1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62 : SimObject(p),
63 system(NULL),
64 _decoderFlavour(p->decoderFlavour),
65 _vecRegRenameMode(Enums::Full),
66 pmu(p->pmu),
67 haveGICv3CPUInterface(false),
68 impdefAsNop(p->impdef_nop)
69{
70 miscRegs[MISCREG_SCTLR_RST] = 0;
71
72 // Hook up a dummy device if we haven't been configured with a
73 // real PMU. By using a dummy device, we don't need to check that
74 // the PMU exist every time we try to access a PMU register.
75 if (!pmu)
76 pmu = &dummyDevice;
77
78 // Give all ISA devices a pointer to this ISA
79 pmu->setISA(this);
80
81 system = dynamic_cast<ArmSystem *>(p->system);
82
83 // Cache system-level properties
84 if (FullSystem && system) {
85 highestELIs64 = system->highestELIs64();
86 haveSecurity = system->haveSecurity();
87 haveLPAE = system->haveLPAE();
88 haveCrypto = system->haveCrypto();
89 haveVirtualization = system->haveVirtualization();
90 haveLargeAsid64 = system->haveLargeAsid64();
91 physAddrRange = system->physAddrRange();
92 haveSVE = system->haveSVE();
93 sveVL = system->sveVL();
94 } else {
95 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
96 haveSecurity = haveLPAE = haveVirtualization = false;
97 haveCrypto = true;
98 haveLargeAsid64 = false;
99 physAddrRange = 32; // dummy value
100 haveSVE = true;
101 sveVL = p->sve_vl_se;
102 }
103
104 // Initial rename mode depends on highestEL
105 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
106 highestELIs64 ? Enums::Full : Enums::Elem;
107
108 initializeMiscRegMetadata();
109 preUnflattenMiscReg();
110
111 clear();
112}
113
114std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
115
116const ArmISAParams *
117ISA::params() const
118{
119 return dynamic_cast<const Params *>(_params);
120}
121
122void
123ISA::clear()
124{
125 const Params *p(params());
126
127 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
128 memset(miscRegs, 0, sizeof(miscRegs));
129
130 initID32(p);
131
132 // We always initialize AArch64 ID registers even
133 // if we are in AArch32. This is done since if we
134 // are in SE mode we don't know if our ArmProcess is
135 // AArch32 or AArch64
136 initID64(p);
137
138 // Start with an event in the mailbox
139 miscRegs[MISCREG_SEV_MAILBOX] = 1;
140
141 // Separate Instruction and Data TLBs
142 miscRegs[MISCREG_TLBTR] = 1;
143
144 MVFR0 mvfr0 = 0;
145 mvfr0.advSimdRegisters = 2;
146 mvfr0.singlePrecision = 2;
147 mvfr0.doublePrecision = 2;
148 mvfr0.vfpExceptionTrapping = 0;
149 mvfr0.divide = 1;
150 mvfr0.squareRoot = 1;
151 mvfr0.shortVectors = 1;
152 mvfr0.roundingModes = 1;
153 miscRegs[MISCREG_MVFR0] = mvfr0;
154
155 MVFR1 mvfr1 = 0;
156 mvfr1.flushToZero = 1;
157 mvfr1.defaultNaN = 1;
158 mvfr1.advSimdLoadStore = 1;
159 mvfr1.advSimdInteger = 1;
160 mvfr1.advSimdSinglePrecision = 1;
161 mvfr1.advSimdHalfPrecision = 1;
162 mvfr1.vfpHalfPrecision = 1;
163 miscRegs[MISCREG_MVFR1] = mvfr1;
164
165 // Reset values of PRRR and NMRR are implementation dependent
166
167 // @todo: PRRR and NMRR in secure state?
