE_REG(kname)))
123
124#define REG_VFP32(regno) ( \
125 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
126 KVM_REG_ARM_VFP | (regno))
127
128#define REG_VFP64(regno) ( \
129 (KVM_REG_ARM | KVM_REG_SIZE_U64) | \
130 KVM_REG_ARM_VFP | (regno))
131
132#define REG_DEMUX32(dmxid, val) ( \
133 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
134 (dmxid) | (val))
135
136// Some of the co-processor registers are invariants and must have the
137// same value on both the host and the guest. We need to keep a list
138// of these to prevent gem5 from fiddling with them on the guest.
139static uint64_t invariant_reg_vector[] = {
140 REG_CP32(15, 0, 0, 0, 0), // MIDR
141 REG_CP32(15, 0, 0, 0, 1), // CTR
142 REG_CP32(15, 0, 0, 0, 2), // TCMTR
143 REG_CP32(15, 0, 0, 0, 3), // TLBTR
144 REG_CP32(15, 0, 0, 0, 6), // REVIDR
145
146 REG_CP32(15, 0, 0, 1, 0), // ID_PFR0
147 REG_CP32(15, 0, 0, 1, 1), // ID_PFR1
148 REG_CP32(15, 0, 0, 1, 2), // ID_DFR0
149 REG_CP32(15, 0, 0, 1, 3), // ID_AFR0
150 REG_CP32(15, 0, 0, 1, 4), // ID_MMFR0
151 REG_CP32(15, 0, 0, 1, 5), // ID_MMFR1
152 REG_CP32(15, 0, 0, 1, 6), // ID_MMFR2
153 REG_CP32(15, 0, 0, 1, 7), // ID_MMFR3
154
155 REG_CP32(15, 0, 0, 2, 0), // ID_ISAR0
156 REG_CP32(15, 0, 0, 2, 1), // ID_ISAR1
157 REG_CP32(15, 0, 0, 2, 2), // ID_ISAR2
158 REG_CP32(15, 0, 0, 2, 3), // ID_ISAR3
159 REG_CP32(15, 0, 0, 2, 4), // ID_ISAR4
160 REG_CP32(15, 0, 0, 2, 5), // ID_ISAR5
161
162 REG_CP32(15, 0, 1, 0, 0), // CSSIDR
163 REG_CP32(15, 0, 1, 0, 1), // CLIDR
164 REG_CP32(15, 0, 1, 0, 7), // AIDR
165
166 REG_VFP32(KVM_REG_ARM_VFP_MVFR0),
167 REG_VFP32(KVM_REG_ARM_VFP_MVFR1),
168 REG_VFP32(KVM_REG_ARM_VFP_FPSID),
169
170 REG_DEMUX32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0),
171};
172
173const static uint64_t KVM_REG64_TTBR0(REG_CP64(15, 0, 2));
174const static uint64_t KVM_REG64_TTBR1(REG_CP64(15, 1, 2));
175
176#define INTERRUPT_ID(type, vcpu, irq) ( \
177 ((type) << KVM_ARM_IRQ_TYPE_SHIFT) | \
178 ((vcpu) << KVM_ARM_IRQ_VCPU_SHIFT) | \
179 ((irq) << KVM_ARM_IRQ_NUM_SHIFT))
180
181#define INTERRUPT_VCPU_IRQ(vcpu) \
182 INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ)
183
184#define INTERRUPT_VCPU_FIQ(vcpu) \
185 INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ)
186
187
188#define COUNT_OF(l) (sizeof(l) / sizeof(*l))
189
190const std::set<uint64_t> ArmKvmCPU::invariant_regs(
191 invariant_reg_vector,
192 invariant_reg_vector + COUNT_OF(invariant_reg_vector));
193
194
195ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = {
196 { REG_CORE32(usr_regs.ARM_r0), INTREG_R0, "R0" },
197 { REG_CORE32(usr_regs.ARM_r1), INTREG_R1, "R1" },
198 { REG_CORE32(usr_regs.ARM_r2), INTREG_R2, "R2" },
199 { REG_CORE32(usr_regs.ARM_r3), INTREG_R3, "R3" },
200 { REG_CORE32(usr_regs.ARM_r4), INTREG_R4, "R4" },
201 { REG_CORE32(usr_regs.ARM_r5), INTREG_R5, "R5" },
202 { REG_CORE32(usr_regs.ARM_r6), INTREG_R6, "R6" },
203 { REG_CORE32(usr_regs.ARM_r7), INTREG_R7, "R7" },
204 { REG_CORE32(usr_regs.ARM_r8), INTREG_R8, "R8" },
205 { REG_CORE32(usr_regs.ARM_r9), INTREG_R9, "R9" },
206 { REG_CORE32(usr_regs.ARM_r10), INTREG_R10, "R10" },
207 { REG_CORE32(usr_regs.ARM_fp), INTREG_R11, "R11" },
208 { REG_CORE32(usr_regs.ARM_ip), INTREG_R12, "R12" },
209 { REG_CORE32(usr_regs.ARM_sp), INTREG_R13, "R13(USR)" },
210 { REG_CORE32(usr_regs.ARM_lr), INTREG_R14, "R14(USR)" },
211
212 { REG_CORE32(svc_regs[0]), INTREG_SP_SVC, "R13(SVC)" },
213 { REG_CORE32(svc_regs[1]), INTREG_LR_SVC, "R14(SVC)" },
214
215 { REG_CORE32(abt_regs[0]), INTREG_SP_ABT, "R13(ABT)" },
