fp.isa (7376:3b781776b2d9) fp.isa (7377:ce388054b481)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder. You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48def template FPAExecute {{
49 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50 {
51 Fault fault = NoFault;
52
53 %(fp_enable_check)s;
54
55 %(op_decl)s;
56 %(op_rd)s;
57
58 if (%(predicate_test)s) {
59 %(code)s;
60 if (fault == NoFault) {
61 %(op_wb)s;
62 }
63 }
64
65 return fault;
66 }
67}};
68
69def template FloatDoubleDecode {{
70 {
71 ArmStaticInst *i = NULL;
72 switch (OPCODE_19 << 1 | OPCODE_7)
73 {
74 case 0:
75 i = (ArmStaticInst *)new %(class_name)sS(machInst);
76 break;
77 case 1:
78 i = (ArmStaticInst *)new %(class_name)sD(machInst);
79 break;
80 case 2:
81 case 3:
82 default:
83 panic("Cannot decode float/double nature of the instruction");
84 }
85 return i;
86 }
87}};
88
89// Primary format for float point operate instructions:
90def format FloatOp(code, *flags) {{
91 orig_code = code
92
93 cblk = code
94 iop = InstObjParams(name, Name, 'PredOp',
95 {"code": cblk,
96 "predicate_test": predicateTest},
97 flags)
98 header_output = BasicDeclare.subst(iop)
99 decoder_output = BasicConstructor.subst(iop)
100 exec_output = FPAExecute.subst(iop)
101
102 sng_cblk = code
103 sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104 {"code": sng_cblk,
105 "predicate_test": predicateTest},
106 flags)
107 header_output += BasicDeclare.subst(sng_iop)
108 decoder_output += BasicConstructor.subst(sng_iop)
109 exec_output += FPAExecute.subst(sng_iop)
110
111 dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113 dbl_cblk = dbl_code
114 dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115 {"code": dbl_cblk,
116 "predicate_test": predicateTest},
117 flags)
118 header_output += BasicDeclare.subst(dbl_iop)
119 decoder_output += BasicConstructor.subst(dbl_iop)
120 exec_output += FPAExecute.subst(dbl_iop)
121
122 decode_block = FloatDoubleDecode.subst(iop)
123}};
124
125let {{
126 calcFPCcCode = '''
127 uint16_t _in, _iz, _ic, _iv;
128
129 _in = %(fReg1)s < %(fReg2)s;
130 _iz = %(fReg1)s == %(fReg2)s;
131 _ic = %(fReg1)s >= %(fReg2)s;
132 _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134 CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135 (CondCodes & 0x0FFFFFFF);
136 '''
137}};
138
139def format FloatCmp(fReg1, fReg2, *flags) {{
140 code = calcFPCcCode % vars()
141 iop = InstObjParams(name, Name, 'PredOp',
142 {"code": code,
143 "predicate_test": predicateTest},
144 flags)
145 header_output = BasicDeclare.subst(iop)
146 decoder_output = BasicConstructor.subst(iop)
147 decode_block = BasicDecode.subst(iop)
148 exec_output = FPAExecute.subst(iop)
149}};
150
151let {{
152 header_output = '''
153 StaticInstPtr
154 decodeExtensionRegLoadStore(ExtMachInst machInst);
155 '''
156 decoder_output = '''
157 StaticInstPtr
158 decodeExtensionRegLoadStore(ExtMachInst machInst)
159 {
160 const uint32_t opcode = bits(machInst, 24, 20);
161 const uint32_t offset = bits(machInst, 7, 0);
162 const bool single = (bits(machInst, 8) == 0);
163 const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164 RegIndex vd;
165 if (single) {
166 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167 bits(machInst, 22));
168 } else {
169 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170 (bits(machInst, 22) << 5));
171 }
172 switch (bits(opcode, 4, 3)) {
173 case 0x0:
174 if (bits(opcode, 4, 1) == 0x2 &&
175 !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176 !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177 if ((bits(machInst, 7, 4) & 0xd) != 1) {
178 break;
179 }
180 const IntRegIndex rt =
181 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182 const IntRegIndex rt2 =
183 (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184 const bool op = bits(machInst, 20);
185 uint32_t vm;
186 if (single) {
187 vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188 } else {
189 vm = (bits(machInst, 3, 0) << 1) |
190 (bits(machInst, 5) << 5);
191 }
192 if (op) {
193 return new Vmov2Core2Reg(machInst, rt, rt2,
194 (IntRegIndex)vm);
195 } else {
196 return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197 rt, rt2);
198 }
199 }
200 break;
201 case 0x1:
202 switch (bits(opcode, 1, 0)) {
203 case 0x0:
204 return new VLdmStm(machInst, rn, vd, single,
205 true, false, false, offset);
206 case 0x1:
207 return new VLdmStm(machInst, rn, vd, single,
208 true, false, true, offset);
209 case 0x2:
210 return new VLdmStm(machInst, rn, vd, single,
211 true, true, false, offset);
212 case 0x3:
213 // If rn == sp, then this is called vpop.
214 return new VLdmStm(machInst, rn, vd, single,
215 true, true, true, offset);
216 }
217 case 0x2:
218 if (bits(opcode, 1, 0) == 0x2) {
219 // If rn == sp, then this is called vpush.