168 miscRegs[MISCREG_PRRR_NS] =
169 (1 << 19) | // 19
170 (0 << 18) | // 18
171 (0 << 17) | // 17
172 (1 << 16) | // 16
173 (2 << 14) | // 15:14
174 (0 << 12) | // 13:12
175 (2 << 10) | // 11:10
176 (2 << 8) | // 9:8
177 (2 << 6) | // 7:6
178 (2 << 4) | // 5:4
179 (1 << 2) | // 3:2
180 0; // 1:0
181
182 miscRegs[MISCREG_NMRR_NS] =
183 (1 << 30) | // 31:30
184 (0 << 26) | // 27:26
185 (0 << 24) | // 25:24
186 (3 << 22) | // 23:22
187 (2 << 20) | // 21:20
188 (0 << 18) | // 19:18
189 (0 << 16) | // 17:16
190 (1 << 14) | // 15:14
191 (0 << 12) | // 13:12
192 (2 << 10) | // 11:10
193 (0 << 8) | // 9:8
194 (3 << 6) | // 7:6
195 (2 << 4) | // 5:4
196 (0 << 2) | // 3:2
197 0; // 1:0
198
199 if (FullSystem && system->highestELIs64()) {
200 // Initialize AArch64 state
201 clear64(p);
202 return;
203 }
204
205 // Initialize AArch32 state...
206 clear32(p, sctlr_rst);
207}
208
209void
210ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
211{
212 CPSR cpsr = 0;
213 cpsr.mode = MODE_USER;
214
215 if (FullSystem) {
216 miscRegs[MISCREG_MVBAR] = system->resetAddr();
217 }
218
219 miscRegs[MISCREG_CPSR] = cpsr;
220 updateRegMap(cpsr);
221
222 SCTLR sctlr = 0;
223 sctlr.te = (bool) sctlr_rst.te;
224 sctlr.nmfi = (bool) sctlr_rst.nmfi;
225 sctlr.v = (bool) sctlr_rst.v;
226 sctlr.u = 1;
227 sctlr.xp = 1;
228 sctlr.rao2 = 1;
229 sctlr.rao3 = 1;
230 sctlr.rao4 = 0xf; // SCTLR[6:3]
231 sctlr.uci = 1;
232 sctlr.dze = 1;
233 miscRegs[MISCREG_SCTLR_NS] = sctlr;
234 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
235 miscRegs[MISCREG_HCPTR] = 0;
236
237 miscRegs[MISCREG_CPACR] = 0;
238
239 miscRegs[MISCREG_FPSID] = p->fpsid;
240
241 if (haveLPAE) {
242 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
243 ttbcr.eae = 0;
244 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
245 // Enforce consistency with system-level settings
246 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
247 }
248
249 if (haveSecurity) {
250 miscRegs[MISCREG_SCTLR_S] = sctlr;
251 miscRegs[MISCREG_SCR] = 0;
252 miscRegs[MISCREG_VBAR_S] = 0;
253 } else {
254 // we're always non-secure
255 miscRegs[MISCREG_SCR] = 1;
256 }
257
258 //XXX We need to initialize the rest of the state.