216 { REG_CORE32(abt_regs[1]), INTREG_LR_ABT, "R14(ABT)" },
217
218 { REG_CORE32(und_regs[0]), INTREG_SP_UND, "R13(UND)" },
219 { REG_CORE32(und_regs[1]), INTREG_LR_UND, "R14(UND)" },
220
221 { REG_CORE32(irq_regs[0]), INTREG_SP_IRQ, "R13(IRQ)" },
222 { REG_CORE32(irq_regs[1]), INTREG_LR_IRQ, "R14(IRQ)" },
223
224
225 { REG_CORE32(fiq_regs[0]), INTREG_R8_FIQ, "R8(FIQ)" },
226 { REG_CORE32(fiq_regs[1]), INTREG_R9_FIQ, "R9(FIQ)" },
227 { REG_CORE32(fiq_regs[2]), INTREG_R10_FIQ, "R10(FIQ)" },
228 { REG_CORE32(fiq_regs[3]), INTREG_R11_FIQ, "R11(FIQ)" },
229 { REG_CORE32(fiq_regs[4]), INTREG_R12_FIQ, "R12(FIQ)" },
230 { REG_CORE32(fiq_regs[5]), INTREG_R13_FIQ, "R13(FIQ)" },
231 { REG_CORE32(fiq_regs[6]), INTREG_R14_FIQ, "R14(FIQ)" },
232 { 0, NUM_INTREGS, NULL }
233};
234
235ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = {
236 { REG_CORE32(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR" },
237 { REG_CORE32(svc_regs[2]), MISCREG_SPSR_SVC, "SPSR(SVC)" },
238 { REG_CORE32(abt_regs[2]), MISCREG_SPSR_ABT, "SPSR(ABT)" },
239 { REG_CORE32(und_regs[2]), MISCREG_SPSR_UND, "SPSR(UND)" },
240 { REG_CORE32(irq_regs[2]), MISCREG_SPSR_IRQ, "SPSR(IRQ)" },
241 { REG_CORE32(fiq_regs[2]), MISCREG_SPSR_FIQ, "SPSR(FIQ)" },
242 { 0, NUM_MISCREGS }
243};
244
245ArmKvmCPU::ArmKvmCPU(ArmKvmCPUParams *params)
246 : BaseKvmCPU(params),
247 irqAsserted(false), fiqAsserted(false)
248{
249}
250
251ArmKvmCPU::~ArmKvmCPU()
252{
253}
254
255void
256ArmKvmCPU::startup()
257{
258 BaseKvmCPU::startup();
259
260 /* TODO: This needs to be moved when we start to support VMs with
261 * multiple threads since kvmArmVCpuInit requires that all CPUs in
262 * the VM have been created.
263 */
264 /* TODO: The CPU type needs to be configurable once KVM on ARM
265 * starts to support more CPUs.
266 */
267 kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15);
268}
269
270Tick
271ArmKvmCPU::kvmRun(Tick ticks)
272{
273 bool simFIQ(interrupts->checkRaw(INT_FIQ));
274 bool simIRQ(interrupts->checkRaw(INT_IRQ));
273 bool simFIQ(interrupts[0]->checkRaw(INT_FIQ));
274 bool simIRQ(interrupts[0]->checkRaw(INT_IRQ));
275
276 if (fiqAsserted != simFIQ) {
277 fiqAsserted = simFIQ;
278 DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ);
279 vm.setIRQLine(INTERRUPT_VCPU_FIQ(vcpuID), simFIQ);
280 }
281 if (irqAsserted != simIRQ) {
282 irqAsserted = simIRQ;
283 DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ);
284 vm.setIRQLine(INTERRUPT_VCPU_IRQ(vcpuID), simIRQ);
285 }
286
287 return BaseKvmCPU::kvmRun(ticks);
288}
289
290void
291ArmKvmCPU::dump()
292{
293 dumpKvmStateCore();
294 dumpKvmStateMisc();
295}
296
297void
298ArmKvmCPU::updateKvmState()
299{
300 DPRINTF(KvmContext, "Updating KVM state...\n");
301
302 updateKvmStateCore();
303 updateKvmStateMisc();
304}
305
306void
307ArmKvmCPU::updateThreadContext()
308{
309 DPRINTF(KvmContext, "Updating gem5 state...\n");
310
311 updateTCStateCore();
312 updateTCStateMisc();
313}
314
315Tick
316ArmKvmCPU::onKvmExitHypercall()
317{
318 ThreadContext *tc(getContext(0));
319 const uint32_t reg_ip(tc->readIntRegFlat(INTREG_R12));
320 const uint8_t func((reg_ip >> 8) & 0xFF);
321 const uint8_t subfunc(reg_ip & 0xFF);
322
323 DPRINTF(Kvm, "KVM Hypercall: 0x%x/0x%x\n", func, subfunc);
324 const uint64_t ret(PseudoInst::pseudoInst(getContext(0), func, subfunc));
325
326 // Just set the return value using the KVM API instead of messing
327 // with the context. We could have used the context, but that
328 // would have required us to request a full context sync.
