fp.isa (7407:70f65d4c7fe3) fp.isa (7413:18e0f95d1f32)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder. You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48let {{
49 header_output = '''
50 StaticInstPtr
51 decodeExtensionRegLoadStore(ExtMachInst machInst);
52 '''
53 decoder_output = '''
54 StaticInstPtr
55 decodeExtensionRegLoadStore(ExtMachInst machInst)
56 {
57 const uint32_t opcode = bits(machInst, 24, 20);
58 const uint32_t offset = bits(machInst, 7, 0);
59 const bool single = (bits(machInst, 8) == 0);
60 const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
61 RegIndex vd;
62 if (single) {
63 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
64 bits(machInst, 22));
65 } else {
66 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
67 (bits(machInst, 22) << 5));
68 }
69 switch (bits(opcode, 4, 3)) {
70 case 0x0:
71 if (bits(opcode, 4, 1) == 0x2 &&
72 !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
73 !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
74 if ((bits(machInst, 7, 4) & 0xd) != 1) {
75 break;
76 }
77 const IntRegIndex rt =
78 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
79 const IntRegIndex rt2 =
80 (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
81 const bool op = bits(machInst, 20);
82 uint32_t vm;
83 if (single) {
84 vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
85 } else {
86 vm = (bits(machInst, 3, 0) << 1) |
87 (bits(machInst, 5) << 5);
88 }
89 if (op) {
90 return new Vmov2Core2Reg(machInst, rt, rt2,
91 (IntRegIndex)vm);
92 } else {
93 return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
94 rt, rt2);
95 }
96 }
97 break;
98 case 0x1:
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder. You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48let {{
49 header_output = '''
50 StaticInstPtr
51 decodeExtensionRegLoadStore(ExtMachInst machInst);
52 '''
53 decoder_output = '''
54 StaticInstPtr
55 decodeExtensionRegLoadStore(ExtMachInst machInst)
56 {
57 const uint32_t opcode = bits(machInst, 24, 20);
58 const uint32_t offset = bits(machInst, 7, 0);
59 const bool single = (bits(machInst, 8) == 0);
60 const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
61 RegIndex vd;
62 if (single) {
63 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
64 bits(machInst, 22));
65 } else {
66 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
67 (bits(machInst, 22) << 5));
68 }
69 switch (bits(opcode, 4, 3)) {
70 case 0x0:
71 if (bits(opcode, 4, 1) == 0x2 &&
72 !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
73 !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
74 if ((bits(machInst, 7, 4) & 0xd) != 1) {
75 break;
76 }
77 const IntRegIndex rt =
78 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
79 const IntRegIndex rt2 =
80 (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
81 const bool op = bits(machInst, 20);
82 uint32_t vm;
83 if (single) {
84 vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
85 } else {
86 vm = (bits(machInst, 3, 0) << 1) |
87 (bits(machInst, 5) << 5);
88 }
89 if (op) {
90 return new Vmov2Core2Reg(machInst, rt, rt2,
91 (IntRegIndex)vm);
92 } else {
93 return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
94 rt, rt2);
95 }
96 }
97 break;
98 case 0x1:
99 switch (bits(opcode, 1, 0)) {
100 case 0x0:
101 return new VLdmStm(machInst, rn, vd, single,
102 true, false, false, offset);
103 case 0x1:
104 return new VLdmStm(machInst, rn, vd, single,
105 true, false, true, offset);
106 case 0x2:
107 return new VLdmStm(machInst, rn, vd, single,
108 true, true, false, offset);
109 case 0x3:
110 // If rn == sp, then this is called vpop.
111 return new VLdmStm(machInst, rn, vd, single,
112 true, true, true, offset);
99 {
100 if (offset == 0 || vd + offset > NumFloatArchRegs) {
101 break;
102 }
103 switch (bits(opcode, 1, 0)) {
104 case 0x0:
105 return new VLdmStm(machInst, rn, vd, single,
106 true, false, false, offset);
107 case 0x1:
108 return new VLdmStm(machInst, rn, vd, single,
109 true, false, true, offset);
110 case 0x2:
111 return new VLdmStm(machInst, rn, vd, single,
112 true, true, false, offset);
113 case 0x3:
114 // If rn == sp, then this is called vpop.
115 return new VLdmStm(machInst, rn, vd, single,
116 true, true, true, offset);
117 }
113 }
114 case 0x2:
115 if (bits(opcode, 1, 0) == 0x2) {
116 // If rn == sp, then this is called vpush.