259}
260
261void
262ISA::clear64(const ArmISAParams *p)
263{
264 CPSR cpsr = 0;
265 Addr rvbar = system->resetAddr();
266 switch (system->highestEL()) {
267 // Set initial EL to highest implemented EL using associated stack
268 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
269 // value
270 case EL3:
271 cpsr.mode = MODE_EL3H;
272 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
273 break;
274 case EL2:
275 cpsr.mode = MODE_EL2H;
276 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
277 break;
278 case EL1:
279 cpsr.mode = MODE_EL1H;
280 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
281 break;
282 default:
283 panic("Invalid highest implemented exception level");
284 break;
285 }
286
287 // Initialize rest of CPSR
288 cpsr.daif = 0xf; // Mask all interrupts
289 cpsr.ss = 0;
290 cpsr.il = 0;
291 miscRegs[MISCREG_CPSR] = cpsr;
292 updateRegMap(cpsr);
293
294 // Initialize other control registers
295 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
296 if (haveSecurity) {
297 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
298 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
299 } else if (haveVirtualization) {
300 // also MISCREG_SCTLR_EL2 (by mapping)
301 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
302 } else {
303 // also MISCREG_SCTLR_EL1 (by mapping)
304 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
305 // Always non-secure
306 miscRegs[MISCREG_SCR_EL3] = 1;
307 }
308}
309
310void
311ISA::initID32(const ArmISAParams *p)
312{
313 // Initialize configurable default values
314 miscRegs[MISCREG_MIDR] = p->midr;
315 miscRegs[MISCREG_MIDR_EL1] = p->midr;
316 miscRegs[MISCREG_VPIDR] = p->midr;
317
318 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
319 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
320 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
321 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
322 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
323 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
324
325 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
326 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
327 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
328 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
329
330 miscRegs[MISCREG_ID_ISAR5] = insertBits(
331 miscRegs[MISCREG_ID_ISAR5], 19, 4,
332 haveCrypto ? 0x1112 : 0x0);
333}
334
335void
336ISA::initID64(const ArmISAParams *p)
337{
338 // Initialize configurable id registers
339 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
340 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
341 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
342 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
343 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
344
345 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
346 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
347 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
348 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
349 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
350 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
351
352 miscRegs[MISCREG_ID_DFR0_EL1] =
353 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
354
355 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
356
357 // SVE
358 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0
359 if (haveSecurity) {
360 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
361 } else if (haveVirtualization) {
362 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
363 } else {
364 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
365 }
366
367 // Enforce consistency with system-level settings...
368
369 // EL3
370 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
371 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
372 haveSecurity ? 0x2 : 0x0);
373 // EL2
374 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
375 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
376 haveVirtualization ? 0x2 : 0x0);
377 // SVE
378 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
379 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
380 haveSVE ? 0x1 : 0x0);
381 // Large ASID support
382 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
383 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
384 haveLargeAsid64 ? 0x2 : 0x0);
385 // Physical address size
386 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
387 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
388 encodePhysAddrRange64(physAddrRange));
389 // Crypto
390 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
391 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
392 haveCrypto ? 0x1112 : 0x0);
393}
394
395void
396ISA::startup(ThreadContext *tc)
397{
398 pmu->setThreadContext(tc);
399
400 if (system) {
401 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
402 if (gicv3) {
403 haveGICv3CPUInterface = true;
404 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
405 gicv3CpuInterface->setISA(this);
406 gicv3CpuInterface->setThreadContext(tc);
407 }
408 }
409}
410
411
412RegVal
413ISA::readMiscRegNoEffect(int misc_reg) const
414{
415 assert(misc_reg < NumMiscRegs);
416
417 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
418 const auto &map = getMiscIndices(misc_reg);
419 int lower = map.first, upper = map.second;
420 // NB!: apply architectural masks according to desired register,
421 // despite possibly getting value from different (mapped) register.