329 setOneReg(REG_CORE32(usr_regs.ARM_r0), ret & 0xFFFFFFFF);
330 setOneReg(REG_CORE32(usr_regs.ARM_r1), (ret >> 32) & 0xFFFFFFFF);
331
332 return 0;
333}
334
335const ArmKvmCPU::RegIndexVector &
336ArmKvmCPU::getRegList() const
337{
338 if (_regIndexList.size() == 0) {
339 std::unique_ptr<struct kvm_reg_list> regs;
340 uint64_t i(1);
341
342 do {
343 i <<= 1;
344 regs.reset((struct kvm_reg_list *)
345 operator new(sizeof(struct kvm_reg_list) +
346 i * sizeof(uint64_t)));
347 regs->n = i;
348 } while (!getRegList(*regs));
349 _regIndexList.assign(regs->reg,
350 regs->reg + regs->n);
351 }
352
353 return _regIndexList;
354}
355
356void
357ArmKvmCPU::kvmArmVCpuInit(uint32_t target)
358{
359 struct kvm_vcpu_init init;
360
361 memset(&init, 0, sizeof(init));
362
363 init.target = target;
364
365 kvmArmVCpuInit(init);
366}
367
368void
369ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init)
370{
371 if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1)
372 panic("KVM: Failed to initialize vCPU\n");
373}
374
375MiscRegIndex
376ArmKvmCPU::decodeCoProcReg(uint64_t id) const
377{
378 const unsigned cp(REG_CP(id));
379 const bool is_reg32(REG_IS_32BIT(id));
380 const bool is_reg64(REG_IS_64BIT(id));
381
382 // CP numbers larger than 15 are reserved for KVM extensions
383 if (cp > 15)
384 return NUM_MISCREGS;
385
386 const unsigned crm(REG_CRM(id));
387 const unsigned crn(REG_CRN(id));
388 const unsigned opc1(REG_OPC1(id));
389 const unsigned opc2(REG_OPC2(id));
390
391 if (is_reg32) {
392 switch (cp) {
393 case 14:
394 return decodeCP14Reg(crn, opc1, crm, opc2);
395
396 case 15:
397 return decodeCP15Reg(crn, opc1, crm, opc2);
398
399 default:
400 return NUM_MISCREGS;
401 }
402 } else if(is_reg64) {
403 return NUM_MISCREGS;
404 } else {
405 warn("Unhandled register length, register (0x%x) ignored.\n");
406 return NUM_MISCREGS;
407 }
408}
409
410ArmISA::MiscRegIndex
411ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const
412{
413 if (!REG_IS_ARM(id) || !REG_IS_VFP(id) || !REG_IS_VFP_CTRL(id))
414 return NUM_MISCREGS;
415
416 const unsigned vfp_reg(REG_VFP_REG(id));
417 switch (vfp_reg) {
418 case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID;
419 case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR;
420 case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0;
421 case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1;
422 case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC;
423
424 case KVM_REG_ARM_VFP_FPINST:
425 case KVM_REG_ARM_VFP_FPINST2:
426 warn_once("KVM: FPINST not implemented.\n");
427 return NUM_MISCREGS;
428
429 default:
430 return NUM_MISCREGS;
431 }
432}
433
434bool
435ArmKvmCPU::isInvariantReg(uint64_t id)
436{
437 /* Mask away the value field from multiplexed registers, we assume
438 * that entire groups of multiplexed registers can be treated as
439 * invariant. */
440 if (REG_IS_ARM(id) && REG_IS_DEMUX(id))
441 id &= ~KVM_REG_ARM_DEMUX_VAL_MASK;
442
443 return invariant_regs.find(id) != invariant_regs.end();
444}
445
446bool
447ArmKvmCPU::getRegList(struct kvm_reg_list &regs) const
448{
449 if (ioctl(KVM_GET_REG_LIST, (void *)&regs) == -1) {
450 if (errno == E2BIG) {
451 return false;
452 } else {
453 panic("KVM: Failed to get vCPU register list (errno: %i)\n",
454 errno);
455 }
456 } else {
457 return true;
458 }
459}
460
461void
462ArmKvmCPU::dumpKvmStateCore()
463{
464 /* Print core registers */
465 uint32_t pc(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
466 inform("PC: 0x%x\n", pc);
467
468 for (const KvmIntRegInfo *ri(kvmIntRegs);
469 ri->idx != NUM_INTREGS; ++ri) {
470
471 uint32_t value(getOneRegU32(ri->id));
472 inform("%s: 0x%x\n", ri->name, value);
473 }
474
475 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
476 ri->idx != NUM_MISCREGS; ++ri) {
477
478 uint32_t value(getOneRegU32(ri->id));
479 inform("%s: 0x%x\n", miscRegName[ri->idx], value);
480 }
481}
482
483void
484ArmKvmCPU::dumpKvmStateMisc()
485{
486 /* Print co-processor registers */
487 const RegIndexVector &reg_ids(getRegList());;
488 for (RegIndexVector::const_iterator it(reg_ids.begin());
489 it != reg_ids.end(); ++it) {
490 uint64_t id(*it);
491
492 if (REG_IS_ARM(id) && REG_CP(id) <= 15) {
493 dumpKvmStateCoProc(id);
494 } else if (REG_IS_ARM(id) && REG_IS_VFP(id)) {
495 dumpKvmStateVFP(id);
496 } else if (REG_IS_ARM(id) && REG_IS_DEMUX(id)) {
497 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
498 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
499 inform("CCSIDR [0x%x]: %s\n",
500 EXTRACT_FIELD(id,
501 KVM_REG_ARM_DEMUX_VAL_MASK,
502 KVM_REG_ARM_DEMUX_VAL_SHIFT),
503 getAndFormatOneReg(id));
504 break;
505 default:
506 inform("DEMUX [0x%x, 0x%x]: %s\n",
507 EXTRACT_FIELD(id,
508 KVM_REG_ARM_DEMUX_ID_MASK,
509 KVM_REG_ARM_DEMUX_ID_SHIFT),
510 EXTRACT_FIELD(id,
511 KVM_REG_ARM_DEMUX_VAL_MASK,
512 KVM_REG_ARM_DEMUX_VAL_SHIFT),
513 getAndFormatOneReg(id));
514 break;
515 }
516 } else if (!REG_IS_CORE(id)) {
517 inform("0x%x: %s\n", id, getAndFormatOneReg(id));
518 }
519 }
520}
521
522void
523ArmKvmCPU::dumpKvmStateCoProc(uint64_t id)
524{
525 assert(REG_IS_ARM(id));
526 assert(REG_CP(id) <= 15);
527
528 if (REG_IS_32BIT(id)) {
529 // 32-bit co-proc registers
530 MiscRegIndex idx(decodeCoProcReg(id));
531 uint32_t value(getOneRegU32(id));
532
533 if (idx != NUM_MISCREGS &&
534 !(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) {
535 const char *name(miscRegName[idx]);
536 const unsigned m5_ne(tc->readMiscRegNoEffect(idx));
537 const unsigned m5_e(tc->readMiscReg(idx));
538 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: "
539 "[%s]: 0x%x/0x%x\n",
540 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
541 REG_OPC2(id), isInvariantReg(id),