220 return new VLdmStm(machInst, rn, vd, single,
221 false, true, false, offset);
222 } else if (bits(opcode, 1, 0) == 0x3) {
223 return new VLdmStm(machInst, rn, vd, single,
224 false, true, true, offset);
225 }
226 // Fall through on purpose
227 case 0x3:
228 const bool up = (bits(machInst, 23) == 1);
229 const uint32_t imm = bits(machInst, 7, 0) << 2;
230 RegIndex vd;
231 if (single) {
232 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233 (bits(machInst, 22)));
234 } else {
235 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236 (bits(machInst, 22) << 5));
237 }
238 if (bits(opcode, 1, 0) == 0x0) {
239 if (single) {
240 if (up) {
241 return new %(vstr_us)s(machInst, vd, rn, up, imm);
242 } else {
243 return new %(vstr_s)s(machInst, vd, rn, up, imm);
244 }
245 } else {
246 if (up) {
247 return new %(vstr_ud)s(machInst, vd, vd + 1,
248 rn, up, imm);
249 } else {
250 return new %(vstr_d)s(machInst, vd, vd + 1,
251 rn, up, imm);
252 }
253 }
254 } else if (bits(opcode, 1, 0) == 0x1) {
255 if (single) {
256 if (up) {
257 return new %(vldr_us)s(machInst, vd, rn, up, imm);
258 } else {
259 return new %(vldr_s)s(machInst, vd, rn, up, imm);
260 }
261 } else {
262 if (up) {
263 return new %(vldr_ud)s(machInst, vd, vd + 1,
264 rn, up, imm);
265 } else {
266 return new %(vldr_d)s(machInst, vd, vd + 1,
267 rn, up, imm);
268 }
269 }
270 }
271 }
272 return new Unknown(machInst);
273 }
274 ''' % {
275 "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276 "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277 "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278 "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279 "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280 "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281 "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282 "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283 }
284}};
285
286def format ExtensionRegLoadStore() {{
287 decode_block = '''
288 return decodeExtensionRegLoadStore(machInst);
289 '''
290}};
291
292let {{
293 header_output = '''
294 StaticInstPtr
295 decodeShortFpTransfer(ExtMachInst machInst);
296 '''
297 decoder_output = '''
298 StaticInstPtr
299 decodeShortFpTransfer(ExtMachInst machInst)
300 {
301 const uint32_t l = bits(machInst, 20);
302 const uint32_t c = bits(machInst, 8);
303 const uint32_t a = bits(machInst, 23, 21);
304 const uint32_t b = bits(machInst, 6, 5);
305 if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306 (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307 return new Unknown(machInst);
308 }
309 if (l == 0 && c == 0) {
310 if (a == 0) {
311 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312 bits(machInst, 7);
313 const IntRegIndex rt =
314 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315 if (bits(machInst, 20) == 1) {
316 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317 } else {
318 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319 }
320 } else if (a == 0x7) {
321 const IntRegIndex rt =
322 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323 uint32_t specReg = bits(machInst, 19, 16);
324 switch (specReg) {
325 case 0:
326 specReg = MISCREG_FPSID;
327 break;
328 case 1:
329 specReg = MISCREG_FPSCR;
330 break;
331 case 8:
332 specReg = MISCREG_FPEXC;
333 break;
334 default:
335 return new Unknown(machInst);
336 }
337 return new Vmsr(machInst, (IntRegIndex)specReg, rt);
338 }
339 } else if (l == 0 && c == 1) {
340 if (bits(a, 2) == 0) {
341 uint32_t vd = (bits(machInst, 7) << 5) |
342 (bits(machInst, 19, 16) << 1);
343 uint32_t index, size;
344 const IntRegIndex rt =
345 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
346 if (bits(machInst, 22) == 1) {
347 size = 8;
348 index = (bits(machInst, 21) << 2) |
349 bits(machInst, 6, 5);
350 } else if (bits(machInst, 5) == 1) {
351 size = 16;
352 index = (bits(machInst, 21) << 1) |
353 bits(machInst, 6);
354 } else if (bits(machInst, 6) == 0) {
355 size = 32;
356 index = bits(machInst, 21);
357 } else {
358 return new Unknown(machInst);
359 }
360 if (index >= (32 / size)) {
361 index -= (32 / size);
362 vd++;
363 }
364 switch (size) {
365 case 8:
366 return new VmovCoreRegB(machInst, (IntRegIndex)vd,
367 rt, index);
368 case 16:
369 return new VmovCoreRegH(machInst, (IntRegIndex)vd,
370 rt, index);
371 case 32:
372 return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
373 }
374 } else if (bits(b, 1) == 0) {
375 // A8-594
376 return new WarnUnimplemented("vdup", machInst);
377 }
378 } else if (l == 1 && c == 0) {
379 if (a == 0) {
