Deleted Added
sdiff udiff text old ( 14028:44edf7dbe672 ) new ( 14091:090449e74135 )
full compact
1// Copyright (c) 2017-2018 ARM Limited
2// All rights reserved
3//
4// The license below extends only to copyright in the software and shall
5// not be construed as granting a license to any other intellectual
6// property including but not limited to intellectual property relating
7// to a hardware implementation of the functionality of the software
8// licensed hereunder. You may use the software subject to the license
9// terms below provided that you ensure that this notice is replicated
10// unmodified and in its entirety in all distributions of the software,
11// modified or unmodified, in source code or in binary form.
12//
13// Redistribution and use in source and binary forms, with or without
14// modification, are permitted provided that the following conditions are
15// met: redistributions of source code must retain the above copyright
16// notice, this list of conditions and the following disclaimer;
17// redistributions in binary form must reproduce the above copyright
18// notice, this list of conditions and the following disclaimer in the
19// documentation and/or other materials provided with the distribution;
20// neither the name of the copyright holders nor the names of its
21// contributors may be used to endorse or promote products derived from
22// this software without specific prior written permission.
23//
24// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35//
36// Authors: Giacomo Gabrielli
37
38// @file Definition of SVE memory access instructions.
39
40output header {{
41
42 // Decodes SVE contiguous load instructions, scalar plus scalar form.
43 template <template <typename T1, typename T2> class Base>
44 StaticInstPtr
45 decodeSveContigLoadSSInsts(uint8_t dtype, ExtMachInst machInst,
46 IntRegIndex zt, IntRegIndex pg, IntRegIndex rn,
47 IntRegIndex rm, bool firstFaulting)
48 {
49 const char* mn = firstFaulting ? "ldff1" : "ld1";
50 switch (dtype) {
51 case 0x0:
52 return new Base<uint8_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
53 case 0x1:
54 return new Base<uint16_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
55 case 0x2:
56 return new Base<uint32_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
57 case 0x3:
58 return new Base<uint64_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
59 case 0x4:
60 return new Base<int64_t, int32_t>(mn, machInst, zt, pg, rn, rm);
61 case 0x5:
62 return new Base<uint16_t, uint16_t>(mn, machInst, zt, pg, rn, rm);
63 case 0x6:
64 return new Base<uint32_t, uint16_t>(mn, machInst, zt, pg, rn, rm);
65 case 0x7:
66 return new Base<uint64_t, uint16_t>(mn, machInst, zt, pg, rn, rm);
67 case 0x8:
68 return new Base<int64_t, int16_t>(mn, machInst, zt, pg, rn, rm);
69 case 0x9:
70 return new Base<int32_t, int16_t>(mn, machInst, zt, pg, rn, rm);
71 case 0xa:
72 return new Base<uint32_t, uint32_t>(mn, machInst, zt, pg, rn, rm);
73 case 0xb:
74 return new Base<uint64_t, uint32_t>(mn, machInst, zt, pg, rn, rm);
75 case 0xc:
76 return new Base<int64_t, int8_t>(mn, machInst, zt, pg, rn, rm);
77 case 0xd:
78 return new Base<int32_t, int8_t>(mn, machInst, zt, pg, rn, rm);
79 case 0xe:
80 return new Base<int16_t, int8_t>(mn, machInst, zt, pg, rn, rm);
81 case 0xf:
82 return new Base<uint64_t, uint64_t>(mn, machInst, zt, pg, rn, rm);
83 }
84 return new Unknown64(machInst);
85 }
86
87 // Decodes SVE contiguous load instructions, scalar plus immediate form.
88 template <template <typename T1, typename T2> class Base>
89 StaticInstPtr
90 decodeSveContigLoadSIInsts(uint8_t dtype, ExtMachInst machInst,
91 IntRegIndex zt, IntRegIndex pg, IntRegIndex rn,
92 uint64_t imm, bool firstFaulting,
93 bool replicate = false)
94 {
95 assert(!(replicate && firstFaulting));
96
97 const char* mn = replicate ? "ld1r" :
98 (firstFaulting ? "ldff1" : "ld1");
99 switch (dtype) {
100 case 0x0:
101 return new Base<uint8_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
102 case 0x1:
103 return new Base<uint16_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
104 case 0x2:
105 return new Base<uint32_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
106 case 0x3:
107 return new Base<uint64_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
108 case 0x4:
109 return new Base<int64_t, int32_t>(mn, machInst, zt, pg, rn, imm);
110 case 0x5:
111 return new Base<uint16_t, uint16_t>(mn, machInst, zt, pg, rn, imm);
112 case 0x6:
113 return new Base<uint32_t, uint16_t>(mn, machInst, zt, pg, rn, imm);
114 case 0x7:
115 return new Base<uint64_t, uint16_t>(mn, machInst, zt, pg, rn, imm);
116 case 0x8:
117 return new Base<int64_t, int16_t>(mn, machInst, zt, pg, rn, imm);
118 case 0x9:
119 return new Base<int32_t, int16_t>(mn, machInst, zt, pg, rn, imm);
120 case 0xa:
121 return new Base<uint32_t, uint32_t>(mn, machInst, zt, pg, rn, imm);
122 case 0xb:
123 return new Base<uint64_t, uint32_t>(mn, machInst, zt, pg, rn, imm);
124 case 0xc:
125 return new Base<int64_t, int8_t>(mn, machInst, zt, pg, rn, imm);
126 case 0xd:
127 return new Base<int32_t, int8_t>(mn, machInst, zt, pg, rn, imm);
128 case 0xe:
129 return new Base<int16_t, int8_t>(mn, machInst, zt, pg, rn, imm);
130 case 0xf:
131 return new Base<uint64_t, uint64_t>(mn, machInst, zt, pg, rn, imm);
132 }
133 return new Unknown64(machInst);
134 }
135
136 // Decodes SVE contiguous store instructions, scalar plus scalar form.