542 name, value, m5_e);
543 if (m5_e != m5_ne) {
544 inform("readMiscReg: %x, readMiscRegNoEffect: %x\n",
545 m5_e, m5_ne);
546 }
547 } else {
548 const char *name(idx != NUM_MISCREGS ? miscRegName[idx] : "-");
549 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: [%s]: "
550 "0x%x\n",
551 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
552 REG_OPC2(id), isInvariantReg(id), name, value);
553 }
554 } else {
555 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i "
556 "len: 0x%x]: %s\n",
557 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
558 REG_OPC2(id), isInvariantReg(id),
559 EXTRACT_FIELD(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT),
560 getAndFormatOneReg(id));
561 }
562}
563
564void
565ArmKvmCPU::dumpKvmStateVFP(uint64_t id)
566{
567 assert(REG_IS_ARM(id));
568 assert(REG_IS_VFP(id));
569
570 if (REG_IS_VFP_REG(id)) {
571 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
572 inform("VFP reg %i: %s", idx, getAndFormatOneReg(id));
573 } else if (REG_IS_VFP_CTRL(id)) {
574 MiscRegIndex idx(decodeVFPCtrlReg(id));
575 if (idx != NUM_MISCREGS) {
576 inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id));
577 } else {
578 inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
579 }
580 } else {
581 inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
582 }
583}
584
585void
586ArmKvmCPU::updateKvmStateCore()
587{
588 for (const KvmIntRegInfo *ri(kvmIntRegs);
589 ri->idx != NUM_INTREGS; ++ri) {
590
591 uint64_t value(tc->readIntRegFlat(ri->idx));
592 DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
593 setOneReg(ri->id, value);
594 }
595
596 DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->instAddr());
597 setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->instAddr());
598
599 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
600 ri->idx != NUM_MISCREGS; ++ri) {
601
602 uint64_t value(tc->readMiscReg(ri->idx));
603 DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
604 setOneReg(ri->id, value);
605 }
606
607 if (DTRACE(KvmContext))
608 dumpKvmStateCore();
609}
610
611void
612ArmKvmCPU::updateKvmStateMisc()
613{
614 static bool warned(false); // We can't use warn_once since we want
615 // to show /all/ registers
616
617 const RegIndexVector &regs(getRegList());
618
619 for (RegIndexVector::const_iterator it(regs.begin());
620 it != regs.end();
621 ++it) {
622
623 if (!REG_IS_ARM(*it)) {
624 if (!warned)
625 warn("Skipping non-ARM register: 0x%x\n", *it);
626 } else if (isInvariantReg(*it)) {
627 DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it);
628 } else if (REG_IS_CORE(*it)) {
629 // Core registers are handled in updateKvmStateCore
630 continue;
631 } else if (REG_CP(*it) <= 15) {
632 updateKvmStateCoProc(*it, !warned);
633 } else if (REG_IS_VFP(*it)) {
634 updateKvmStateVFP(*it, !warned);
635 } else {
636 if (!warned) {
637 warn("Skipping register with unknown CP (%i) id: 0x%x\n",
638 REG_CP(*it), *it);
639 }
640 }
641
642 }
643
644 warned = true;
645 if (DTRACE(KvmContext))
646 dumpKvmStateMisc();
647}
648
649void
650ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings)
651{
652 MiscRegIndex reg(decodeCoProcReg(id));
653
654 assert(REG_IS_ARM(id));
655 assert(REG_CP(id) <= 15);
656
657 if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
658 // HACK HACK HACK: Workaround for 64-bit TTBRx
659 reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1);
660 if (show_warnings)
661 hack("KVM: 64-bit TTBBRx workaround\n");
662 }
663
664 if (reg == NUM_MISCREGS) {
665 if (show_warnings) {
666 warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n",
667 id);
668 warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
669 " opc2: %i]\n",
670 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
671 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
672 }
673 } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
674 if (show_warnings)
675 warn("KVM: Co-processor reg. %s not implemented by gem5.\n",
676 miscRegName[reg]);
677 } else {
678 setOneReg(id, tc->readMiscRegNoEffect(reg));
679 }
680}
681
682
683void
684ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings)
685{
686 assert(REG_IS_ARM(id));
687 assert(REG_IS_VFP(id));
688
689 if (REG_IS_VFP_REG(id)) {
690 if (!REG_IS_64BIT(id)) {
691 if (show_warnings)
692 warn("Unexpected VFP register length (reg: 0x%x).\n", id);
693 return;
694 }
695 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
696 const unsigned idx_base(idx << 1);
697 const unsigned idx_hi(idx_base + 1);
698 const unsigned idx_lo(idx_base + 0);
699 uint64_t value(
700 ((uint64_t)tc->readFloatRegBitsFlat(idx_hi) << 32) |
701 tc->readFloatRegBitsFlat(idx_lo));
702
703 setOneReg(id, value);
704 } else if (REG_IS_VFP_CTRL(id)) {
705 MiscRegIndex idx(decodeVFPCtrlReg(id));
706 if (idx == NUM_MISCREGS) {
707 if (show_warnings)
708 warn("Unhandled VFP control register: 0x%x\n", id);
709 return;
710 }
711 if (!REG_IS_32BIT(id)) {
712 if (show_warnings)
713 warn("Ignoring VFP control register (%s) with "
714 "unexpected size.\n",
715 miscRegName[idx]);
716 return;
717 }
718 setOneReg(id, (uint32_t)tc->readMiscReg(idx));
719 } else {
720 if (show_warnings)
721 warn("Unhandled VFP register: 0x%x\n", id);
722 }
723}
724
725void
726ArmKvmCPU::updateTCStateCore()
727{
728 for (const KvmIntRegInfo *ri(kvmIntRegs);
729 ri->idx != NUM_INTREGS; ++ri) {
730
731 tc->setIntRegFlat(ri->idx, getOneRegU32(ri->id));
732 }
733
734 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
735 ri->idx != NUM_MISCREGS; ++ri) {
736
737 tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id));
738 }
739
740 /* We want the simulator to execute all side-effects of the CPSR
741 * update since this updates PC state and register maps.