380 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
381 bits(machInst, 7);
382 const IntRegIndex rt =
383 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
384 if (bits(machInst, 20) == 1) {
385 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
386 } else {
387 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
388 }
389 } else if (a == 7) {
390 const IntRegIndex rt =
391 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
392 uint32_t specReg = bits(machInst, 19, 16);
393 switch (specReg) {
394 case 0:
395 specReg = MISCREG_FPSID;
396 break;
397 case 1:
398 specReg = MISCREG_FPSCR;
399 break;
400 case 6:
401 specReg = MISCREG_MVFR1;
402 break;
403 case 7:
404 specReg = MISCREG_MVFR0;
405 break;
406 case 8:
407 specReg = MISCREG_FPEXC;
408 break;
409 default:
410 return new Unknown(machInst);
411 }
412 return new Vmrs(machInst, rt, (IntRegIndex)specReg);
413 }
414 } else {
415 uint32_t vd = (bits(machInst, 7) << 5) |
416 (bits(machInst, 19, 16) << 1);
417 uint32_t index, size;
418 const IntRegIndex rt =
419 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
420 const bool u = (bits(machInst, 23) == 1);
421 if (bits(machInst, 22) == 1) {
422 size = 8;
423 index = (bits(machInst, 21) << 2) |
424 bits(machInst, 6, 5);
425 } else if (bits(machInst, 5) == 1) {
426 size = 16;
427 index = (bits(machInst, 21) << 1) |
428 bits(machInst, 6);
429 } else if (bits(machInst, 6) == 0 && !u) {
430 size = 32;
431 index = bits(machInst, 21);
432 } else {
433 return new Unknown(machInst);
434 }
435 if (index >= (32 / size)) {
436 index -= (32 / size);
437 vd++;
438 }
439 switch (size) {
440 case 8:
441 if (u) {
442 return new VmovRegCoreUB(machInst, rt,
443 (IntRegIndex)vd, index);
444 } else {
445 return new VmovRegCoreSB(machInst, rt,
446 (IntRegIndex)vd, index);
447 }
448 case 16:
449 if (u) {
450 return new VmovRegCoreUH(machInst, rt,
451 (IntRegIndex)vd, index);
452 } else {
453 return new VmovRegCoreSH(machInst, rt,
454 (IntRegIndex)vd, index);
455 }
456 case 32:
457 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
458 }
459 }
460 return new Unknown(machInst);
461 }
462 '''
463}};
464
465def format ShortFpTransfer() {{
466 decode_block = '''
467 return decodeShortFpTransfer(machInst);
468 '''
469}};
470
471let {{
472 header_output = '''
473 StaticInstPtr
474 decodeVfpData(ExtMachInst machInst);
475 '''
476 decoder_output = '''
477 StaticInstPtr
478 decodeVfpData(ExtMachInst machInst)
479 {
480 const uint32_t opc1 = bits(machInst, 23, 20);
481 const uint32_t opc2 = bits(machInst, 19, 16);
482 const uint32_t opc3 = bits(machInst, 7, 6);
483 //const uint32_t opc4 = bits(machInst, 3, 0);
484 const bool single = (bits(machInst, 8) == 0);
485 IntRegIndex vd;
486 IntRegIndex vm;
487 IntRegIndex vn;
488 if (single) {
489 vd = (IntRegIndex)(bits(machInst, 22) |
490 (bits(machInst, 15, 12) << 1));
491 vm = (IntRegIndex)(bits(machInst, 5) |
492 (bits(machInst, 3, 0) << 1));
493 vn = (IntRegIndex)(bits(machInst, 7) |
494 (bits(machInst, 19, 16) << 1));
495 } else {
496 vd = (IntRegIndex)((bits(machInst, 22) << 5) |
497 (bits(machInst, 15, 12) << 1));
498 vm = (IntRegIndex)((bits(machInst, 5) << 5) |
499 (bits(machInst, 3, 0) << 1));
500 vn = (IntRegIndex)((bits(machInst, 7) << 5) |
501 (bits(machInst, 19, 16) << 1));
502 }
503 switch (opc1 & 0xb /* 1011 */) {
504 case 0x0:
505 if (bits(machInst, 6) == 0) {
506 if (single) {
507 return decodeVfpRegRegRegOp<VmlaS>(
508 machInst, vd, vn, vm, false);
509 } else {
510 return decodeVfpRegRegRegOp<VmlaD>(
511 machInst, vd, vn, vm, true);
512 }
513 } else {
514 if (single) {
515 return decodeVfpRegRegRegOp<VmlsS>(
516 machInst, vd, vn, vm, false);
517 } else {
518 return decodeVfpRegRegRegOp<VmlsD>(
519 machInst, vd, vn, vm, true);
520 }
521 }
522 case 0x1:
523 if (bits(machInst, 6) == 1) {
524 if (single) {
525 return decodeVfpRegRegRegOp<VnmlaS>(
526 machInst, vd, vn, vm, false);
527 } else {
528 return decodeVfpRegRegRegOp<VnmlaD>(
529 machInst, vd, vn, vm, true);
530 }
531 } else {
532 if (single) {
533 return decodeVfpRegRegRegOp<VnmlsS>(
534 machInst, vd, vn, vm, false);
535 } else {
536 return decodeVfpRegRegRegOp<VnmlsD>(
537 machInst, vd, vn, vm, true);
538 }
539 }
540 case 0x2:
541 if ((opc3 & 0x1) == 0) {
542 if (single) {
543 return decodeVfpRegRegRegOp<VmulS>(
544 machInst, vd, vn, vm, false);
545 } else {
546 return decodeVfpRegRegRegOp<VmulD>(
547 machInst, vd, vn, vm, true);
548 }
549 } else {
550 if (single) {
551 return decodeVfpRegRegRegOp<VnmulS>(
552 machInst, vd, vn, vm, false);
553 } else {