137 template <template <typename T1, typename T2> class Base>
138 StaticInstPtr
139 decodeSveContigStoreSSInsts(uint8_t dtype, ExtMachInst machInst,
140 IntRegIndex zt, IntRegIndex pg, IntRegIndex rn,
141 IntRegIndex rm)
142 {
143 const char* mn = "st1";
144 switch (dtype) {
145 case 0x0:
146 return new Base<uint8_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
147 case 0x1:
148 return new Base<uint16_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
149 case 0x2:
150 return new Base<uint32_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
151 case 0x3:
152 return new Base<uint64_t, uint8_t>(mn, machInst, zt, pg, rn, rm);
153 case 0x5:
154 return new Base<uint16_t, uint16_t>(mn, machInst, zt, pg, rn, rm);
155 case 0x6:
156 return new Base<uint32_t, uint16_t>(mn, machInst, zt, pg, rn, rm);
157 case 0x7:
158 return new Base<uint64_t, uint16_t>(mn, machInst, zt, pg, rn, rm);
159 case 0xa:
160 return new Base<uint32_t, uint32_t>(mn, machInst, zt, pg, rn, rm);
161 case 0xb:
162 return new Base<uint64_t, uint32_t>(mn, machInst, zt, pg, rn, rm);
163 case 0xf:
164 return new Base<uint64_t, uint64_t>(mn, machInst, zt, pg, rn, rm);
165 }
166 return new Unknown64(machInst);
167 }
168
169 // Decodes SVE contiguous store instructions, scalar plus immediate form.
170 template <template <typename T1, typename T2> class Base>
171 StaticInstPtr
172 decodeSveContigStoreSIInsts(uint8_t dtype, ExtMachInst machInst,
173 IntRegIndex zt, IntRegIndex pg, IntRegIndex rn,
174 int8_t imm)
175 {
176 const char* mn = "st1";
177 switch (dtype) {
178 case 0x0:
179 return new Base<uint8_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
180 case 0x1:
181 return new Base<uint16_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
182 case 0x2:
183 return new Base<uint32_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
184 case 0x3:
185 return new Base<uint64_t, uint8_t>(mn, machInst, zt, pg, rn, imm);
186 case 0x5:
187 return new Base<uint16_t, uint16_t>(mn, machInst, zt, pg, rn, imm);
188 case 0x6:
189 return new Base<uint32_t, uint16_t>(mn, machInst, zt, pg, rn, imm);
190 case 0x7:
191 return new Base<uint64_t, uint16_t>(mn, machInst, zt, pg, rn, imm);
192 case 0xa:
193 return new Base<uint32_t, uint32_t>(mn, machInst, zt, pg, rn, imm);
194 case 0xb:
195 return new Base<uint64_t, uint32_t>(mn, machInst, zt, pg, rn, imm);
196 case 0xf:
197 return new Base<uint64_t, uint64_t>(mn, machInst, zt, pg, rn, imm);
198 }
199 return new Unknown64(machInst);
200 }
201
202 // NOTE: SVE load-and-replicate instructions are decoded with
203 // decodeSveContigLoadSIInsts(...).