742 */
743 tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR));
744
745 // We update the PC state after we have updated the CPSR the
746 // contents of the CPSR affects how the npc is updated.
747 PCState pc(tc->pcState());
748 pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
749 tc->pcState(pc);
750
751 if (DTRACE(KvmContext))
752 dumpKvmStateCore();
753}
754
755void
756ArmKvmCPU::updateTCStateMisc()
757{
758 static bool warned(false); // We can't use warn_once since we want
759 // to show /all/ registers
760
761 const RegIndexVector &reg_ids(getRegList());;
762 for (RegIndexVector::const_iterator it(reg_ids.begin());
763 it != reg_ids.end(); ++it) {
764
765 if (!REG_IS_ARM(*it)) {
766 if (!warned)
767 warn("Skipping non-ARM register: 0x%x\n", *it);
768 } else if (REG_IS_CORE(*it)) {
769 // Core registers are handled in updateKvmStateCore
770 } else if (REG_CP(*it) <= 15) {
771 updateTCStateCoProc(*it, !warned);
772 } else if (REG_IS_VFP(*it)) {
773 updateTCStateVFP(*it, !warned);
774 } else {
775 if (!warned) {
776 warn("Skipping register with unknown CP (%i) id: 0x%x\n",
777 REG_CP(*it), *it);
778 }
779 }
780 }
781
782 warned = true;
783
784 if (DTRACE(KvmContext))
785 dumpKvmStateMisc();
786}
787
788void
789ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings)
790{
791 MiscRegIndex reg(decodeCoProcReg(id));
792
793 assert(REG_IS_ARM(id));
794 assert(REG_CP(id) <= 15);
795
796 if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
797 // HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1
798 hack_once("KVM: 64-bit TTBRx workaround\n");
799 tc->setMiscRegNoEffect(
800 id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1,
801 (uint32_t)(getOneRegU64(id) & 0xFFFFFFFF));
802 } else if (reg == MISCREG_TTBCR) {
803 uint32_t value(getOneRegU64(id));
804 if (value & 0x80000000)
805 panic("KVM: Guest tried to enable LPAE.\n");
806 tc->setMiscRegNoEffect(reg, value);
807 } else if (reg == NUM_MISCREGS) {
808 if (show_warnings) {
809 warn("KVM: Ignoring unknown KVM co-processor register:\n", id);
810 warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
811 " opc2: %i]\n",
812 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
813 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
814 }
815 } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
816 if (show_warnings)
817 warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n",
818 miscRegName[reg]);
819 } else {
820 tc->setMiscRegNoEffect(reg, getOneRegU32(id));
821 }
822}
823
824void
825ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings)
826{
827 assert(REG_IS_ARM(id));
828 assert(REG_IS_VFP(id));
829
830 if (REG_IS_VFP_REG(id)) {
831 if (!REG_IS_64BIT(id)) {
832 if (show_warnings)
833 warn("Unexpected VFP register length (reg: 0x%x).\n", id);
834 return;
835 }
836 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
837 const unsigned idx_base(idx << 1);
838 const unsigned idx_hi(idx_base + 1);
839 const unsigned idx_lo(idx_base + 0);
840 uint64_t value(getOneRegU64(id));
841
842 tc->setFloatRegBitsFlat(idx_hi, (value >> 32) & 0xFFFFFFFF);
843 tc->setFloatRegBitsFlat(idx_lo, value & 0xFFFFFFFF);
844 } else if (REG_IS_VFP_CTRL(id)) {
845 MiscRegIndex idx(decodeVFPCtrlReg(id));
846 if (idx == NUM_MISCREGS) {
847 if (show_warnings)
848 warn("Unhandled VFP control register: 0x%x\n", id);
849 return;
850 }
851 if (!REG_IS_32BIT(id)) {
852 if (show_warnings)
853 warn("Ignoring VFP control register (%s) with "
854 "unexpected size.\n",
855 miscRegName[idx]);
856 return;
857 }
858 tc->setMiscReg(idx, getOneRegU64(id));
859 } else {
860 if (show_warnings)
861 warn("Unhandled VFP register: 0x%x\n", id);
862 }
863}
864
865ArmKvmCPU *
866ArmKvmCPUParams::create()
867{
868 return new ArmKvmCPU(this);
869}
275
276 if (fiqAsserted != simFIQ) {
277 fiqAsserted = simFIQ;
278 DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ);
279 vm.setIRQLine(INTERRUPT_VCPU_FIQ(vcpuID), simFIQ);
280 }
281 if (irqAsserted != simIRQ) {
282 irqAsserted = simIRQ;
283 DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ);
284 vm.setIRQLine(INTERRUPT_VCPU_IRQ(vcpuID), simIRQ);
285 }
286
287 return BaseKvmCPU::kvmRun(ticks);
288}
289
290void
291ArmKvmCPU::dump()
292{
293 dumpKvmStateCore();
294 dumpKvmStateMisc();
295}
296
297void
298ArmKvmCPU::updateKvmState()
299{
300 DPRINTF(KvmContext, "Updating KVM state...\n");
301
302 updateKvmStateCore();
303 updateKvmStateMisc();
304}
305
306void
307ArmKvmCPU::updateThreadContext()
308{
309 DPRINTF(KvmContext, "Updating gem5 state...\n");
310
311 updateTCStateCore();
312 updateTCStateMisc();
313}
314
315Tick
316ArmKvmCPU::onKvmExitHypercall()
317{
318 ThreadContext *tc(getContext(0));
319 const uint32_t reg_ip(tc->readIntRegFlat(INTREG_R12));
320 const uint8_t func((reg_ip >> 8) & 0xFF);
321 const uint8_t subfunc(reg_ip & 0xFF);
322
323 DPRINTF(Kvm, "KVM Hypercall: 0x%x/0x%x\n", func, subfunc);
324 const uint64_t ret(PseudoInst::pseudoInst(getContext(0), func, subfunc));
325
326 // Just set the return value using the KVM API instead of messing
327 // with the context. We could have used the context, but that
328 // would have required us to request a full context sync.