554 return decodeVfpRegRegRegOp<VnmulD>(
555 machInst, vd, vn, vm, true);
556 }
557 }
558 case 0x3:
559 if ((opc3 & 0x1) == 0) {
560 if (single) {
561 return decodeVfpRegRegRegOp<VaddS>(
562 machInst, vd, vn, vm, false);
563 } else {
564 return decodeVfpRegRegRegOp<VaddD>(
565 machInst, vd, vn, vm, true);
566 }
567 } else {
568 if (single) {
569 return decodeVfpRegRegRegOp<VsubS>(
570 machInst, vd, vn, vm, false);
571 } else {
572 return decodeVfpRegRegRegOp<VsubD>(
573 machInst, vd, vn, vm, true);
574 }
575 }
576 case 0x8:
577 if ((opc3 & 0x1) == 0) {
578 if (single) {
579 return decodeVfpRegRegRegOp<VdivS>(
580 machInst, vd, vn, vm, false);
581 } else {
582 return decodeVfpRegRegRegOp<VdivD>(
583 machInst, vd, vn, vm, true);
584 }
585 }
586 break;
587 case 0xb:
588 if ((opc3 & 0x1) == 0) {
589 const uint32_t baseImm =
590 bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
591 if (single) {
592 uint32_t imm = vfp_modified_imm(baseImm, false);
593 return decodeVfpRegImmOp<VmovImmS>(
594 machInst, vd, imm, false);
595 } else {
596 uint64_t imm = vfp_modified_imm(baseImm, true);
597 return decodeVfpRegImmOp<VmovImmD>(
598 machInst, vd, imm, true);
599 }
600 }
601 switch (opc2) {
602 case 0x0:
603 if (opc3 == 1) {
604 if (single) {
605 return decodeVfpRegRegOp<VmovRegS>(
606 machInst, vd, vm, false);
607 } else {
608 return decodeVfpRegRegOp<VmovRegD>(
609 machInst, vd, vm, true);
610 }
611 } else {
612 if (single) {
613 return decodeVfpRegRegOp<VabsS>(
614 machInst, vd, vm, false);
615 } else {
616 return decodeVfpRegRegOp<VabsD>(
617 machInst, vd, vm, true);
618 }
619 }
620 case 0x1:
621 if (opc3 == 1) {
622 if (single) {
623 return decodeVfpRegRegOp<VnegS>(
624 machInst, vd, vm, false);
625 } else {
626 return decodeVfpRegRegOp<VnegD>(
627 machInst, vd, vm, true);
628 }
629 } else {
630 if (single) {
631 return decodeVfpRegRegOp<VsqrtS>(
632 machInst, vd, vm, false);
633 } else {
634 return decodeVfpRegRegOp<VsqrtD>(
635 machInst, vd, vm, true);
636 }
637 }
638 case 0x2:
639 case 0x3:
640 // Between half and single precision.
641 return new WarnUnimplemented("vcvtb, vcvtt", machInst);
642 case 0x4:
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder. You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// Floating Point operate instructions
46//
47
48def template FPAExecute {{
49 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
50 {
51 Fault fault = NoFault;
52
53 %(fp_enable_check)s;
54
55 %(op_decl)s;
56 %(op_rd)s;
57
58 if (%(predicate_test)s) {
59 %(code)s;
60 if (fault == NoFault) {
61 %(op_wb)s;
62 }
63 }
64
65 return fault;
66 }
67}};
68
69def template FloatDoubleDecode {{
70 {
71 ArmStaticInst *i = NULL;
72 switch (OPCODE_19 << 1 | OPCODE_7)
73 {
74 case 0:
75 i = (ArmStaticInst *)new %(class_name)sS(machInst);
76 break;
77 case 1:
78 i = (ArmStaticInst *)new %(class_name)sD(machInst);
79 break;
80 case 2:
81 case 3:
82 default:
83 panic("Cannot decode float/double nature of the instruction");
84 }
85 return i;
86 }
87}};
88
89// Primary format for float point operate instructions:
90def format FloatOp(code, *flags) {{
91 orig_code = code
92
93 cblk = code
94 iop = InstObjParams(name, Name, 'PredOp',
95 {"code": cblk,
96 "predicate_test": predicateTest},
97 flags)
98 header_output = BasicDeclare.subst(iop)
99 decoder_output = BasicConstructor.subst(iop)
100 exec_output = FPAExecute.subst(iop)
101
102 sng_cblk = code
103 sng_iop = InstObjParams(name, Name+'S', 'PredOp',
104 {"code": sng_cblk,
105 "predicate_test": predicateTest},
106 flags)
107 header_output += BasicDeclare.subst(sng_iop)
108 decoder_output += BasicConstructor.subst(sng_iop)
109 exec_output += FPAExecute.subst(sng_iop)
110
111 dbl_code = re.sub(r'\.sf', '.df', orig_code)
112
113 dbl_cblk = dbl_code
114 dbl_iop = InstObjParams(name, Name+'D', 'PredOp',
115 {"code": dbl_cblk,
116 "predicate_test": predicateTest},
117 flags)
118 header_output += BasicDeclare.subst(dbl_iop)
119 decoder_output += BasicConstructor.subst(dbl_iop)
120 exec_output += FPAExecute.subst(dbl_iop)
121
122 decode_block = FloatDoubleDecode.subst(iop)
123}};
124
125let {{
126 calcFPCcCode = '''
127 uint16_t _in, _iz, _ic, _iv;
128
129 _in = %(fReg1)s < %(fReg2)s;
130 _iz = %(fReg1)s == %(fReg2)s;
131 _ic = %(fReg1)s >= %(fReg2)s;
132 _iv = (isnan(%(fReg1)s) || isnan(%(fReg2)s)) & 1;
133
134 CondCodes = _in << 31 | _iz << 30 | _ic << 29 | _iv << 28 |
135 (CondCodes & 0x0FFFFFFF);
136 '''
137}};
138
139def format FloatCmp(fReg1, fReg2, *flags) {{
140 code = calcFPCcCode % vars()