204
205}};
206
207output decoder {{
208
209 StaticInstPtr
210 decodeSveGatherLoadVIInsts(uint8_t dtype, ExtMachInst machInst,
211 IntRegIndex zt, IntRegIndex pg, IntRegIndex zn,
212 uint64_t imm, bool esizeIs32,
213 bool firstFaulting)
214 {
215 const char* mn = firstFaulting ? "ldff1" : "ld1";
216 switch (dtype) {
217 case 0x0:
218 if (esizeIs32) {
219 return new SveIndexedMemVI<int32_t, int8_t,
220 SveGatherLoadVIMicroop>(
221 mn, machInst, MemReadOp, zt, pg, zn, imm);
222 } else {
223 return new SveIndexedMemVI<int64_t, int8_t,
224 SveGatherLoadVIMicroop>(
225 mn, machInst, MemReadOp, zt, pg, zn, imm);
226 }
227 case 0x1:
228 if (esizeIs32) {
229 return new SveIndexedMemVI<uint32_t, uint8_t,
230 SveGatherLoadVIMicroop>(
231 mn, machInst, MemReadOp, zt, pg, zn, imm);
232 } else {
233 return new SveIndexedMemVI<uint64_t, uint8_t,
234 SveGatherLoadVIMicroop>(
235 mn, machInst, MemReadOp, zt, pg, zn, imm);
236 }
237 case 0x2:
238 if (esizeIs32) {
239 return new SveIndexedMemVI<int32_t, int16_t,
240 SveGatherLoadVIMicroop>(
241 mn, machInst, MemReadOp, zt, pg, zn, imm);
242 } else {
243 return new SveIndexedMemVI<int64_t, int16_t,
244 SveGatherLoadVIMicroop>(
245 mn, machInst, MemReadOp, zt, pg, zn, imm);
246 }
247 case 0x3:
248 if (esizeIs32) {
249 return new SveIndexedMemVI<uint32_t, uint16_t,
250 SveGatherLoadVIMicroop>(
251 mn, machInst, MemReadOp, zt, pg, zn, imm);
252 } else {
253 return new SveIndexedMemVI<uint64_t, uint16_t,
254 SveGatherLoadVIMicroop>(
255 mn, machInst, MemReadOp, zt, pg, zn, imm);
256 }
257 case 0x4:
258 if (esizeIs32) {
259 break;
260 } else {
261 return new SveIndexedMemVI<int64_t, int32_t,
262 SveGatherLoadVIMicroop>(
263 mn, machInst, MemReadOp, zt, pg, zn, imm);
264 }
265 case 0x5:
266 if (esizeIs32) {
267 return new SveIndexedMemVI<uint32_t, uint32_t,
268 SveGatherLoadVIMicroop>(
269 mn, machInst, MemReadOp, zt, pg, zn, imm);
270 } else {
271 return new SveIndexedMemVI<uint64_t, uint32_t,
272 SveGatherLoadVIMicroop>(
273 mn, machInst, MemReadOp, zt, pg, zn, imm);
274 }
275 case 0x7:
276 if (esizeIs32) {
277 break;
278 } else {
279 return new SveIndexedMemVI<uint64_t, uint64_t,
280 SveGatherLoadVIMicroop>(
281 mn, machInst, MemReadOp, zt, pg, zn, imm);
282 }
283 }
284 return new Unknown64(machInst);
285 }
286
287 StaticInstPtr
288 decodeSveGatherLoadSVInsts(uint8_t dtype, ExtMachInst machInst,
289 IntRegIndex zt, IntRegIndex pg, IntRegIndex rn,
290 IntRegIndex zm, bool esizeIs32, bool offsetIs32,
291 bool offsetIsSigned, bool offsetIsScaled,
292 bool firstFaulting)
293 {
294 const char* mn = firstFaulting ? "ldff1" : "ld1";
295 switch (dtype) {
296 case 0x0:
297 if (esizeIs32) {
298 return new SveIndexedMemSV<int32_t, int8_t,
299 SveGatherLoadSVMicroop>(
300 mn, machInst, MemReadOp, zt, pg, rn, zm,
301 offsetIs32, offsetIsSigned, offsetIsScaled);
302 } else {
303 return new SveIndexedMemSV<int64_t, int8_t,
304 SveGatherLoadSVMicroop>(
305 mn, machInst, MemReadOp, zt, pg, rn, zm,
306 offsetIs32, offsetIsSigned, offsetIsScaled);
307 }
308 case 0x1:
309 if (esizeIs32) {
310 return new SveIndexedMemSV<uint32_t, uint8_t,
311 SveGatherLoadSVMicroop>(
312 mn, machInst, MemReadOp, zt, pg, rn, zm,
313 offsetIs32, offsetIsSigned, offsetIsScaled);
314 } else {
315 return new SveIndexedMemSV<uint64_t, uint8_t,
316 SveGatherLoadSVMicroop>(
317 mn, machInst, MemReadOp, zt, pg, rn, zm,
318 offsetIs32, offsetIsSigned, offsetIsScaled);
319 }
320 case 0x2:
321 if (esizeIs32) {
322 return new SveIndexedMemSV<int32_t, int16_t,
323 SveGatherLoadSVMicroop>(
324 mn, machInst, MemReadOp, zt, pg, rn, zm,