329 setOneReg(REG_CORE32(usr_regs.ARM_r0), ret & 0xFFFFFFFF);
330 setOneReg(REG_CORE32(usr_regs.ARM_r1), (ret >> 32) & 0xFFFFFFFF);
331
332 return 0;
333}
334
335const ArmKvmCPU::RegIndexVector &
336ArmKvmCPU::getRegList() const
337{
338 if (_regIndexList.size() == 0) {
339 std::unique_ptr<struct kvm_reg_list> regs;
340 uint64_t i(1);
341
342 do {
343 i <<= 1;
344 regs.reset((struct kvm_reg_list *)
345 operator new(sizeof(struct kvm_reg_list) +
346 i * sizeof(uint64_t)));
347 regs->n = i;
348 } while (!getRegList(*regs));
349 _regIndexList.assign(regs->reg,
350 regs->reg + regs->n);
351 }
352
353 return _regIndexList;
354}
355
356void
357ArmKvmCPU::kvmArmVCpuInit(uint32_t target)
358{
359 struct kvm_vcpu_init init;
360
361 memset(&init, 0, sizeof(init));
362
363 init.target = target;
364
365 kvmArmVCpuInit(init);
366}
367
368void
369ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init)
370{
371 if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1)
372 panic("KVM: Failed to initialize vCPU\n");
373}
374
375MiscRegIndex
376ArmKvmCPU::decodeCoProcReg(uint64_t id) const
377{
378 const unsigned cp(REG_CP(id));
379 const bool is_reg32(REG_IS_32BIT(id));
380 const bool is_reg64(REG_IS_64BIT(id));
381
382 // CP numbers larger than 15 are reserved for KVM extensions
383 if (cp > 15)
384 return NUM_MISCREGS;
385
386 const unsigned crm(REG_CRM(id));
387 const unsigned crn(REG_CRN(id));
388 const unsigned opc1(REG_OPC1(id));
389 const unsigned opc2(REG_OPC2(id));
390
391 if (is_reg32) {
392 switch (cp) {
393 case 14:
394 return decodeCP14Reg(crn, opc1, crm, opc2);
395
396 case 15:
397 return decodeCP15Reg(crn, opc1, crm, opc2);
398
399 default:
400 return NUM_MISCREGS;
401 }
402 } else if(is_reg64) {
403 return NUM_MISCREGS;
404 } else {
405 warn("Unhandled register length, register (0x%x) ignored.\n");
406 return NUM_MISCREGS;
407 }
408}
409
410ArmISA::MiscRegIndex
411ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const
412{
413 if (!REG_IS_ARM(id) || !REG_IS_VFP(id) || !REG_IS_VFP_CTRL(id))
414 return NUM_MISCREGS;
415
416 const unsigned vfp_reg(REG_VFP_REG(id));
417 switch (vfp_reg) {
418 case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID;
419 case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR;
420 case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0;
421 case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1;
422 case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC;
423
424 case KVM_REG_ARM_VFP_FPINST:
425 case KVM_REG_ARM_VFP_FPINST2:
426 warn_once("KVM: FPINST not implemented.\n");
427 return NUM_MISCREGS;
428
429 default:
430 return NUM_MISCREGS;
431 }
432}
433
434bool
435ArmKvmCPU::isInvariantReg(uint64_t id)
436{
437 /* Mask away the value field from multiplexed registers, we assume
438 * that entire groups of multiplexed registers can be treated as
439 * invariant. */
440 if (REG_IS_ARM(id) && REG_IS_DEMUX(id))
441 id &= ~KVM_REG_ARM_DEMUX_VAL_MASK;
442
443 return invariant_regs.find(id) != invariant_regs.end();
444}
445
446bool
447ArmKvmCPU::getRegList(struct kvm_reg_list &regs) const
448{
449 if (ioctl(KVM_GET_REG_LIST, (void *)&regs) == -1) {
450 if (errno == E2BIG) {
451 return false;
452 } else {
453 panic("KVM: Failed to get vCPU register list (errno: %i)\n",
454 errno);
455 }
456 } else {
457 return true;
458 }
459}
460
461void
462ArmKvmCPU::dumpKvmStateCore()
463{
464 /* Print core registers */
465 uint32_t pc(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
466 inform("PC: 0x%x\n", pc);
467
468 for (const KvmIntRegInfo *ri(kvmIntRegs);
469 ri->idx != NUM_INTREGS; ++ri) {
470
471 uint32_t value(getOneRegU32(ri->id));
472 inform("%s: 0x%x\n", ri->name, value);
473 }
474
475 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
476 ri->idx != NUM_MISCREGS; ++ri) {
477
478 uint32_t value(getOneRegU32(ri->id));
479 inform("%s: 0x%x\n", miscRegName[ri->idx], value);
480 }
481}
482
483void
484ArmKvmCPU::dumpKvmStateMisc()
485{
486 /* Print co-processor registers */
487 const RegIndexVector &reg_ids(getRegList());;
488 for (RegIndexVector::const_iterator it(reg_ids.begin());
489 it != reg_ids.end(); ++it) {
490 uint64_t id(*it);
491
492 if (REG_IS_ARM(id) && REG_CP(id) <= 15) {
493 dumpKvmStateCoProc(id);
494 } else if (REG_IS_ARM(id) && REG_IS_VFP(id)) {
495 dumpKvmStateVFP(id);
496 } else if (REG_IS_ARM(id) && REG_IS_DEMUX(id)) {
497 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
498 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
499 inform("CCSIDR [0x%x]: %s\n",
500 EXTRACT_FIELD(id,
501 KVM_REG_ARM_DEMUX_VAL_MASK,
502 KVM_REG_ARM_DEMUX_VAL_SHIFT),
503 getAndFormatOneReg(id));
504 break;
505 default:
506 inform("DEMUX [0x%x, 0x%x]: %s\n",
507 EXTRACT_FIELD(id,
508 KVM_REG_ARM_DEMUX_ID_MASK,
509 KVM_REG_ARM_DEMUX_ID_SHIFT),
510 EXTRACT_FIELD(id,
511 KVM_REG_ARM_DEMUX_VAL_MASK,
512 KVM_REG_ARM_DEMUX_VAL_SHIFT),
513 getAndFormatOneReg(id));
514 break;
515 }
516 } else if (!REG_IS_CORE(id)) {
517 inform("0x%x: %s\n", id, getAndFormatOneReg(id));
518 }
519 }
520}
521
522void
523ArmKvmCPU::dumpKvmStateCoProc(uint64_t id)
524{
525 assert(REG_IS_ARM(id));
526 assert(REG_CP(id) <= 15);
527
528 if (REG_IS_32BIT(id)) {
529 // 32-bit co-proc registers
530 MiscRegIndex idx(decodeCoProcReg(id));
531 uint32_t value(getOneRegU32(id));
532
533 if (idx != NUM_MISCREGS &&
534 !(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) {
535 const char *name(miscRegName[idx]);
536 const unsigned m5_ne(tc->readMiscRegNoEffect(idx));
537 const unsigned m5_e(tc->readMiscReg(idx));
538 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: "
539 "[%s]: 0x%x/0x%x\n",
540 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
541 REG_OPC2(id), isInvariantReg(id),