117 return new VLdmStm(machInst, rn, vd, single,
118 false, true, false, offset);
119 } else if (bits(opcode, 1, 0) == 0x3) {
120 return new VLdmStm(machInst, rn, vd, single,
121 false, true, true, offset);
122 }
123 // Fall through on purpose
124 case 0x3:
125 const bool up = (bits(machInst, 23) == 1);
126 const uint32_t imm = bits(machInst, 7, 0) << 2;
127 RegIndex vd;
128 if (single) {
129 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
130 (bits(machInst, 22)));
131 } else {
132 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
133 (bits(machInst, 22) << 5));
134 }
135 if (bits(opcode, 1, 0) == 0x0) {
136 if (single) {
137 if (up) {
138 return new %(vstr_us)s(machInst, vd, rn, up, imm);
139 } else {
140 return new %(vstr_s)s(machInst, vd, rn, up, imm);
141 }
142 } else {
143 if (up) {
144 return new %(vstr_ud)s(machInst, vd, vd + 1,
145 rn, up, imm);
146 } else {
147 return new %(vstr_d)s(machInst, vd, vd + 1,
148 rn, up, imm);
149 }
150 }
151 } else if (bits(opcode, 1, 0) == 0x1) {
152 if (single) {
153 if (up) {
154 return new %(vldr_us)s(machInst, vd, rn, up, imm);
155 } else {
156 return new %(vldr_s)s(machInst, vd, rn, up, imm);
157 }
158 } else {
159 if (up) {
160 return new %(vldr_ud)s(machInst, vd, vd + 1,
161 rn, up, imm);
162 } else {
163 return new %(vldr_d)s(machInst, vd, vd + 1,
164 rn, up, imm);
165 }
166 }
167 }
168 }
169 return new Unknown(machInst);
170 }
171 ''' % {
172 "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
173 "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
174 "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
175 "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
176 "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
177 "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
178 "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
179 "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
180 }
181}};
182
183def format ExtensionRegLoadStore() {{
184 decode_block = '''
185 return decodeExtensionRegLoadStore(machInst);
186 '''
187}};
188
189let {{
190 header_output = '''
191 StaticInstPtr
192 decodeShortFpTransfer(ExtMachInst machInst);
193 '''
194 decoder_output = '''
195 StaticInstPtr
196 decodeShortFpTransfer(ExtMachInst machInst)
197 {
198 const uint32_t l = bits(machInst, 20);
199 const uint32_t c = bits(machInst, 8);
200 const uint32_t a = bits(machInst, 23, 21);
201 const uint32_t b = bits(machInst, 6, 5);
202 if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
203 (machInst.thumb == 0 && machInst.condCode == 0xf)) {
204 return new Unknown(machInst);
205 }
206 if (l == 0 && c == 0) {
207 if (a == 0) {
208 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
209 bits(machInst, 7);
210 const IntRegIndex rt =
211 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
212 if (bits(machInst, 20) == 1) {
213 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
214 } else {
215 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
216 }
217 } else if (a == 0x7) {
218 const IntRegIndex rt =
219 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
220 uint32_t specReg = bits(machInst, 19, 16);
221 switch (specReg) {
222 case 0:
223 specReg = MISCREG_FPSID;
224 break;
225 case 1:
226 specReg = MISCREG_FPSCR;
227 break;
228 case 6:
229 specReg = MISCREG_MVFR1;
230 break;
231 case 7:
232 specReg = MISCREG_MVFR0;
233 break;
234 case 8:
235 specReg = MISCREG_FPEXC;
236 break;
237 default:
238 return new Unknown(machInst);
239 }
240 return new Vmsr(machInst, (IntRegIndex)specReg, rt);
241 }
242 } else if (l == 0 && c == 1) {
243 if (bits(a, 2) == 0) {
244 uint32_t vd = (bits(machInst, 7) << 5) |
245 (bits(machInst, 19, 16) << 1);
246 uint32_t index, size;
247 const IntRegIndex rt =
248 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
249 if (bits(machInst, 22) == 1) {
250 size = 8;
251 index = (bits(machInst, 21) << 2) |
252 bits(machInst, 6, 5);
253 } else if (bits(machInst, 5) == 1) {
254 size = 16;
255 index = (bits(machInst, 21) << 1) |
256 bits(machInst, 6);
257 } else if (bits(machInst, 6) == 0) {
258 size = 32;
259 index = bits(machInst, 21);
260 } else {
261 return new Unknown(machInst);
262 }
263 if (index >= (32 / size)) {
264 index -= (32 / size);
265 vd++;
266 }
267 switch (size) {
268 case 8:
269 return new VmovCoreRegB(machInst, (IntRegIndex)vd,
270 rt, index);
271 case 16:
272 return new VmovCoreRegH(machInst, (IntRegIndex)vd,
273 rt, index);
274 case 32:
275 return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
276 }
277 } else if (bits(b, 1) == 0) {
278 // A8-594
279 return new WarnUnimplemented("vdup", machInst);
280 }
281 } else if (l == 1 && c == 0) {
282 if (a == 0) {
283 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
284 bits(machInst, 7);
285 const IntRegIndex rt =
286 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
287 if (bits(machInst, 20) == 1) {
288 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
289 } else {
290 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
291 }
292 } else if (a == 7) {
293 const IntRegIndex rt =
294 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
295 uint32_t specReg = bits(machInst, 19, 16);
296 switch (specReg) {
297 case 0:
298 specReg = MISCREG_FPSID;
299 break;
300 case 1:
301 specReg = MISCREG_FPSCR;
302 break;
303 case 6:
304 specReg = MISCREG_MVFR1;
305 break;
306 case 7:
307 specReg = MISCREG_MVFR0;
308 break;
309 case 8:
310 specReg = MISCREG_FPEXC;
311 break;
312 default:
313 return new Unknown(machInst);
314 }
315 if (rt == 0xf) {
316 CPSR cpsrMask = 0;
317 cpsrMask.n = 1;
318 cpsrMask.z = 1;
319 cpsrMask.c = 1;
320 cpsrMask.v = 1;
321 return new VmrsApsr(machInst, INTREG_CONDCODES,
322 (IntRegIndex)specReg, (uint32_t)cpsrMask);
323 } else {
324 return new Vmrs(machInst, rt, (IntRegIndex)specReg);
325 }
326 }
327 } else {
328 uint32_t vd = (bits(machInst, 7) << 5) |
329 (bits(machInst, 19, 16) << 1);
330 uint32_t index, size;
331 const IntRegIndex rt =
332 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
333 const bool u = (bits(machInst, 23) == 1);
334 if (bits(machInst, 22) == 1) {
335 size = 8;
336 index = (bits(machInst, 21) << 2) |
337 bits(machInst, 6, 5);
338 } else if (bits(machInst, 5) == 1) {
339 size = 16;
340 index = (bits(machInst, 21) << 1) |
341 bits(machInst, 6);
342 } else if (bits(machInst, 6) == 0 && !u) {
343 size = 32;
344 index = bits(machInst, 21);
345 } else {
346 return new Unknown(machInst);
347 }
348 if (index >= (32 / size)) {
349 index -= (32 / size);
350 vd++;
351 }
352 switch (size) {
353 case 8:
354 if (u) {
355 return new VmovRegCoreUB(machInst, rt,
356 (IntRegIndex)vd, index);
357 } else {
358 return new VmovRegCoreSB(machInst, rt,
359 (IntRegIndex)vd, index);
360 }
361 case 16:
362 if (u) {
363 return new VmovRegCoreUH(machInst, rt,
364 (IntRegIndex)vd, index);
365 } else {
366 return new VmovRegCoreSH(machInst, rt,
367 (IntRegIndex)vd, index);
368 }
369 case 32:
370 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
371 }
372 }
373 return new Unknown(machInst);
374 }
375 '''
376}};
377
378def format ShortFpTransfer() {{
379 decode_block = '''
380 return decodeShortFpTransfer(machInst);
381 '''
382}};
383
384let {{
385 header_output = '''
386 StaticInstPtr
387 decodeVfpData(ExtMachInst machInst);
388 '''
389 decoder_output = '''
390 StaticInstPtr
391 decodeVfpData(ExtMachInst machInst)
392 {
393 const uint32_t opc1 = bits(machInst, 23, 20);
394 const uint32_t opc2 = bits(machInst, 19, 16);
395 const uint32_t opc3 = bits(machInst, 7, 6);
396 //const uint32_t opc4 = bits(machInst, 3, 0);
397 const bool single = (bits(machInst, 8) == 0);
398 // Used to select between vcmp and vcmpe.