325 offsetIs32, offsetIsSigned, offsetIsScaled);
326 } else {
327 return new SveIndexedMemSV<int64_t, int16_t,
328 SveGatherLoadSVMicroop>(
329 mn, machInst, MemReadOp, zt, pg, rn, zm,
330 offsetIs32, offsetIsSigned, offsetIsScaled);
331 }
332 case 0x3:
333 if (esizeIs32) {
334 return new SveIndexedMemSV<uint32_t, uint16_t,
335 SveGatherLoadSVMicroop>(
336 mn, machInst, MemReadOp, zt, pg, rn, zm,
337 offsetIs32, offsetIsSigned, offsetIsScaled);
338 } else {
339 return new SveIndexedMemSV<uint64_t, uint16_t,
340 SveGatherLoadSVMicroop>(
341 mn, machInst, MemReadOp, zt, pg, rn, zm,
342 offsetIs32, offsetIsSigned, offsetIsScaled);
343 }
344 case 0x4:
345 if (esizeIs32) {
346 break;
347 } else {
348 return new SveIndexedMemSV<int64_t, int32_t,
349 SveGatherLoadSVMicroop>(
350 mn, machInst, MemReadOp, zt, pg, rn, zm,
351 offsetIs32, offsetIsSigned, offsetIsScaled);
352 }
353 case 0x5:
354 if (esizeIs32) {
355 return new SveIndexedMemSV<uint32_t, uint32_t,
356 SveGatherLoadSVMicroop>(
357 mn, machInst, MemReadOp, zt, pg, rn, zm,
358 offsetIs32, offsetIsSigned, offsetIsScaled);
359 } else {
360 return new SveIndexedMemSV<uint64_t, uint32_t,
361 SveGatherLoadSVMicroop>(
362 mn, machInst, MemReadOp, zt, pg, rn, zm,
363 offsetIs32, offsetIsSigned, offsetIsScaled);
364 }
365 case 0x7:
366 if (esizeIs32) {
367 break;
368 } else {
369 return new SveIndexedMemSV<uint64_t, uint64_t,
370 SveGatherLoadSVMicroop>(
371 mn, machInst, MemReadOp, zt, pg, rn, zm,
372 offsetIs32, offsetIsSigned, offsetIsScaled);
373 }
374 }
375 return new Unknown64(machInst);
376 }
377
378 StaticInstPtr
379 decodeSveScatterStoreVIInsts(uint8_t msz, ExtMachInst machInst,
380 IntRegIndex zt, IntRegIndex pg,
381 IntRegIndex zn, uint64_t imm,
382 bool esizeIs32)
383 {
384 const char* mn = "st1";
385 switch (msz) {
386 case 0x0:
387 if (esizeIs32) {
388 return new SveIndexedMemVI<uint32_t, uint8_t,
389 SveScatterStoreVIMicroop>(
390 mn, machInst, MemWriteOp, zt, pg, zn, imm);
391 } else {
392 return new SveIndexedMemVI<uint64_t, uint8_t,
393 SveScatterStoreVIMicroop>(
394 mn, machInst, MemWriteOp, zt, pg, zn, imm);
395 }
396 case 0x1:
397 if (esizeIs32) {
398 return new SveIndexedMemVI<uint32_t, uint16_t,
399 SveScatterStoreVIMicroop>(
400 mn, machInst, MemWriteOp, zt, pg, zn, imm);
401 } else {
402 return new SveIndexedMemVI<uint64_t, uint16_t,
403 SveScatterStoreVIMicroop>(
404 mn, machInst, MemWriteOp, zt, pg, zn, imm);
405 }
406 case 0x2:
407 if (esizeIs32) {
408 return new SveIndexedMemVI<uint32_t, uint32_t,
409 SveScatterStoreVIMicroop>(
410 mn, machInst, MemWriteOp, zt, pg, zn, imm);
411 } else {
412 return new SveIndexedMemVI<uint64_t, uint32_t,
413 SveScatterStoreVIMicroop>(
414 mn, machInst, MemWriteOp, zt, pg, zn, imm);
415 }
416 case 0x3:
417 if (esizeIs32) {
418 break;
419 } else {
420 return new SveIndexedMemVI<uint64_t, uint64_t,
421 SveScatterStoreVIMicroop>(
422 mn, machInst, MemWriteOp, zt, pg, zn, imm);
423 }
424 }
425 return new Unknown64(machInst);
426 }
427
428 StaticInstPtr
429 decodeSveScatterStoreSVInsts(uint8_t msz, ExtMachInst machInst,
430 IntRegIndex zt, IntRegIndex pg,
431 IntRegIndex rn, IntRegIndex zm,
432 bool esizeIs32, bool offsetIs32,
433 bool offsetIsSigned, bool offsetIsScaled)
434 {
435 const char* mn = "st1";
436 switch (msz) {
437 case 0x0:
438 if (esizeIs32) {
439 return new SveIndexedMemSV<uint32_t, uint8_t,
440 SveScatterStoreSVMicroop>(
441 mn, machInst, MemWriteOp, zt, pg, rn, zm,
442 offsetIs32, offsetIsSigned, offsetIsScaled);
443 } else {
444 return new SveIndexedMemSV<uint64_t, uint8_t,