141 iop = InstObjParams(name, Name, 'PredOp',
142 {"code": code,
143 "predicate_test": predicateTest},
144 flags)
145 header_output = BasicDeclare.subst(iop)
146 decoder_output = BasicConstructor.subst(iop)
147 decode_block = BasicDecode.subst(iop)
148 exec_output = FPAExecute.subst(iop)
149}};
150
151let {{
152 header_output = '''
153 StaticInstPtr
154 decodeExtensionRegLoadStore(ExtMachInst machInst);
155 '''
156 decoder_output = '''
157 StaticInstPtr
158 decodeExtensionRegLoadStore(ExtMachInst machInst)
159 {
160 const uint32_t opcode = bits(machInst, 24, 20);
161 const uint32_t offset = bits(machInst, 7, 0);
162 const bool single = (bits(machInst, 8) == 0);
163 const IntRegIndex rn = (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
164 RegIndex vd;
165 if (single) {
166 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
167 bits(machInst, 22));
168 } else {
169 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
170 (bits(machInst, 22) << 5));
171 }
172 switch (bits(opcode, 4, 3)) {
173 case 0x0:
174 if (bits(opcode, 4, 1) == 0x2 &&
175 !(machInst.thumb == 1 && bits(machInst, 28) == 1) &&
176 !(machInst.thumb == 0 && machInst.condCode == 0xf)) {
177 if ((bits(machInst, 7, 4) & 0xd) != 1) {
178 break;
179 }
180 const IntRegIndex rt =
181 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
182 const IntRegIndex rt2 =
183 (IntRegIndex)(uint32_t)bits(machInst, 19, 16);
184 const bool op = bits(machInst, 20);
185 uint32_t vm;
186 if (single) {
187 vm = (bits(machInst, 3, 0) << 1) | bits(machInst, 5);
188 } else {
189 vm = (bits(machInst, 3, 0) << 1) |
190 (bits(machInst, 5) << 5);
191 }
192 if (op) {
193 return new Vmov2Core2Reg(machInst, rt, rt2,
194 (IntRegIndex)vm);
195 } else {
196 return new Vmov2Reg2Core(machInst, (IntRegIndex)vm,
197 rt, rt2);
198 }
199 }
200 break;
201 case 0x1:
202 switch (bits(opcode, 1, 0)) {
203 case 0x0:
204 return new VLdmStm(machInst, rn, vd, single,
205 true, false, false, offset);
206 case 0x1:
207 return new VLdmStm(machInst, rn, vd, single,
208 true, false, true, offset);
209 case 0x2:
210 return new VLdmStm(machInst, rn, vd, single,
211 true, true, false, offset);
212 case 0x3:
213 // If rn == sp, then this is called vpop.
214 return new VLdmStm(machInst, rn, vd, single,
215 true, true, true, offset);
216 }
217 case 0x2:
218 if (bits(opcode, 1, 0) == 0x2) {
219 // If rn == sp, then this is called vpush.
220 return new VLdmStm(machInst, rn, vd, single,
221 false, true, false, offset);
222 } else if (bits(opcode, 1, 0) == 0x3) {
223 return new VLdmStm(machInst, rn, vd, single,
224 false, true, true, offset);
225 }
226 // Fall through on purpose
227 case 0x3:
228 const bool up = (bits(machInst, 23) == 1);
229 const uint32_t imm = bits(machInst, 7, 0) << 2;
230 RegIndex vd;
231 if (single) {
232 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
233 (bits(machInst, 22)));
234 } else {
235 vd = (RegIndex)(uint32_t)((bits(machInst, 15, 12) << 1) |
236 (bits(machInst, 22) << 5));
237 }
238 if (bits(opcode, 1, 0) == 0x0) {
239 if (single) {
240 if (up) {
241 return new %(vstr_us)s(machInst, vd, rn, up, imm);
242 } else {
243 return new %(vstr_s)s(machInst, vd, rn, up, imm);
244 }
245 } else {
246 if (up) {
247 return new %(vstr_ud)s(machInst, vd, vd + 1,
248 rn, up, imm);
249 } else {
250 return new %(vstr_d)s(machInst, vd, vd + 1,
251 rn, up, imm);
252 }
253 }
254 } else if (bits(opcode, 1, 0) == 0x1) {
255 if (single) {
256 if (up) {
257 return new %(vldr_us)s(machInst, vd, rn, up, imm);
258 } else {
259 return new %(vldr_s)s(machInst, vd, rn, up, imm);
260 }
261 } else {
262 if (up) {
263 return new %(vldr_ud)s(machInst, vd, vd + 1,
264 rn, up, imm);
265 } else {
266 return new %(vldr_d)s(machInst, vd, vd + 1,
267 rn, up, imm);
268 }
269 }
270 }
271 }
272 return new Unknown(machInst);
273 }
274 ''' % {
275 "vldr_us" : "VLDR_" + loadImmClassName(False, True, False),
276 "vldr_s" : "VLDR_" + loadImmClassName(False, False, False),
277 "vldr_ud" : "VLDR_" + loadDoubleImmClassName(False, True, False),
278 "vldr_d" : "VLDR_" + loadDoubleImmClassName(False, False, False),
279 "vstr_us" : "VSTR_" + storeImmClassName(False, True, False),
280 "vstr_s" : "VSTR_" + storeImmClassName(False, False, False),
281 "vstr_ud" : "VSTR_" + storeDoubleImmClassName(False, True, False),
282 "vstr_d" : "VSTR_" + storeDoubleImmClassName(False, False, False)
283 }
284}};
285
286def format ExtensionRegLoadStore() {{
287 decode_block = '''
288 return decodeExtensionRegLoadStore(machInst);
289 '''
290}};
291
292let {{
293 header_output = '''