542 name, value, m5_e);
543 if (m5_e != m5_ne) {
544 inform("readMiscReg: %x, readMiscRegNoEffect: %x\n",
545 m5_e, m5_ne);
546 }
547 } else {
548 const char *name(idx != NUM_MISCREGS ? miscRegName[idx] : "-");
549 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: [%s]: "
550 "0x%x\n",
551 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
552 REG_OPC2(id), isInvariantReg(id), name, value);
553 }
554 } else {
555 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i "
556 "len: 0x%x]: %s\n",
557 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
558 REG_OPC2(id), isInvariantReg(id),
559 EXTRACT_FIELD(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT),
560 getAndFormatOneReg(id));
561 }
562}
563
564void
565ArmKvmCPU::dumpKvmStateVFP(uint64_t id)
566{
567 assert(REG_IS_ARM(id));
568 assert(REG_IS_VFP(id));
569
570 if (REG_IS_VFP_REG(id)) {
571 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
572 inform("VFP reg %i: %s", idx, getAndFormatOneReg(id));
573 } else if (REG_IS_VFP_CTRL(id)) {
574 MiscRegIndex idx(decodeVFPCtrlReg(id));
575 if (idx != NUM_MISCREGS) {
576 inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id));
577 } else {
578 inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
579 }
580 } else {
581 inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
582 }
583}
584
585void
586ArmKvmCPU::updateKvmStateCore()
587{
588 for (const KvmIntRegInfo *ri(kvmIntRegs);
589 ri->idx != NUM_INTREGS; ++ri) {
590
591 uint64_t value(tc->readIntRegFlat(ri->idx));
592 DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
593 setOneReg(ri->id, value);
594 }
595
596 DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->instAddr());
597 setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->instAddr());
598
599 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
600 ri->idx != NUM_MISCREGS; ++ri) {
601
602 uint64_t value(tc->readMiscReg(ri->idx));
603 DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
604 setOneReg(ri->id, value);
605 }
606
607 if (DTRACE(KvmContext))
608 dumpKvmStateCore();
609}
610
611void
612ArmKvmCPU::updateKvmStateMisc()
613{
614 static bool warned(false); // We can't use warn_once since we want
615 // to show /all/ registers
616
617 const RegIndexVector &regs(getRegList());
618
619 for (RegIndexVector::const_iterator it(regs.begin());
620 it != regs.end();
621 ++it) {
622
623 if (!REG_IS_ARM(*it)) {
624 if (!warned)
625 warn("Skipping non-ARM register: 0x%x\n", *it);
626 } else if (isInvariantReg(*it)) {
627 DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it);
628 } else if (REG_IS_CORE(*it)) {
629 // Core registers are handled in updateKvmStateCore
630 continue;
631 } else if (REG_CP(*it) <= 15) {
632 updateKvmStateCoProc(*it, !warned);
633 } else if (REG_IS_VFP(*it)) {
634 updateKvmStateVFP(*it, !warned);
635 } else {
636 if (!warned) {
637 warn("Skipping register with unknown CP (%i) id: 0x%x\n",
638 REG_CP(*it), *it);
639 }
640 }
641
642 }
643
644 warned = true;
645 if (DTRACE(KvmContext))
646 dumpKvmStateMisc();
647}
648
649void
650ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings)
651{
652 MiscRegIndex reg(decodeCoProcReg(id));
653
654 assert(REG_IS_ARM(id));
655 assert(REG_CP(id) <= 15);
656
657 if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
658 // HACK HACK HACK: Workaround for 64-bit TTBRx
659 reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1);
660 if (show_warnings)
661 hack("KVM: 64-bit TTBBRx workaround\n");
662 }
663
664 if (reg == NUM_MISCREGS) {
665 if (show_warnings) {
666 warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n",
667 id);
668 warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
669 " opc2: %i]\n",
670 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
671 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
672 }
673 } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
674 if (show_warnings)
675 warn("KVM: Co-processor reg. %s not implemented by gem5.\n",
676 miscRegName[reg]);
677 } else {
678 setOneReg(id, tc->readMiscRegNoEffect(reg));
679 }
680}
681
682
683void
684ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings)
685{
686 assert(REG_IS_ARM(id));
687 assert(REG_IS_VFP(id));
688
689 if (REG_IS_VFP_REG(id)) {
690 if (!REG_IS_64BIT(id)) {
691 if (show_warnings)
692 warn("Unexpected VFP register length (reg: 0x%x).\n", id);
693 return;
694 }
695 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
696 const unsigned idx_base(idx << 1);
697 const unsigned idx_hi(idx_base + 1);
698 const unsigned idx_lo(idx_base + 0);
699 uint64_t value(
700 ((uint64_t)tc->readFloatRegBitsFlat(idx_hi) << 32) |
701 tc->readFloatRegBitsFlat(idx_lo));
702
703 setOneReg(id, value);
704 } else if (REG_IS_VFP_CTRL(id)) {
705 MiscRegIndex idx(decodeVFPCtrlReg(id));
706 if (idx == NUM_MISCREGS) {
707 if (show_warnings)
708 warn("Unhandled VFP control register: 0x%x\n", id);
709 return;
710 }
711 if (!REG_IS_32BIT(id)) {
712 if (show_warnings)
713 warn("Ignoring VFP control register (%s) with "
714 "unexpected size.\n",
715 miscRegName[idx]);
716 return;
717 }
718 setOneReg(id, (uint32_t)tc->readMiscReg(idx));
719 } else {
720 if (show_warnings)
721 warn("Unhandled VFP register: 0x%x\n", id);
722 }
723}
724
725void
726ArmKvmCPU::updateTCStateCore()
727{
728 for (const KvmIntRegInfo *ri(kvmIntRegs);
729 ri->idx != NUM_INTREGS; ++ri) {
730
731 tc->setIntRegFlat(ri->idx, getOneRegU32(ri->id));
732 }
733
734 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
735 ri->idx != NUM_MISCREGS; ++ri) {
736
737 tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id));
738 }
739
740 /* We want the simulator to execute all side-effects of the CPSR
741 * update since this updates PC state and register maps.