445 SveScatterStoreSVMicroop>(
446 mn, machInst, MemWriteOp, zt, pg, rn, zm,
447 offsetIs32, offsetIsSigned, offsetIsScaled);
448 }
449 case 0x1:
450 if (esizeIs32) {
451 return new SveIndexedMemSV<uint32_t, uint16_t,
452 SveScatterStoreSVMicroop>(
453 mn, machInst, MemWriteOp, zt, pg, rn, zm,
454 offsetIs32, offsetIsSigned, offsetIsScaled);
455 } else {
456 return new SveIndexedMemSV<uint64_t, uint16_t,
457 SveScatterStoreSVMicroop>(
458 mn, machInst, MemWriteOp, zt, pg, rn, zm,
459 offsetIs32, offsetIsSigned, offsetIsScaled);
460 }
461 case 0x2:
462 if (esizeIs32) {
463 return new SveIndexedMemSV<uint32_t, uint32_t,
464 SveScatterStoreSVMicroop>(
465 mn, machInst, MemWriteOp, zt, pg, rn, zm,
466 offsetIs32, offsetIsSigned, offsetIsScaled);
467 } else {
468 return new SveIndexedMemSV<uint64_t, uint32_t,
469 SveScatterStoreSVMicroop>(
470 mn, machInst, MemWriteOp, zt, pg, rn, zm,
471 offsetIs32, offsetIsSigned, offsetIsScaled);
472 }
473 case 0x3:
474 if (esizeIs32) {
475 break;
476 } else {
477 return new SveIndexedMemSV<uint64_t, uint64_t,
478 SveScatterStoreSVMicroop>(
479 mn, machInst, MemWriteOp, zt, pg, rn, zm,
480 offsetIs32, offsetIsSigned, offsetIsScaled);
481 }
482 }
483 return new Unknown64(machInst);
484 }
485
486}};
487
488
489let {{
490
491 header_output = ''
492 exec_output = ''
493 decoders = { 'Generic': {} }
494
495 SPAlignmentCheckCode = '''
496 if (this->baseIsSP && bits(XBase, 3, 0) &&
497 SPAlignmentCheckEnabled(xc->tcBase())) {
498 return std::make_shared<SPAlignmentFault>();
499 }
500 '''
501
502 def emitSveMemFillSpill(isPred):
503 global header_output, exec_output, decoders
504 eaCode = SPAlignmentCheckCode + '''
505 int memAccessSize = %(memacc_size)s;
506 EA = XBase + ((int64_t) imm * %(memacc_size)s)''' % {
507 'memacc_size': 'eCount / 8' if isPred else 'eCount'}
508 if isPred:
509 loadMemAccCode = '''
510 int index = 0;
511 uint8_t byte;
512 for (int i = 0; i < eCount / 8; i++) {
513 byte = memDataView[i];
514 for (int j = 0; j < 8; j++, index++) {
515 PDest_x[index] = (byte >> j) & 1;
516 }
517 }
518 '''
519 storeMemAccCode = '''
520 int index = 0;
521 uint8_t byte;
522 for (int i = 0; i < eCount / 8; i++) {
523 byte = 0;
524 for (int j = 0; j < 8; j++, index++) {
525 byte |= PDest_x[index] << j;
526 }
527 memDataView[i] = byte;
528 }
529 '''
530 storeWrEnableCode = '''
531 auto wrEn = std::vector<bool>(eCount / 8, true);
532 '''
533 else:
534 loadMemAccCode = '''
535 for (int i = 0; i < eCount; i++) {
536 AA64FpDest_x[i] = memDataView[i];
537 }
538 '''
539 storeMemAccCode = '''
540 for (int i = 0; i < eCount; i++) {
541 memDataView[i] = AA64FpDest_x[i];
542 }
543 '''
544 storeWrEnableCode = '''
545 auto wrEn = std::vector<bool>(sizeof(MemElemType) * eCount, true);
546 '''
547 loadIop = InstObjParams('ldr',
548 'SveLdrPred' if isPred else 'SveLdrVec',
549 'SveMemPredFillSpill' if isPred else 'SveMemVecFillSpill',
550 {'tpl_header': '',
551 'tpl_args': '',
552 'memacc_code': loadMemAccCode,
553 'ea_code' : sveEnabledCheckCode + eaCode,
554 'fa_code' : ''},
555 ['IsMemRef', 'IsLoad'])
556 storeIop = InstObjParams('str',
557 'SveStrPred' if isPred else 'SveStrVec',
558 'SveMemPredFillSpill' if isPred else 'SveMemVecFillSpill',
559 {'tpl_header': '',
560 'tpl_args': '',
561 'wren_code': storeWrEnableCode,
562 'memacc_code': storeMemAccCode,
563 'ea_code' : sveEnabledCheckCode + eaCode,
564 'fa_code' : ''},
565 ['IsMemRef', 'IsStore'])
566 header_output += SveMemFillSpillOpDeclare.subst(loadIop)
567 header_output += SveMemFillSpillOpDeclare.subst(storeIop)