294 StaticInstPtr
295 decodeShortFpTransfer(ExtMachInst machInst);
296 '''
297 decoder_output = '''
298 StaticInstPtr
299 decodeShortFpTransfer(ExtMachInst machInst)
300 {
301 const uint32_t l = bits(machInst, 20);
302 const uint32_t c = bits(machInst, 8);
303 const uint32_t a = bits(machInst, 23, 21);
304 const uint32_t b = bits(machInst, 6, 5);
305 if ((machInst.thumb == 1 && bits(machInst, 28) == 1) ||
306 (machInst.thumb == 0 && machInst.condCode == 0xf)) {
307 return new Unknown(machInst);
308 }
309 if (l == 0 && c == 0) {
310 if (a == 0) {
311 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
312 bits(machInst, 7);
313 const IntRegIndex rt =
314 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
315 if (bits(machInst, 20) == 1) {
316 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
317 } else {
318 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
319 }
320 } else if (a == 0x7) {
321 const IntRegIndex rt =
322 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
323 uint32_t specReg = bits(machInst, 19, 16);
324 switch (specReg) {
325 case 0:
326 specReg = MISCREG_FPSID;
327 break;
328 case 1:
329 specReg = MISCREG_FPSCR;
330 break;
331 case 8:
332 specReg = MISCREG_FPEXC;
333 break;
334 default:
335 return new Unknown(machInst);
336 }
337 return new Vmsr(machInst, (IntRegIndex)specReg, rt);
338 }
339 } else if (l == 0 && c == 1) {
340 if (bits(a, 2) == 0) {
341 uint32_t vd = (bits(machInst, 7) << 5) |
342 (bits(machInst, 19, 16) << 1);
343 uint32_t index, size;
344 const IntRegIndex rt =
345 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
346 if (bits(machInst, 22) == 1) {
347 size = 8;
348 index = (bits(machInst, 21) << 2) |
349 bits(machInst, 6, 5);
350 } else if (bits(machInst, 5) == 1) {
351 size = 16;
352 index = (bits(machInst, 21) << 1) |
353 bits(machInst, 6);
354 } else if (bits(machInst, 6) == 0) {
355 size = 32;
356 index = bits(machInst, 21);
357 } else {
358 return new Unknown(machInst);
359 }
360 if (index >= (32 / size)) {
361 index -= (32 / size);
362 vd++;
363 }
364 switch (size) {
365 case 8:
366 return new VmovCoreRegB(machInst, (IntRegIndex)vd,
367 rt, index);
368 case 16:
369 return new VmovCoreRegH(machInst, (IntRegIndex)vd,
370 rt, index);
371 case 32:
372 return new VmovCoreRegW(machInst, (IntRegIndex)vd, rt);
373 }
374 } else if (bits(b, 1) == 0) {
375 // A8-594
376 return new WarnUnimplemented("vdup", machInst);
377 }
378 } else if (l == 1 && c == 0) {
379 if (a == 0) {
380 const uint32_t vn = (bits(machInst, 19, 16) << 1) |
381 bits(machInst, 7);
382 const IntRegIndex rt =
383 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
384 if (bits(machInst, 20) == 1) {
385 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vn);
386 } else {
387 return new VmovCoreRegW(machInst, (IntRegIndex)vn, rt);
388 }
389 } else if (a == 7) {
390 const IntRegIndex rt =
391 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
392 uint32_t specReg = bits(machInst, 19, 16);
393 switch (specReg) {
394 case 0:
395 specReg = MISCREG_FPSID;
396 break;
397 case 1:
398 specReg = MISCREG_FPSCR;
399 break;
400 case 6:
401 specReg = MISCREG_MVFR1;
402 break;
403 case 7:
404 specReg = MISCREG_MVFR0;
405 break;
406 case 8:
407 specReg = MISCREG_FPEXC;
408 break;
409 default:
410 return new Unknown(machInst);
411 }
412 return new Vmrs(machInst, rt, (IntRegIndex)specReg);
413 }
414 } else {
415 uint32_t vd = (bits(machInst, 7) << 5) |
416 (bits(machInst, 19, 16) << 1);
417 uint32_t index, size;
418 const IntRegIndex rt =
419 (IntRegIndex)(uint32_t)bits(machInst, 15, 12);
420 const bool u = (bits(machInst, 23) == 1);
421 if (bits(machInst, 22) == 1) {
422 size = 8;
423 index = (bits(machInst, 21) << 2) |
424 bits(machInst, 6, 5);
425 } else if (bits(machInst, 5) == 1) {
426 size = 16;
427 index = (bits(machInst, 21) << 1) |
428 bits(machInst, 6);
429 } else if (bits(machInst, 6) == 0 && !u) {
430 size = 32;
431 index = bits(machInst, 21);
432 } else {
433 return new Unknown(machInst);
434 }
435 if (index >= (32 / size)) {
436 index -= (32 / size);
437 vd++;
438 }
439 switch (size) {
440 case 8:
441 if (u) {
442 return new VmovRegCoreUB(machInst, rt,
443 (IntRegIndex)vd, index);
444 } else {
445 return new VmovRegCoreSB(machInst, rt,
446 (IntRegIndex)vd, index);
447 }
448 case 16:
449 if (u) {
450 return new VmovRegCoreUH(machInst, rt,
451 (IntRegIndex)vd, index);
452 } else {
453 return new VmovRegCoreSH(machInst, rt,
454 (IntRegIndex)vd, index);
455 }
456 case 32:
457 return new VmovRegCoreW(machInst, rt, (IntRegIndex)vd);
458 }