399 const bool e = (bits(machInst, 7) == 1);
400 IntRegIndex vd;
401 IntRegIndex vm;
402 IntRegIndex vn;
403 if (single) {
404 vd = (IntRegIndex)(bits(machInst, 22) |
405 (bits(machInst, 15, 12) << 1));
406 vm = (IntRegIndex)(bits(machInst, 5) |
407 (bits(machInst, 3, 0) << 1));
408 vn = (IntRegIndex)(bits(machInst, 7) |
409 (bits(machInst, 19, 16) << 1));
410 } else {
411 vd = (IntRegIndex)((bits(machInst, 22) << 5) |
412 (bits(machInst, 15, 12) << 1));
413 vm = (IntRegIndex)((bits(machInst, 5) << 5) |
414 (bits(machInst, 3, 0) << 1));
415 vn = (IntRegIndex)((bits(machInst, 7) << 5) |
416 (bits(machInst, 19, 16) << 1));
417 }
418 switch (opc1 & 0xb /* 1011 */) {
419 case 0x0:
420 if (bits(machInst, 6) == 0) {
421 if (single) {
422 return decodeVfpRegRegRegOp<VmlaS>(
423 machInst, vd, vn, vm, false);
424 } else {
425 return decodeVfpRegRegRegOp<VmlaD>(
426 machInst, vd, vn, vm, true);
427 }
428 } else {
429 if (single) {
430 return decodeVfpRegRegRegOp<VmlsS>(
431 machInst, vd, vn, vm, false);
432 } else {
433 return decodeVfpRegRegRegOp<VmlsD>(
434 machInst, vd, vn, vm, true);
435 }
436 }
437 case 0x1:
438 if (bits(machInst, 6) == 1) {
439 if (single) {
440 return decodeVfpRegRegRegOp<VnmlaS>(
441 machInst, vd, vn, vm, false);
442 } else {
443 return decodeVfpRegRegRegOp<VnmlaD>(
444 machInst, vd, vn, vm, true);
445 }
446 } else {
447 if (single) {
448 return decodeVfpRegRegRegOp<VnmlsS>(
449 machInst, vd, vn, vm, false);
450 } else {
451 return decodeVfpRegRegRegOp<VnmlsD>(
452 machInst, vd, vn, vm, true);
453 }
454 }
455 case 0x2:
456 if ((opc3 & 0x1) == 0) {
457 if (single) {
458 return decodeVfpRegRegRegOp<VmulS>(
459 machInst, vd, vn, vm, false);
460 } else {
461 return decodeVfpRegRegRegOp<VmulD>(
462 machInst, vd, vn, vm, true);
463 }
464 } else {
465 if (single) {
466 return decodeVfpRegRegRegOp<VnmulS>(
467 machInst, vd, vn, vm, false);
468 } else {
469 return decodeVfpRegRegRegOp<VnmulD>(
470 machInst, vd, vn, vm, true);
471 }
472 }
473 case 0x3:
474 if ((opc3 & 0x1) == 0) {
475 if (single) {
476 return decodeVfpRegRegRegOp<VaddS>(
477 machInst, vd, vn, vm, false);
478 } else {
479 return decodeVfpRegRegRegOp<VaddD>(
480 machInst, vd, vn, vm, true);
481 }
482 } else {
483 if (single) {
484 return decodeVfpRegRegRegOp<VsubS>(
485 machInst, vd, vn, vm, false);
486 } else {
487 return decodeVfpRegRegRegOp<VsubD>(
488 machInst, vd, vn, vm, true);
489 }
490 }
491 case 0x8:
492 if ((opc3 & 0x1) == 0) {
493 if (single) {
494 return decodeVfpRegRegRegOp<VdivS>(
495 machInst, vd, vn, vm, false);
496 } else {
497 return decodeVfpRegRegRegOp<VdivD>(
498 machInst, vd, vn, vm, true);
499 }
500 }
501 break;
502 case 0xb:
503 if ((opc3 & 0x1) == 0) {
504 const uint32_t baseImm =
505 bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
506 if (single) {
507 uint32_t imm = vfp_modified_imm(baseImm, false);
508 return decodeVfpRegImmOp<VmovImmS>(
509 machInst, vd, imm, false);
510 } else {
511 uint64_t imm = vfp_modified_imm(baseImm, true);
512 return decodeVfpRegImmOp<VmovImmD>(
513 machInst, vd, imm, true);
514 }
515 }
516 switch (opc2) {
517 case 0x0:
518 if (opc3 == 1) {
519 if (single) {
520 return decodeVfpRegRegOp<VmovRegS>(
521 machInst, vd, vm, false);
522 } else {
523 return decodeVfpRegRegOp<VmovRegD>(
524 machInst, vd, vm, true);
525 }
526 } else {
527 if (single) {
528 return decodeVfpRegRegOp<VabsS>(
529 machInst, vd, vm, false);
530 } else {
531 return decodeVfpRegRegOp<VabsD>(
532 machInst, vd, vm, true);
533 }
534 }
535 case 0x1:
536 if (opc3 == 1) {
537 if (single) {
538 return decodeVfpRegRegOp<VnegS>(
539 machInst, vd, vm, false);
540 } else {
541 return decodeVfpRegRegOp<VnegD>(
542 machInst, vd, vm, true);
543 }
544 } else {
545 if (single) {
546 return decodeVfpRegRegOp<VsqrtS>(
547 machInst, vd, vm, false);
548 } else {
549 return decodeVfpRegRegOp<VsqrtD>(
550 machInst, vd, vm, true);
551 }
552 }
553 case 0x2:
554 case 0x3:
555 {
556 const bool toHalf = bits(machInst, 16);
557 const bool top = bits(machInst, 7);
558 if (top) {
559 if (toHalf) {
560 return new VcvtFpSFpHT(machInst, vd, vm);
561 } else {
562 return new VcvtFpHTFpS(machInst, vd, vm);
563 }
564 } else {
565 if (toHalf) {
566 return new VcvtFpSFpHB(machInst, vd, vm);