568 exec_output += (
569 SveContigLoadExecute.subst(loadIop) +
570 SveContigLoadInitiateAcc.subst(loadIop) +
571 SveContigLoadCompleteAcc.subst(loadIop) +
572 SveContigStoreExecute.subst(storeIop) +
573 SveContigStoreInitiateAcc.subst(storeIop) +
574 SveContigStoreCompleteAcc.subst(storeIop))
575
576 loadTplArgs = (
577 ('uint8_t', 'uint8_t'),
578 ('uint16_t', 'uint8_t'),
579 ('uint32_t', 'uint8_t'),
580 ('uint64_t', 'uint8_t'),
581 ('int64_t', 'int32_t'),
582 ('uint16_t', 'uint16_t'),
583 ('uint32_t', 'uint16_t'),
584 ('uint64_t', 'uint16_t'),
585 ('int64_t', 'int16_t'),
586 ('int32_t', 'int16_t'),
587 ('uint32_t', 'uint32_t'),
588 ('uint64_t', 'uint32_t'),
589 ('int64_t', 'int8_t'),
590 ('int32_t', 'int8_t'),
591 ('int16_t', 'int8_t'),
592 ('uint64_t', 'uint64_t'),
593 )
594
595 storeTplArgs = (
596 ('uint8_t', 'uint8_t'),
597 ('uint16_t', 'uint8_t'),
598 ('uint32_t', 'uint8_t'),
599 ('uint64_t', 'uint8_t'),
600 ('uint16_t', 'uint16_t'),
601 ('uint32_t', 'uint16_t'),
602 ('uint64_t', 'uint16_t'),
603 ('uint32_t', 'uint32_t'),
604 ('uint64_t', 'uint32_t'),
605 ('uint64_t', 'uint64_t'),
606 )
607
608 gatherLoadTplArgs = (
609 ('int32_t', 'int8_t'),
610 ('int64_t', 'int8_t'),
611 ('uint32_t', 'uint8_t'),
612 ('uint64_t', 'uint8_t'),
613 ('int32_t', 'int16_t'),
614 ('int64_t', 'int16_t'),
615 ('uint32_t', 'uint16_t'),
616 ('uint64_t', 'uint16_t'),
617 ('int64_t', 'int32_t'),
618 ('uint32_t', 'uint32_t'),
619 ('uint64_t', 'uint32_t'),
620 ('uint64_t', 'uint64_t'),
621 )
622
623 scatterStoreTplArgs = (
624 ('uint32_t', 'uint8_t'),
625 ('uint64_t', 'uint8_t'),
626 ('uint32_t', 'uint16_t'),
627 ('uint64_t', 'uint16_t'),
628 ('uint32_t', 'uint32_t'),
629 ('uint64_t', 'uint32_t'),
630 ('uint64_t', 'uint64_t'),
631 )
632
633 # Generates definitions for SVE contiguous loads
634 def emitSveContigMemInsts(offsetIsImm):
635 global header_output, exec_output, decoders
636 tplHeader = 'template <class RegElemType, class MemElemType>'
637 tplArgs = '<RegElemType, MemElemType>'
638 eaCode = SPAlignmentCheckCode + '''
639 int memAccessSize = eCount * sizeof(MemElemType);
640 EA = XBase + '''
641 if offsetIsImm:
642 eaCode += '((int64_t) this->imm * eCount * sizeof(MemElemType))'
643 else:
644 eaCode += '(XOffset * sizeof(MemElemType));'
645 loadMemAccCode = '''
646 for (int i = 0; i < eCount; i++) {
647 if (GpOp_x[i]) {
648 AA64FpDest_x[i] = memDataView[i];
649 } else {
650 AA64FpDest_x[i] = 0;
651 }
652 }
653 '''
654 storeMemAccCode = '''
655 for (int i = 0; i < eCount; i++) {
656 if (GpOp_x[i]) {
657 memDataView[i] = AA64FpDest_x[i];
658 } else {
659 memDataView[i] = 0;
660 for (int j = 0; j < sizeof(MemElemType); j++) {
661 wrEn[sizeof(MemElemType) * i + j] = false;
662 }
663 }
664 }
665 '''
666 storeWrEnableCode = '''
667 auto wrEn = std::vector<bool>(sizeof(MemElemType) * eCount, true);
668 '''
669 loadIop = InstObjParams('ld1',
670 'SveContigLoadSI' if offsetIsImm else 'SveContigLoadSS',
671 'SveContigMemSI' if offsetIsImm else 'SveContigMemSS',
672 {'tpl_header': tplHeader,
673 'tpl_args': tplArgs,
674 'memacc_code': loadMemAccCode,
675 'ea_code' : sveEnabledCheckCode + eaCode,
676 'fa_code' : ''},
677 ['IsMemRef', 'IsLoad'])
678 storeIop = InstObjParams('st1',
679 'SveContigStoreSI' if offsetIsImm else 'SveContigStoreSS',
680 'SveContigMemSI' if offsetIsImm else 'SveContigMemSS',
681 {'tpl_header': tplHeader,
682 'tpl_args': tplArgs,
683 'wren_code': storeWrEnableCode,
684 'memacc_code': storeMemAccCode,
685 'ea_code' : sveEnabledCheckCode + eaCode,
686 'fa_code' : ''},
687 ['IsMemRef', 'IsStore'])
688 if offsetIsImm:
689 header_output += SveContigMemSIOpDeclare.subst(loadIop)
690 header_output += SveContigMemSIOpDeclare.subst(storeIop)
691 else:
692 header_output += SveContigMemSSOpDeclare.subst(loadIop)
693 header_output += SveContigMemSSOpDeclare.subst(storeIop)
694 exec_output += (
695 SveContigLoadExecute.subst(loadIop) +
696 SveContigLoadInitiateAcc.subst(loadIop) +
697 SveContigLoadCompleteAcc.subst(loadIop) +
698 SveContigStoreExecute.subst(storeIop) +
699 SveContigStoreInitiateAcc.subst(storeIop) +
700 SveContigStoreCompleteAcc.subst(storeIop))
701 for args in loadTplArgs:
702 substDict = {'tpl_args': '<%s>' % ', '.join(args),
703 'class_name': 'SveContigLoadSI' if offsetIsImm
704 else 'SveContigLoadSS'}
705 exec_output += SveContigMemExecDeclare.subst(substDict)
706 for args in storeTplArgs:
707 substDict = {'tpl_args': '<%s>' % ', '.join(args),
708 'class_name': 'SveContigStoreSI' if offsetIsImm
709 else 'SveContigStoreSS'}
710 exec_output += SveContigMemExecDeclare.subst(substDict)
711
712 # Generates definitions for SVE load-and-replicate instructions
713 def emitSveLoadAndRepl():
714 global header_output, exec_output, decoders
715 tplHeader = 'template <class RegElemType, class MemElemType>'
716 tplArgs = '<RegElemType, MemElemType>'
717 eaCode = SPAlignmentCheckCode + '''
718 EA = XBase + imm * sizeof(MemElemType);'''
719 memAccCode = '''
720 for (int i = 0; i < eCount; i++) {
721 if (GpOp_x[i]) {
722 AA64FpDest_x[i] = memData;
723 } else {
724 AA64FpDest_x[i] = 0;
725 }
726 }
727 '''
728 iop = InstObjParams('ld1r',
729 'SveLoadAndRepl',
730 'SveContigMemSI',
731 {'tpl_header': tplHeader,
732 'tpl_args': tplArgs,
733 'memacc_code': memAccCode,
734 'ea_code' : sveEnabledCheckCode + eaCode,
735 'fa_code' : ''},
736 ['IsMemRef', 'IsLoad'])
737 header_output += SveContigMemSIOpDeclare.subst(iop)
738 exec_output += (
739 SveLoadAndReplExecute.subst(iop) +
740 SveLoadAndReplInitiateAcc.subst(iop) +
741 SveLoadAndReplCompleteAcc.subst(iop))
742 for args in loadTplArgs:
743 substDict = {'tpl_args': '<%s>' % ', '.join(args),
744 'class_name': 'SveLoadAndRepl'}
745 exec_output += SveContigMemExecDeclare.subst(substDict)
746
747 class IndexedAddrForm:
748 VEC_PLUS_IMM = 0
749 SCA_PLUS_VEC = 1
750
751 # Generates definitions for the transfer microops of SVE indexed memory
752 # operations (gather loads, scatter stores)
753 def emitSveIndexedMemMicroops(indexed_addr_form):
754 assert indexed_addr_form in (IndexedAddrForm.VEC_PLUS_IMM,
755 IndexedAddrForm.SCA_PLUS_VEC)
756 global header_output, exec_output, decoders
757 tplHeader = 'template <class RegElemType, class MemElemType>'
758 tplArgs = '<RegElemType, MemElemType>'
759 if indexed_addr_form == IndexedAddrForm.VEC_PLUS_IMM:
760 eaCode = '''
761 EA = AA64FpBase_x[elemIndex] + imm * sizeof(MemElemType)'''
762 else:
763 eaCode = '''
764 uint64_t offset = AA64FpOffset_x[elemIndex];
765 if (offsetIs32) {
766 offset &= (1ULL << 32) - 1;
767 }
768 if (offsetIsSigned) {
769 offset = sext<32>(offset);
770 }
771 if (offsetIsScaled) {
772 offset *= sizeof(MemElemType);
773 }
774 EA = XBase + offset'''
775 loadMemAccCode = '''
776 if (GpOp_x[elemIndex]) {
777 AA64FpDest_x[elemIndex] = memData;
778 } else {
779 AA64FpDest_x[elemIndex] = 0;
780 }
781 '''
782 storeMemAccCode = '''
783 memData = AA64FpDest_x[elemIndex];
784 '''
785 predCheckCode = 'GpOp_x[elemIndex]'
786 loadIop = InstObjParams('ld1',
787 ('SveGatherLoadVIMicroop'
788 if indexed_addr_form == IndexedAddrForm.VEC_PLUS_IMM
789 else 'SveGatherLoadSVMicroop'),
790 'MicroOp',
791 {'tpl_header': tplHeader,