459 }
460 return new Unknown(machInst);
461 }
462 '''
463}};
464
465def format ShortFpTransfer() {{
466 decode_block = '''
467 return decodeShortFpTransfer(machInst);
468 '''
469}};
470
471let {{
472 header_output = '''
473 StaticInstPtr
474 decodeVfpData(ExtMachInst machInst);
475 '''
476 decoder_output = '''
477 StaticInstPtr
478 decodeVfpData(ExtMachInst machInst)
479 {
480 const uint32_t opc1 = bits(machInst, 23, 20);
481 const uint32_t opc2 = bits(machInst, 19, 16);
482 const uint32_t opc3 = bits(machInst, 7, 6);
483 //const uint32_t opc4 = bits(machInst, 3, 0);
484 const bool single = (bits(machInst, 8) == 0);
485 IntRegIndex vd;
486 IntRegIndex vm;
487 IntRegIndex vn;
488 if (single) {
489 vd = (IntRegIndex)(bits(machInst, 22) |
490 (bits(machInst, 15, 12) << 1));
491 vm = (IntRegIndex)(bits(machInst, 5) |
492 (bits(machInst, 3, 0) << 1));
493 vn = (IntRegIndex)(bits(machInst, 7) |
494 (bits(machInst, 19, 16) << 1));
495 } else {
496 vd = (IntRegIndex)((bits(machInst, 22) << 5) |
497 (bits(machInst, 15, 12) << 1));
498 vm = (IntRegIndex)((bits(machInst, 5) << 5) |
499 (bits(machInst, 3, 0) << 1));
500 vn = (IntRegIndex)((bits(machInst, 7) << 5) |
501 (bits(machInst, 19, 16) << 1));
502 }
503 switch (opc1 & 0xb /* 1011 */) {
504 case 0x0:
505 if (bits(machInst, 6) == 0) {
506 if (single) {
507 return decodeVfpRegRegRegOp<VmlaS>(
508 machInst, vd, vn, vm, false);
509 } else {
510 return decodeVfpRegRegRegOp<VmlaD>(
511 machInst, vd, vn, vm, true);
512 }
513 } else {
514 if (single) {
515 return decodeVfpRegRegRegOp<VmlsS>(
516 machInst, vd, vn, vm, false);
517 } else {
518 return decodeVfpRegRegRegOp<VmlsD>(
519 machInst, vd, vn, vm, true);
520 }
521 }
522 case 0x1:
523 if (bits(machInst, 6) == 1) {
524 if (single) {
525 return decodeVfpRegRegRegOp<VnmlaS>(
526 machInst, vd, vn, vm, false);
527 } else {
528 return decodeVfpRegRegRegOp<VnmlaD>(
529 machInst, vd, vn, vm, true);
530 }
531 } else {
532 if (single) {
533 return decodeVfpRegRegRegOp<VnmlsS>(
534 machInst, vd, vn, vm, false);
535 } else {
536 return decodeVfpRegRegRegOp<VnmlsD>(
537 machInst, vd, vn, vm, true);
538 }
539 }
540 case 0x2:
541 if ((opc3 & 0x1) == 0) {
542 if (single) {
543 return decodeVfpRegRegRegOp<VmulS>(
544 machInst, vd, vn, vm, false);
545 } else {
546 return decodeVfpRegRegRegOp<VmulD>(
547 machInst, vd, vn, vm, true);
548 }
549 } else {
550 if (single) {
551 return decodeVfpRegRegRegOp<VnmulS>(
552 machInst, vd, vn, vm, false);
553 } else {
554 return decodeVfpRegRegRegOp<VnmulD>(
555 machInst, vd, vn, vm, true);
556 }
557 }
558 case 0x3:
559 if ((opc3 & 0x1) == 0) {
560 if (single) {
561 return decodeVfpRegRegRegOp<VaddS>(
562 machInst, vd, vn, vm, false);
563 } else {
564 return decodeVfpRegRegRegOp<VaddD>(
565 machInst, vd, vn, vm, true);
566 }
567 } else {
568 if (single) {
569 return decodeVfpRegRegRegOp<VsubS>(
570 machInst, vd, vn, vm, false);
571 } else {
572 return decodeVfpRegRegRegOp<VsubD>(
573 machInst, vd, vn, vm, true);
574 }
575 }
576 case 0x8:
577 if ((opc3 & 0x1) == 0) {
578 if (single) {
579 return decodeVfpRegRegRegOp<VdivS>(
580 machInst, vd, vn, vm, false);
581 } else {
582 return decodeVfpRegRegRegOp<VdivD>(
583 machInst, vd, vn, vm, true);
584 }
585 }
586 break;
587 case 0xb:
588 if ((opc3 & 0x1) == 0) {
589 const uint32_t baseImm =
590 bits(machInst, 3, 0) | (bits(machInst, 19, 16) << 4);
591 if (single) {
592 uint32_t imm = vfp_modified_imm(baseImm, false);
593 return decodeVfpRegImmOp<VmovImmS>(
594 machInst, vd, imm, false);
595 } else {
596 uint64_t imm = vfp_modified_imm(baseImm, true);
597 return decodeVfpRegImmOp<VmovImmD>(
598 machInst, vd, imm, true);
599 }
600 }
601 switch (opc2) {
602 case 0x0:
603 if (opc3 == 1) {
604 if (single) {
605 return decodeVfpRegRegOp<VmovRegS>(
606 machInst, vd, vm, false);
607 } else {
608 return decodeVfpRegRegOp<VmovRegD>(
609 machInst, vd, vm, true);
610 }
611 } else {
612 if (single) {
613 return decodeVfpRegRegOp<VabsS>(
614 machInst, vd, vm, false);
615 } else {
616 return decodeVfpRegRegOp<VabsD>(
617 machInst, vd, vm, true);
618 }
619 }
620 case 0x1:
621 if (opc3 == 1) {
622 if (single) {
623 return decodeVfpRegRegOp<VnegS>(
624 machInst, vd, vm, false);
625 } else {
626 return decodeVfpRegRegOp<VnegD>(
627 machInst, vd, vm, true);
628 }
629 } else {
630 if (single) {
631 return decodeVfpRegRegOp<VsqrtS>(
632 machInst, vd, vm, false);
633 } else {
634 return decodeVfpRegRegOp<VsqrtD>(
635 machInst, vd, vm, true);
636 }
637 }
638 case 0x2:
639 case 0x3:
640 // Between half and single precision.