567 } else {
568 return new VcvtFpHBFpS(machInst, vd, vm);
569 }
570 }
571 }
572 case 0x4:
573 if (single) {
574 if (e) {
575 return new VcmpeS(machInst, vd, vm);
576 } else {
577 return new VcmpS(machInst, vd, vm);
578 }
579 } else {
580 if (e) {
581 return new VcmpeD(machInst, vd, vm);
582 } else {
583 return new VcmpD(machInst, vd, vm);
584 }
585 }
586 case 0x5:
587 if (single) {
588 if (e) {
589 return new VcmpeZeroS(machInst, vd, 0);
590 } else {
591 return new VcmpZeroS(machInst, vd, 0);
592 }
593 } else {
594 if (e) {
595 return new VcmpeZeroD(machInst, vd, 0);
596 } else {
597 return new VcmpZeroD(machInst, vd, 0);
598 }
599 }
600 case 0x7:
601 if (opc3 == 0x3) {
602 if (single) {
603 vm = (IntRegIndex)(bits(machInst, 5) |
604 (bits(machInst, 3, 0) << 1));
605 return new VcvtFpSFpD(machInst, vd, vm);
606 } else {
607 vd = (IntRegIndex)(bits(machInst, 22) |
608 (bits(machInst, 15, 12) << 1));
609 return new VcvtFpDFpS(machInst, vd, vm);
610 }
611 }
612 break;
613 case 0x8:
614 if (bits(machInst, 7) == 0) {
615 if (single) {
616 return new VcvtUIntFpS(machInst, vd, vm);
617 } else {
618 vm = (IntRegIndex)(bits(machInst, 5) |
619 (bits(machInst, 3, 0) << 1));
620 return new VcvtUIntFpD(machInst, vd, vm);
621 }
622 } else {
623 if (single) {
624 return new VcvtSIntFpS(machInst, vd, vm);
625 } else {
626 vm = (IntRegIndex)(bits(machInst, 5) |
627 (bits(machInst, 3, 0) << 1));
628 return new VcvtSIntFpD(machInst, vd, vm);
629 }
630 }
631 case 0xa:
632 {
633 const bool half = (bits(machInst, 7) == 0);
634 const uint32_t imm = bits(machInst, 5) |
635 (bits(machInst, 3, 0) << 1);
636 const uint32_t size =
637 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
638 if (single) {
639 if (half) {
640 return new VcvtSHFixedFpS(machInst, vd, vd, size);
641 } else {
642 return new VcvtSFixedFpS(machInst, vd, vd, size);
643 }
644 } else {
645 if (half) {
646 return new VcvtSHFixedFpD(machInst, vd, vd, size);
647 } else {
648 return new VcvtSFixedFpD(machInst, vd, vd, size);
649 }
650 }
651 }
652 case 0xb:
653 {
654 const bool half = (bits(machInst, 7) == 0);
655 const uint32_t imm = bits(machInst, 5) |
656 (bits(machInst, 3, 0) << 1);
657 const uint32_t size =
658 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
659 if (single) {
660 if (half) {
661 return new VcvtUHFixedFpS(machInst, vd, vd, size);
662 } else {
663 return new VcvtUFixedFpS(machInst, vd, vd, size);
664 }
665 } else {
666 if (half) {
667 return new VcvtUHFixedFpD(machInst, vd, vd, size);
668 } else {
669 return new VcvtUFixedFpD(machInst, vd, vd, size);
670 }
671 }
672 }
673 case 0xc:
674 if (bits(machInst, 7) == 0) {
675 if (single) {
676 return new VcvtFpUIntSR(machInst, vd, vm);
677 } else {
678 vd = (IntRegIndex)(bits(machInst, 22) |
679 (bits(machInst, 15, 12) << 1));
680 return new VcvtFpUIntDR(machInst, vd, vm);
681 }
682 } else {
683 if (single) {
684 return new VcvtFpUIntS(machInst, vd, vm);
685 } else {
686 vd = (IntRegIndex)(bits(machInst, 22) |
687 (bits(machInst, 15, 12) << 1));
688 return new VcvtFpUIntD(machInst, vd, vm);
689 }
690 }
691 case 0xd:
692 if (bits(machInst, 7) == 0) {
693 if (single) {
694 return new VcvtFpSIntSR(machInst, vd, vm);
695 } else {
696 vd = (IntRegIndex)(bits(machInst, 22) |
697 (bits(machInst, 15, 12) << 1));
698 return new VcvtFpSIntDR(machInst, vd, vm);
699 }
700 } else {
701 if (single) {
702 return new VcvtFpSIntS(machInst, vd, vm);
703 } else {
704 vd = (IntRegIndex)(bits(machInst, 22) |
705 (bits(machInst, 15, 12) << 1));
706 return new VcvtFpSIntD(machInst, vd, vm);
707 }
708 }
709 case 0xe:
710 {
711 const bool half = (bits(machInst, 7) == 0);
712 const uint32_t imm = bits(machInst, 5) |
713 (bits(machInst, 3, 0) << 1);
714 const uint32_t size =
715 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
716 if (single) {
717 if (half) {
718 return new VcvtFpSHFixedS(machInst, vd, vd, size);
719 } else {
720 return new VcvtFpSFixedS(machInst, vd, vd, size);
721 }
722 } else {
723 if (half) {
724 return new VcvtFpSHFixedD(machInst, vd, vd, size);
725 } else {
726 return new VcvtFpSFixedD(machInst, vd, vd, size);
727 }
728 }
729 }
730 case 0xf:
731 {
732 const bool half = (bits(machInst, 7) == 0);