792 'tpl_args': tplArgs,
793 'memacc_code': loadMemAccCode,
794 'ea_code' : sveEnabledCheckCode + eaCode,
795 'pred_check_code' : predCheckCode,
796 'fa_code' : ''},
797 ['IsMicroop', 'IsMemRef', 'IsLoad'])
798 storeIop = InstObjParams('st1',
799 ('SveScatterStoreVIMicroop'
800 if indexed_addr_form == IndexedAddrForm.VEC_PLUS_IMM
801 else 'SveScatterStoreSVMicroop'),
802 'MicroOp',
803 {'tpl_header': tplHeader,
804 'tpl_args': tplArgs,
805 'memacc_code': storeMemAccCode,
806 'ea_code' : sveEnabledCheckCode + eaCode,
807 'pred_check_code' : predCheckCode,
808 'fa_code' : ''},
809 ['IsMicroop', 'IsMemRef', 'IsStore'])
810 if indexed_addr_form == IndexedAddrForm.VEC_PLUS_IMM:
811 header_output += SveIndexedMemVIMicroopDeclare.subst(loadIop)
812 header_output += SveIndexedMemVIMicroopDeclare.subst(storeIop)
813 else:
814 header_output += SveIndexedMemSVMicroopDeclare.subst(loadIop)
815 header_output += SveIndexedMemSVMicroopDeclare.subst(storeIop)
816 exec_output += (
817 SveGatherLoadMicroopExecute.subst(loadIop) +
818 SveGatherLoadMicroopInitiateAcc.subst(loadIop) +
819 SveGatherLoadMicroopCompleteAcc.subst(loadIop) +
820 SveScatterStoreMicroopExecute.subst(storeIop) +
821 SveScatterStoreMicroopInitiateAcc.subst(storeIop) +
822 SveScatterStoreMicroopCompleteAcc.subst(storeIop))
823 for args in gatherLoadTplArgs:
824 substDict = {'tpl_args': '<%s>' % ', '.join(args),
825 'class_name': (
826 'SveGatherLoadVIMicroop'
827 if indexed_addr_form == \
828 IndexedAddrForm.VEC_PLUS_IMM
829 else 'SveGatherLoadSVMicroop')}
830 # TODO: this should become SveMemExecDeclare
831 exec_output += SveContigMemExecDeclare.subst(substDict)
832 for args in scatterStoreTplArgs:
833 substDict = {'tpl_args': '<%s>' % ', '.join(args),
834 'class_name': (
835 'SveScatterStoreVIMicroop'
836 if indexed_addr_form == \
837 IndexedAddrForm.VEC_PLUS_IMM
838 else 'SveScatterStoreSVMicroop')}
839 # TODO: this should become SveMemExecDeclare
840 exec_output += SveContigMemExecDeclare.subst(substDict)
841
842 # Generates definitions for the first microop of SVE gather loads, required
843 # to propagate the source vector register to the transfer microops
844 def emitSveGatherLoadCpySrcVecMicroop():
845 global header_output, exec_output, decoders
846 code = sveEnabledCheckCode + '''
847 unsigned eCount = ArmStaticInst::getCurSveVecLen<uint8_t>(
848 xc->tcBase());
849 for (unsigned i = 0; i < eCount; i++) {
850 AA64FpUreg0_ub[i] = AA64FpOp1_ub[i];
851 }'''
852 iop = InstObjParams('ld1',
853 'SveGatherLoadCpySrcVecMicroop',
854 'MicroOp',
855 {'code': code},
856 ['IsMicroop'])
857 header_output += SveGatherLoadCpySrcVecMicroopDeclare.subst(iop)
858 exec_output += SveGatherLoadCpySrcVecMicroopExecute.subst(iop)
859
860 # LD1[S]{B,H,W,D} (scalar plus immediate)
861 # ST1[S]{B,H,W,D} (scalar plus immediate)
862 emitSveContigMemInsts(True)
863 # LD1[S]{B,H,W,D} (scalar plus scalar)
864 # ST1[S]{B,H,W,D} (scalar plus scalar)
865 emitSveContigMemInsts(False)
866
867 # LD1R[S]{B,H,W,D}
868 emitSveLoadAndRepl()
869
870 # LDR (predicate), STR (predicate)
871 emitSveMemFillSpill(True)
872 # LDR (vector), STR (vector)
873 emitSveMemFillSpill(False)
874
875 # LD1[S]{B,H,W,D} (vector plus immediate)
876 # ST1[S]{B,H,W,D} (vector plus immediate)
877 emitSveIndexedMemMicroops(IndexedAddrForm.VEC_PLUS_IMM)
878 # LD1[S]{B,H,W,D} (scalar plus vector)
879 # ST1[S]{B,H,W,D} (scalar plus vector)
880 emitSveIndexedMemMicroops(IndexedAddrForm.SCA_PLUS_VEC)
881
882 # Source vector copy microop for gather loads
883 emitSveGatherLoadCpySrcVecMicroop()
884
885}};