742 */
743 tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR));
744
745 // We update the PC state after we have updated the CPSR the
746 // contents of the CPSR affects how the npc is updated.
747 PCState pc(tc->pcState());
748 pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
749 tc->pcState(pc);
750
751 if (DTRACE(KvmContext))
752 dumpKvmStateCore();
753}
754
755void
756ArmKvmCPU::updateTCStateMisc()
757{
758 static bool warned(false); // We can't use warn_once since we want
759 // to show /all/ registers
760
761 const RegIndexVector &reg_ids(getRegList());;
762 for (RegIndexVector::const_iterator it(reg_ids.begin());
763 it != reg_ids.end(); ++it) {
764
765 if (!REG_IS_ARM(*it)) {
766 if (!warned)
767 warn("Skipping non-ARM register: 0x%x\n", *it);
768 } else if (REG_IS_CORE(*it)) {
769 // Core registers are handled in updateKvmStateCore
770 } else if (REG_CP(*it) <= 15) {
771 updateTCStateCoProc(*it, !warned);
772 } else if (REG_IS_VFP(*it)) {
773 updateTCStateVFP(*it, !warned);
774 } else {
775 if (!warned) {
776 warn("Skipping register with unknown CP (%i) id: 0x%x\n",
777 REG_CP(*it), *it);
778 }
779 }
780 }
781
782 warned = true;
783
784 if (DTRACE(KvmContext))
785 dumpKvmStateMisc();
786}
787
788void
789ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings)
790{
791 MiscRegIndex reg(decodeCoProcReg(id));
792
793 assert(REG_IS_ARM(id));
794 assert(REG_CP(id) <= 15);
795
796 if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
797 // HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1
798 hack_once("KVM: 64-bit TTBRx workaround\n");
799 tc->setMiscRegNoEffect(
800 id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1,
801 (uint32_t)(getOneRegU64(id) & 0xFFFFFFFF));
802 } else if (reg == MISCREG_TTBCR) {
803 uint32_t value(getOneRegU64(id));
804 if (value & 0x80000000)
805 panic("KVM: Guest tried to enable LPAE.\n");
806 tc->setMiscRegNoEffect(reg, value);
807 } else if (reg == NUM_MISCREGS) {
808 if (show_warnings) {
809 warn("KVM: Ignoring unknown KVM co-processor register:\n", id);
810 warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
811 " opc2: %i]\n",
812 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
813 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
814 }
815 } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
816 if (show_warnings)
817 warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n",
818 miscRegName[reg]);
819 } else {
820 tc->setMiscRegNoEffect(reg, getOneRegU32(id));
821 }
822}
823
824void
825ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings)
826{
827 assert(REG_IS_ARM(id));
828 assert(REG_IS_VFP(id));
829
830 if (REG_IS_VFP_REG(id)) {
831 if (!REG_IS_64BIT(id)) {
832 if (show_warnings)
833 warn("Unexpected VFP register length (reg: 0x%x).\n", id);
834 return;
835 }
836 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
837 const unsigned idx_base(idx << 1);
838 const unsigned idx_hi(idx_base + 1);
839 const unsigned idx_lo(idx_base + 0);
840 uint64_t value(getOneRegU64(id));
841
842 tc->setFloatRegBitsFlat(idx_hi, (value >> 32) & 0xFFFFFFFF);
843 tc->setFloatRegBitsFlat(idx_lo, value & 0xFFFFFFFF);
844 } else if (REG_IS_VFP_CTRL(id)) {
845 MiscRegIndex idx(decodeVFPCtrlReg(id));
846 if (idx == NUM_MISCREGS) {
847 if (show_warnings)
848 warn("Unhandled VFP control register: 0x%x\n", id);
849 return;
850 }
851 if (!REG_IS_32BIT(id)) {
852 if (show_warnings)
853 warn("Ignoring VFP control register (%s) with "
854 "unexpected size.\n",
855 miscRegName[idx]);
856 return;
857 }
858 tc->setMiscReg(idx, getOneRegU64(id));
859 } else {
860 if (show_warnings)
861 warn("Unhandled VFP register: 0x%x\n", id);
862 }
863}
864
865ArmKvmCPU *
866ArmKvmCPUParams::create()
867{
868 return new ArmKvmCPU(this);
869}