733 const uint32_t imm = bits(machInst, 5) |
734 (bits(machInst, 3, 0) << 1);
735 const uint32_t size =
736 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
737 if (single) {
738 if (half) {
739 return new VcvtFpUHFixedS(machInst, vd, vd, size);
740 } else {
741 return new VcvtFpUFixedS(machInst, vd, vd, size);
742 }
743 } else {
744 if (half) {
745 return new VcvtFpUHFixedD(machInst, vd, vd, size);
746 } else {
747 return new VcvtFpUFixedD(machInst, vd, vd, size);
748 }
749 }
750 }
751 }
752 break;
753 }
754 return new Unknown(machInst);
755 }
756 '''
757}};
758
759def format VfpData() {{
760 decode_block = '''
761 return decodeVfpData(machInst);
762 '''
763}};
118 }
119 case 0x2:
120 if (bits(opcode, 1, 0) == 0x2) {
121 // If rn == sp, then this is called vpush.
122 return new VLdmStm(machInst, rn, vd, single,
123 false, true, false, offset);
124 } else if (bits(opcode, 1, 0) == 0x3) {
125 return new VLdmStm(machInst, rn, vd, single,
126 false, true, true, offset);
127 }
128 // Fall through on purpose
129 case 0x3:
130 const bool up = (bits(machInst, 23) == 1);
131 const uint32_t imm = bits(machInst, 7, 0) << 2;
132 RegIndex vd;
133 if (single) {
134 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
135 (bits(machInst, 22)));
136 } else {
137 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
138 (bits(machInst, 22) << 5));
139 }
140 if (bits(opcode, 1, 0) == 0x0) {
141 if (single) {
142 if (up) {
143 return new %(vstr_us)s(machInst, vd, rn, up, imm);
144 } else {
145 return new %(vstr_s)s(machInst, vd, rn, up, imm);
146 }
147 } else {
148 if (up) {
149 return new %(vstr_ud)s(machInst, vd, vd + 1,
150 rn, up, imm);
151 } else {
152 return new %(vstr_d)s(machInst, vd, vd + 1,
153 rn, up, imm);
154 }
155 }
156 } else if (bits(opcode, 1, 0) == 0x1) {
157 if (single) {
158 if (up) {
159 return new %(vldr_us)s(machInst, vd, rn, up, imm);
160 } else {
161 return new %(vldr_s)s(machInst, vd, rn, up, imm);
162 }
163 } else {
164 if (up) {
165 return new %(vldr_ud)s(machInst, vd, vd + 1,
166 rn, up, imm);
167 } else {
168 return new %(vldr_d)s(machInst, vd, vd + 1,
169 rn, up, imm);
170 }
171 }
172 }
173 }
174 return new Unknown(machInst);
175 }
176 ''' % {
177 "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
178 "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
179 "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
180 "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
181 "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
182 "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
183 "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
184 "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
185 }
186}};
187
188def format ExtensionRegLoadStore() {{
189 decode_block = '''
190 return decodeExtensionRegLoadStore(machInst);
191 '''
192}};
193
194let {{
195 header_output = '''
196 StaticInstPtr
197 decodeShortFpTransfer(ExtMachInst machInst);
198 '''
199 decoder_output = '''
200 StaticInstPtr
201 decodeShortFpTransfer(ExtMachInst machInst)
202 {
203 const uint32_t l = bits(machInst, 20);
204 const uint32_t c = bits(machInst, 8);
205 const uint32_t a = bits(machInst, 23, 21);
206 const uint32_t b = bits(machInst, 6, 5);
207 if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
208 (machInst.thumb == 0 && machInst.condCode == 0xf)) {
209 return new Unknown(machInst);
210 }
211 if (l == 0 && c == 0) {
212 if (a == 0) {
213 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
214 bits(machInst, 7);
215 const IntRegIndex rt =
216 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
217 if (bits(machInst, 20) == 1) {
218 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
219 } else {
220 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
221 }
222 } else if (a == 0x7) {
223 const IntRegIndex rt =
224 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
225 uint32_t specReg = bits(machInst, 19, 16);
226 switch (specReg) {
227 case 0:
228 specReg = MISCREG_FPSID;
229 break;
230 case 1:
231 specReg = MISCREG_FPSCR;
232 break;
233 case 6:
234 specReg = MISCREG_MVFR1;
235 break;
236 case 7:
237 specReg = MISCREG_MVFR0;
238 break;
239 case 8:
240 specReg = MISCREG_FPEXC;
241 break;
242 default:
243 return new Unknown(machInst);
244 }
245 return new Vmsr(machInst, (IntRegIndex)specReg, rt);
246 }
247 } else if (l == 0 && c == 1) {
248 if (bits(a, 2) == 0) {
249 uint32_t vd = (bits(machInst, 7) << 5) |
250 (bits(machInst, 19, 16) << 1);
251 uint32_t index, size;
252 const IntRegIndex rt =
253 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
254 if (bits(machInst, 22) == 1) {
255 size = 8;
256 index = (bits(machInst, 21) << 2) |
257 bits(machInst, 6, 5);
258 } else if (bits(machInst, 5) == 1) {
259 size = 16;
260 index = (bits(machInst, 21) << 1) |
261 bits(machInst, 6);
262 } else if (bits(machInst, 6) == 0) {
263 size = 32;
264 index = bits(machInst, 21);
265 } else {
266 return new Unknown(machInst);
267 }
268 if (index >= (32 / size)) {
269 index -= (32 / size);
270 vd++;
271 }
272 switch (size) {
273 case 8:
274 return new VmovCoreRegB(machInst, (IntRegIndex)vd,
275 rt, index);
276 case 16:
277 return new VmovCoreRegH(machInst, (IntRegIndex)vd,
278 rt, index);
279 case 32:
280 return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
281 }
282 } else if (bits(b, 1) == 0) {
283 // A8-594
284 return new WarnUnimplemented("vdup", machInst);
285 }
286 } else if (l == 1 && c == 0) {
287 if (a == 0) {
288 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
289 bits(machInst, 7);
290 const IntRegIndex rt =
291 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
292 if (bits(machInst, 20) == 1) {
293 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
294 } else {
295 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
296 }
297 } else if (a == 7) {
298 const IntRegIndex rt =
299 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
300 uint32_t specReg = bits(machInst, 19, 16);
301 switch (specReg) {
302 case 0:
303 specReg = MISCREG_FPSID;
304 break;
305 case 1:
306 specReg = MISCREG_FPSCR;
307 break;
308 case 6:
309 specReg = MISCREG_MVFR1;
310 break;
311 case 7:
312 specReg = MISCREG_MVFR0;
313 break;
314 case 8:
315 specReg = MISCREG_FPEXC;
316 break;
317 default:
318 return new Unknown(machInst);
319 }
320 if (rt == 0xf) {
321 CPSR cpsrMask = 0;
322 cpsrMask.n = 1;
323 cpsrMask.z = 1;
324 cpsrMask.c = 1;
325 cpsrMask.v = 1;
326 return new VmrsApsr(machInst, INTREG_CONDCODES,
327 (IntRegIndex)specReg, (uint32_t)cpsrMask);
328 } else {
329 return new Vmrs(machInst, rt, (IntRegIndex)specReg);
330 }
331 }
332 } else {
333 uint32_t vd = (bits(machInst, 7) << 5) |
334 (bits(machInst, 19, 16) << 1);
335 uint32_t index, size;
336 const IntRegIndex rt =
337 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
338 const bool u = (bits(machInst, 23) == 1);
339 if (bits(machInst, 22) == 1) {
340 size = 8;
341 index = (bits(machInst, 21) << 2) |
342 bits(machInst, 6, 5);
343 } else if (bits(machInst, 5) == 1) {
344 size = 16;
345 index = (bits(machInst, 21) << 1) |
346 bits(machInst, 6);
347 } else if (bits(machInst, 6) == 0 && !u) {
348 size = 32;
349 index = bits(machInst, 21);
350 } else {
351 return new Unknown(machInst);
352 }
353 if (index >= (32 / size)) {
354 index -= (32 / size);
355 vd++;
356 }
357 switch (size) {
358 case 8:
359 if (u) {
360 return new VmovRegCoreUB(machInst, rt,
361 (IntRegIndex)vd, index);
362 } else {
363 return new VmovRegCoreSB(machInst, rt,
364 (IntRegIndex)vd, index);
365 }
366 case 16:
367 if (u) {
368 return new VmovRegCoreUH(machInst, rt,
369 (IntRegIndex)vd, index);
370 } else {
371 return new VmovRegCoreSH(machInst, rt,
372 (IntRegIndex)vd, index);
373 }
374 case 32:
375 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
376 }
377 }
378 return new Unknown(machInst);
379 }
380 '''
381}};
382
383def format ShortFpTransfer() {{
384 decode_block = '''
385 return decodeShortFpTransfer(machInst);
386 '''
387}};
388
389let {{
390 header_output = '''
391 StaticInstPtr
392 decodeVfpData(ExtMachInst machInst);
393 '''
394 decoder_output = '''
395 StaticInstPtr
396 decodeVfpData(ExtMachInst machInst)
397 {
398 const uint32_t opc1 = bits(machInst, 23, 20);
399 const uint32_t opc2 = bits(machInst, 19, 16);
400 const uint32_t opc3 = bits(machInst, 7, 6);
401 //const uint32_t opc4 = bits(machInst, 3, 0);
402 const bool single = (bits(machInst, 8) == 0);
403 // Used to select between vcmp and vcmpe.