641 return new WarnUnimplemented("vcvtb, vcvtt", machInst);
642 case 0x4:
643 if (single) {
644 return new VcmpS(machInst, vd, vm);
645 } else {
646 return new VcmpD(machInst, vd, vm);
647 }
643 case 0x5:
648 case 0x5:
644 return new WarnUnimplemented("vcmp, vcmpe", machInst);
649 if (single) {
650 return new VcmpZeroS(machInst, vd, 0);
651 } else {
652 return new VcmpZeroD(machInst, vd, 0);
653 }
645 case 0x7:
646 if (opc3 == 0x3) {
647 if (single) {
648 vm = (IntRegIndex)(bits(machInst, 5) |
649 (bits(machInst, 3, 0) << 1));
650 return new VcvtFpSFpD(machInst, vd, vm);
651 } else {
652 vd = (IntRegIndex)(bits(machInst, 22) |
653 (bits(machInst, 15, 12) << 1));
654 return new VcvtFpDFpS(machInst, vd, vm);
655 }
656 }
657 break;
658 case 0x8:
659 if (bits(machInst, 7) == 0) {
660 if (single) {
661 return new VcvtUIntFpS(machInst, vd, vm);
662 } else {
663 vm = (IntRegIndex)(bits(machInst, 5) |
664 (bits(machInst, 3, 0) << 1));
665 return new VcvtUIntFpD(machInst, vd, vm);
666 }
667 } else {
668 if (single) {
669 return new VcvtSIntFpS(machInst, vd, vm);
670 } else {
671 vm = (IntRegIndex)(bits(machInst, 5) |
672 (bits(machInst, 3, 0) << 1));
673 return new VcvtSIntFpD(machInst, vd, vm);
674 }
675 }
676 case 0xa:
677 case 0xb:
678 // Between FP and fixed point.
679 return new WarnUnimplemented("vcvt", machInst);
680 case 0xc:
681 if (single) {
682 return new VcvtFpUIntS(machInst, vd, vm);
683 } else {
684 vd = (IntRegIndex)(bits(machInst, 22) |
685 (bits(machInst, 15, 12) << 1));
686 return new VcvtFpUIntD(machInst, vd, vm);
687 }
688 case 0xd:
689 if (single) {
690 return new VcvtFpSIntS(machInst, vd, vm);
691 } else {
692 vd = (IntRegIndex)(bits(machInst, 22) |
693 (bits(machInst, 15, 12) << 1));
694 return new VcvtFpSIntD(machInst, vd, vm);
695 }
696 case 0xe:
697 case 0xf:
698 // Between FP and fixed point.
699 return new WarnUnimplemented("vcvt", machInst);
700 }
701 break;
702 }
703 return new Unknown(machInst);
704 }
705 '''
706}};
707
708def format VfpData() {{
709 decode_block = '''
710 return decodeVfpData(machInst);
711 '''
712}};
654 case 0x7:
655 if (opc3 == 0x3) {
656 if (single) {
657 vm = (IntRegIndex)(bits(machInst, 5) |
658 (bits(machInst, 3, 0) << 1));
659 return new VcvtFpSFpD(machInst, vd, vm);
660 } else {
661 vd = (IntRegIndex)(bits(machInst, 22) |
662 (bits(machInst, 15, 12) << 1));
663 return new VcvtFpDFpS(machInst, vd, vm);
664 }
665 }
666 break;
667 case 0x8:
668 if (bits(machInst, 7) == 0) {
669 if (single) {
670 return new VcvtUIntFpS(machInst, vd, vm);
671 } else {
672 vm = (IntRegIndex)(bits(machInst, 5) |
673 (bits(machInst, 3, 0) << 1));
674 return new VcvtUIntFpD(machInst, vd, vm);
675 }
676 } else {
677 if (single) {
678 return new VcvtSIntFpS(machInst, vd, vm);
679 } else {
680 vm = (IntRegIndex)(bits(machInst, 5) |
681 (bits(machInst, 3, 0) << 1));
682 return new VcvtSIntFpD(machInst, vd, vm);
683 }
684 }
685 case 0xa:
686 case 0xb:
687 // Between FP and fixed point.
688 return new WarnUnimplemented("vcvt", machInst);
689 case 0xc:
690 if (single) {
691 return new VcvtFpUIntS(machInst, vd, vm);
692 } else {
693 vd = (IntRegIndex)(bits(machInst, 22) |
694 (bits(machInst, 15, 12) << 1));
695 return new VcvtFpUIntD(machInst, vd, vm);
696 }
697 case 0xd:
698 if (single) {
699 return new VcvtFpSIntS(machInst, vd, vm);
700 } else {
701 vd = (IntRegIndex)(bits(machInst, 22) |
702 (bits(machInst, 15, 12) << 1));
703 return new VcvtFpSIntD(machInst, vd, vm);
704 }
705 case 0xe:
706 case 0xf:
707 // Between FP and fixed point.
708 return new WarnUnimplemented("vcvt", machInst);
709 }
710 break;
711 }
712 return new Unknown(machInst);
713 }
714 '''
715}};
716
717def format VfpData() {{
718 decode_block = '''
719 return decodeVfpData(machInst);
720 '''
721}};