422 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
423 |(miscRegs[upper] << 32));
424 if (val & reg.res0()) {
425 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
426 miscRegName[misc_reg], val & reg.res0());
427 }
428 if ((val & reg.res1()) != reg.res1()) {
429 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
430 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
431 }
432 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
433}
434
435
436RegVal
437ISA::readMiscReg(int misc_reg, ThreadContext *tc)
438{
439 CPSR cpsr = 0;
440 PCState pc = 0;
441 SCR scr = 0;
442
443 if (misc_reg == MISCREG_CPSR) {
444 cpsr = miscRegs[misc_reg];
445 pc = tc->pcState();
446 cpsr.j = pc.jazelle() ? 1 : 0;
447 cpsr.t = pc.thumb() ? 1 : 0;
448 return cpsr;
449 }
450
451#ifndef NDEBUG
452 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
453 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
454 warn("Unimplemented system register %s read.\n",
455 miscRegName[misc_reg]);
456 else
457 panic("Unimplemented system register %s read.\n",
458 miscRegName[misc_reg]);
459 }
460#endif
461
462 switch (unflattenMiscReg(misc_reg)) {
463 case MISCREG_HCR:
464 {
465 if (!haveVirtualization)
466 return 0;
467 else
468 return readMiscRegNoEffect(MISCREG_HCR);
469 }
470 case MISCREG_CPACR:
471 {
472 const uint32_t ones = (uint32_t)(-1);
473 CPACR cpacrMask = 0;
474 // Only cp10, cp11, and ase are implemented, nothing else should
475 // be readable? (straight copy from the write code)
476 cpacrMask.cp10 = ones;
477 cpacrMask.cp11 = ones;
478 cpacrMask.asedis = ones;
479
480 // Security Extensions may limit the readability of CPACR
481 if (haveSecurity) {
482 scr = readMiscRegNoEffect(MISCREG_SCR);
483 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
484 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
485 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
486 // NB: Skipping the full loop, here
487 if (!nsacr.cp10) cpacrMask.cp10 = 0;
488 if (!nsacr.cp11) cpacrMask.cp11 = 0;
489 }
490 }
491 RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
492 val &= cpacrMask;
493 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
494 miscRegName[misc_reg], val);
495 return val;
496 }
497 case MISCREG_MPIDR:
498 case MISCREG_MPIDR_EL1:
499 return readMPIDR(system, tc);
500 case MISCREG_VMPIDR:
501 case MISCREG_VMPIDR_EL2:
502 // top bit defined as RES1
503 return readMiscRegNoEffect(misc_reg) | 0x80000000;
504 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
505 case MISCREG_REVIDR: // not implemented, so alias MIDR
506 case MISCREG_MIDR:
507 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
508 scr = readMiscRegNoEffect(MISCREG_SCR);
509 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
510 return readMiscRegNoEffect(misc_reg);
511 } else {
512 return readMiscRegNoEffect(MISCREG_VPIDR);
513 }
514 break;
515 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
516 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
517 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
518 case MISCREG_AIDR: // AUX ID set to 0
519 case MISCREG_TCMTR: // No TCM's
520 return 0;
521
522 case MISCREG_CLIDR:
523 warn_once("The clidr register always reports 0 caches.\n");
524 warn_once("clidr LoUIS field of 0b001 to match current "
525 "ARM implementations.\n");
526 return 0x00200000;
527 case MISCREG_CCSIDR:
528 warn_once("The ccsidr register isn't implemented and "
529 "always reads as 0.\n");
530 break;
531 case MISCREG_CTR: // AArch32, ARMv7, top bit set
532 case MISCREG_CTR_EL0: // AArch64
533 {
534 //all caches have the same line size in gem5
535 //4 byte words in ARM
536 unsigned lineSizeWords =
537 tc->getSystemPtr()->cacheLineSize() / 4;
538 unsigned log2LineSizeWords = 0;
539
540 while (lineSizeWords >>= 1) {
541 ++log2LineSizeWords;
542 }
543
544 CTR ctr = 0;
545 //log2 of minimun i-cache line size (words)