404 const bool e = (bits(machInst, 7) == 1);
405 IntRegIndex vd;
406 IntRegIndex vm;
407 IntRegIndex vn;
408 if (single) {
409 vd = (IntRegIndex)(bits(machInst, 22) |
410 (bits(machInst, 15, 12) << 1));
411 vm = (IntRegIndex)(bits(machInst, 5) |
412 (bits(machInst, 3, 0) << 1));
413 vn = (IntRegIndex)(bits(machInst, 7) |
414 (bits(machInst, 19, 16) << 1));
415 } else {
416 vd = (IntRegIndex)((bits(machInst, 22) << 5) |
417 (bits(machInst, 15, 12) << 1));
418 vm = (IntRegIndex)((bits(machInst, 5) << 5) |
419 (bits(machInst, 3, 0) << 1));
420 vn = (IntRegIndex)((bits(machInst, 7) << 5) |
421 (bits(machInst, 19, 16) << 1));
422 }
423 switch (opc1 & 0xb /* 1011 */) {
424 case 0x0:
425 if (bits(machInst, 6) == 0) {
426 if (single) {
427 return decodeVfpRegRegRegOp<VmlaS>(
428 machInst, vd, vn, vm, false);
429 } else {
430 return decodeVfpRegRegRegOp<VmlaD>(
431 machInst, vd, vn, vm, true);
432 }
433 } else {
434 if (single) {
435 return decodeVfpRegRegRegOp<VmlsS>(
436 machInst, vd, vn, vm, false);
437 } else {
438 return decodeVfpRegRegRegOp<VmlsD>(
439 machInst, vd, vn, vm, true);
440 }
441 }
442 case 0x1:
443 if (bits(machInst, 6) == 1) {
444 if (single) {
445 return decodeVfpRegRegRegOp<VnmlaS>(
446 machInst, vd, vn, vm, false);
447 } else {
448 return decodeVfpRegRegRegOp<VnmlaD>(
449 machInst, vd, vn, vm, true);
450 }
451 } else {
452 if (single) {
453 return decodeVfpRegRegRegOp<VnmlsS>(
454 machInst, vd, vn, vm, false);
455 } else {
456 return decodeVfpRegRegRegOp<VnmlsD>(
457 machInst, vd, vn, vm, true);
458 }
459 }
460 case 0x2:
461 if ((opc3 & 0x1) == 0) {
462 if (single) {
463 return decodeVfpRegRegRegOp<VmulS>(
464 machInst, vd, vn, vm, false);
465 } else {
466 return decodeVfpRegRegRegOp<VmulD>(
467 machInst, vd, vn, vm, true);
468 }
469 } else {
470 if (single) {
471 return decodeVfpRegRegRegOp<VnmulS>(
472 machInst, vd, vn, vm, false);
473 } else {
474 return decodeVfpRegRegRegOp<VnmulD>(
475 machInst, vd, vn, vm, true);
476 }
477 }
478 case 0x3:
479 if ((opc3 & 0x1) == 0) {
480 if (single) {
481 return decodeVfpRegRegRegOp<VaddS>(
482 machInst, vd, vn, vm, false);
483 } else {
484 return decodeVfpRegRegRegOp<VaddD>(
485 machInst, vd, vn, vm, true);
486 }
487 } else {
488 if (single) {
489 return decodeVfpRegRegRegOp<VsubS>(
490 machInst, vd, vn, vm, false);
491 } else {
492 return decodeVfpRegRegRegOp<VsubD>(
493 machInst, vd, vn, vm, true);
494 }
495 }
496 case 0x8:
497 if ((opc3 & 0x1) == 0) {
498 if (single) {
499 return decodeVfpRegRegRegOp<VdivS>(
500 machInst, vd, vn, vm, false);
501 } else {
502 return decodeVfpRegRegRegOp<VdivD>(
503 machInst, vd, vn, vm, true);
504 }
505 }
506 break;
507 case 0xb:
508 if ((opc3 & 0x1) == 0) {
509 const uint32_t baseImm =
510 bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
511 if (single) {
512 uint32_t imm = vfp_modified_imm(baseImm, false);
513 return decodeVfpRegImmOp<VmovImmS>(
514 machInst, vd, imm, false);
515 } else {
516 uint64_t imm = vfp_modified_imm(baseImm, true);
517 return decodeVfpRegImmOp<VmovImmD>(
518 machInst, vd, imm, true);
519 }
520 }
521 switch (opc2) {
522 case 0x0:
523 if (opc3 == 1) {
524 if (single) {
525 return decodeVfpRegRegOp<VmovRegS>(
526 machInst, vd, vm, false);
527 } else {
528 return decodeVfpRegRegOp<VmovRegD>(
529 machInst, vd, vm, true);
530 }
531 } else {
532 if (single) {
533 return decodeVfpRegRegOp<VabsS>(
534 machInst, vd, vm, false);
535 } else {
536 return decodeVfpRegRegOp<VabsD>(
537 machInst, vd, vm, true);
538 }
539 }
540 case 0x1:
541 if (opc3 == 1) {
542 if (single) {
543 return decodeVfpRegRegOp<VnegS>(
544 machInst, vd, vm, false);
545 } else {
546 return decodeVfpRegRegOp<VnegD>(
547 machInst, vd, vm, true);
548 }
549 } else {
550 if (single) {
551 return decodeVfpRegRegOp<VsqrtS>(
552 machInst, vd, vm, false);
553 } else {
554 return decodeVfpRegRegOp<VsqrtD>(
555 machInst, vd, vm, true);
556 }
557 }
558 case 0x2:
559 case 0x3:
560 {
561 const bool toHalf = bits(machInst, 16);
562 const bool top = bits(machInst, 7);
563 if (top) {
564 if (toHalf) {
565 return new VcvtFpSFpHT(machInst, vd, vm);
566 } else {
567 return new VcvtFpHTFpS(machInst, vd, vm);
568 }
569 } else {
570 if (toHalf) {
571 return new VcvtFpSFpHB(machInst, vd, vm);
572 } else {
573 return new VcvtFpHBFpS(machInst, vd, vm);
574 }
575 }
576 }
577 case 0x4:
578 if (single) {
579 if (e) {
580 return new VcmpeS(machInst, vd, vm);
581 } else {
582 return new VcmpS(machInst, vd, vm);
583 }
584 } else {
585 if (e) {
586 return new VcmpeD(machInst, vd, vm);
587 } else {
588 return new VcmpD(machInst, vd, vm);
589 }
590 }
591 case 0x5:
592 if (single) {
593 if (e) {
594 return new VcmpeZeroS(machInst, vd, 0);
595 } else {
596 return new VcmpZeroS(machInst, vd, 0);
597 }
598 } else {
599 if (e) {
600 return new VcmpeZeroD(machInst, vd, 0);
601 } else {
602 return new VcmpZeroD(machInst, vd, 0);
603 }
604 }
605 case 0x7:
606 if (opc3 == 0x3) {
607 if (single) {
608 vm = (IntRegIndex)(bits(machInst, 5) |
609 (bits(machInst, 3, 0) << 1));
610 return new VcvtFpSFpD(machInst, vd, vm);
611 } else {
612 vd = (IntRegIndex)(bits(machInst, 22) |
613 (bits(machInst, 15, 12) << 1));
614 return new VcvtFpDFpS(machInst, vd, vm);
615 }
616 }
617 break;
618 case 0x8:
619 if (bits(machInst, 7) == 0) {
620 if (single) {
621 return new VcvtUIntFpS(machInst, vd, vm);
622 } else {
623 vm = (IntRegIndex)(bits(machInst, 5) |
624 (bits(machInst, 3, 0) << 1));
625 return new VcvtUIntFpD(machInst, vd, vm);
626 }
627 } else {
628 if (single) {
629 return new VcvtSIntFpS(machInst, vd, vm);
630 } else {
631 vm = (IntRegIndex)(bits(machInst, 5) |
632 (bits(machInst, 3, 0) << 1));
633 return new VcvtSIntFpD(machInst, vd, vm);
634 }
635 }
636 case 0xa:
637 {
638 const bool half = (bits(machInst, 7) == 0);
639 const uint32_t imm = bits(machInst, 5) |
640 (bits(machInst, 3, 0) << 1);
641 const uint32_t size =
642 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
643 if (single) {
644 if (half) {
645 return new VcvtSHFixedFpS(machInst, vd, vd, size);
646 } else {
647 return new VcvtSFixedFpS(machInst, vd, vd, size);
648 }
649 } else {
650 if (half) {
651 return new VcvtSHFixedFpD(machInst, vd, vd, size);
652 } else {
653 return new VcvtSFixedFpD(machInst, vd, vd, size);
654 }
655 }
656 }
657 case 0xb:
658 {
659 const bool half = (bits(machInst, 7) == 0);
660 const uint32_t imm = bits(machInst, 5) |
661 (bits(machInst, 3, 0) << 1);
662 const uint32_t size =
663 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
664 if (single) {
665 if (half) {
666 return new VcvtUHFixedFpS(machInst, vd, vd, size);
667 } else {
668 return new VcvtUFixedFpS(machInst, vd, vd, size);
669 }
670 } else {
671 if (half) {
672 return new VcvtUHFixedFpD(machInst, vd, vd, size);
673 } else {
674 return new VcvtUFixedFpD(machInst, vd, vd, size);
675 }
676 }
677 }
678 case 0xc:
679 if (bits(machInst, 7) == 0) {
680 if (single) {
681 return new VcvtFpUIntSR(machInst, vd, vm);
682 } else {
683 vd = (IntRegIndex)(bits(machInst, 22) |
684 (bits(machInst, 15, 12) << 1));
685 return new VcvtFpUIntDR(machInst, vd, vm);
686 }
687 } else {
688 if (single) {
689 return new VcvtFpUIntS(machInst, vd, vm);
690 } else {
691 vd = (IntRegIndex)(bits(machInst, 22) |
692 (bits(machInst, 15, 12) << 1));
693 return new VcvtFpUIntD(machInst, vd, vm);
694 }
695 }
696 case 0xd:
697 if (bits(machInst, 7) == 0) {
698 if (single) {
699 return new VcvtFpSIntSR(machInst, vd, vm);
700 } else {
701 vd = (IntRegIndex)(bits(machInst, 22) |
702 (bits(machInst, 15, 12) << 1));
703 return new VcvtFpSIntDR(machInst, vd, vm);
704 }
705 } else {
706 if (single) {
707 return new VcvtFpSIntS(machInst, vd, vm);
708 } else {
709 vd = (IntRegIndex)(bits(machInst, 22) |
710 (bits(machInst, 15, 12) << 1));
711 return new VcvtFpSIntD(machInst, vd, vm);
712 }
713 }
714 case 0xe:
715 {
716 const bool half = (bits(machInst, 7) == 0);
717 const uint32_t imm = bits(machInst, 5) |
718 (bits(machInst, 3, 0) << 1);
719 const uint32_t size =
720 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
721 if (single) {
722 if (half) {
723 return new VcvtFpSHFixedS(machInst, vd, vd, size);
724 } else {
725 return new VcvtFpSFixedS(machInst, vd, vd, size);
726 }
727 } else {
728 if (half) {
729 return new VcvtFpSHFixedD(machInst, vd, vd, size);
730 } else {
731 return new VcvtFpSFixedD(machInst, vd, vd, size);
732 }
733 }
734 }
735 case 0xf:
736 {
737 const bool half = (bits(machInst, 7) == 0);
738 const uint32_t imm = bits(machInst, 5) |
739 (bits(machInst, 3, 0) << 1);
740 const uint32_t size =
741 (bits(machInst, 7) == 0 ? 16 : 32) - imm;
742 if (single) {
743 if (half) {
744 return new VcvtFpUHFixedS(machInst, vd, vd, size);
745 } else {
746 return new VcvtFpUFixedS(machInst, vd, vd, size);
747 }
748 } else {
749 if (half) {
750 return new VcvtFpUHFixedD(machInst, vd, vd, size);
751 } else {
752 return new VcvtFpUFixedD(machInst, vd, vd, size);
753 }
754 }
755 }
756 }
757 break;
758 }
759 return new Unknown(machInst);
760 }
761 '''
762}};
763
764def format VfpData() {{
765 decode_block = '''
766 return decodeVfpData(machInst);
767 '''
768}};