546 ctr.iCacheLineSize = log2LineSizeWords;
547 //b11 - gem5 uses pipt
548 ctr.l1IndexPolicy = 0x3;
549 //log2 of minimum d-cache line size (words)
550 ctr.dCacheLineSize = log2LineSizeWords;
551 //log2 of max reservation size (words)
552 ctr.erg = log2LineSizeWords;
553 //log2 of max writeback size (words)
554 ctr.cwg = log2LineSizeWords;
555 //b100 - gem5 format is ARMv7
556 ctr.format = 0x4;
557
558 return ctr;
559 }
560 case MISCREG_ACTLR:
561 warn("Not doing anything for miscreg ACTLR\n");
562 break;
563
564 case MISCREG_PMXEVTYPER_PMCCFILTR:
565 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
566 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
567 case MISCREG_PMCR ... MISCREG_PMOVSSET:
568 return pmu->readMiscReg(misc_reg);
569
570 case MISCREG_CPSR_Q:
571 panic("shouldn't be reading this register seperately\n");
572 case MISCREG_FPSCR_QC:
573 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
574 case MISCREG_FPSCR_EXC:
575 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
576 case MISCREG_FPSR:
577 {
578 const uint32_t ones = (uint32_t)(-1);
579 FPSCR fpscrMask = 0;
580 fpscrMask.ioc = ones;
581 fpscrMask.dzc = ones;
582 fpscrMask.ofc = ones;
583 fpscrMask.ufc = ones;
584 fpscrMask.ixc = ones;
585 fpscrMask.idc = ones;
586 fpscrMask.qc = ones;
587 fpscrMask.v = ones;
588 fpscrMask.c = ones;
589 fpscrMask.z = ones;
590 fpscrMask.n = ones;
591 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
592 }
593 case MISCREG_FPCR:
594 {
595 const uint32_t ones = (uint32_t)(-1);
596 FPSCR fpscrMask = 0;
597 fpscrMask.len = ones;
598 fpscrMask.fz16 = ones;
599 fpscrMask.stride = ones;
600 fpscrMask.rMode = ones;
601 fpscrMask.fz = ones;
602 fpscrMask.dn = ones;
603 fpscrMask.ahp = ones;
604 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
605 }
606 case MISCREG_NZCV:
607 {
608 CPSR cpsr = 0;
609 cpsr.nz = tc->readCCReg(CCREG_NZ);
610 cpsr.c = tc->readCCReg(CCREG_C);
611 cpsr.v = tc->readCCReg(CCREG_V);
612 return cpsr;
613 }
614 case MISCREG_DAIF:
615 {
616 CPSR cpsr = 0;
617 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
618 return cpsr;
619 }
620 case MISCREG_SP_EL0:
621 {
622 return tc->readIntReg(INTREG_SP0);
623 }
624 case MISCREG_SP_EL1:
625 {
626 return tc->readIntReg(INTREG_SP1);
627 }
628 case MISCREG_SP_EL2:
629 {
630 return tc->readIntReg(INTREG_SP2);
631 }
632 case MISCREG_SPSEL:
633 {
634 return miscRegs[MISCREG_CPSR] & 0x1;
635 }
636 case MISCREG_CURRENTEL:
637 {
638 return miscRegs[MISCREG_CPSR] & 0xc;
639 }
640 case MISCREG_L2CTLR:
641 {
642 // mostly unimplemented, just set NumCPUs field from sim and return
643 L2CTLR l2ctlr = 0;
644 // b00:1CPU to b11:4CPUs
645 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
646 return l2ctlr;
647 }
648 case MISCREG_DBGDIDR:
649 /* For now just implement the version number.
650 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
651 */
652 return 0x5 << 16;
653 case MISCREG_DBGDSCRint:
654 return 0;
655 case MISCREG_ISR:
656 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
657 readMiscRegNoEffect(MISCREG_HCR),
658 readMiscRegNoEffect(MISCREG_CPSR),
659 readMiscRegNoEffect(MISCREG_SCR));
660 case MISCREG_ISR_EL1:
661 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
662 readMiscRegNoEffect(MISCREG_HCR_EL2),
663 readMiscRegNoEffect(MISCREG_CPSR),
664 readMiscRegNoEffect(MISCREG_SCR_EL3));
665 case MISCREG_DCZID_EL0:
666 return 0x04; // DC ZVA clear 64-byte chunks
667 case MISCREG_HCPTR:
668 {
669 RegVal val = readMiscRegNoEffect(misc_reg);
670 // The trap bit associated with CP14 is defined as RAZ
671 val &= ~(1 << 14);
672 // If a CP bit in NSACR is 0 then the corresponding bit in
673 // HCPTR is RAO/WI
674 bool secure_lookup = haveSecurity &&
675 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
676 readMiscRegNoEffect(MISCREG_CPSR));
677 if (!secure_lookup) {
678 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
679 val |= (mask ^ 0x7FFF) & 0xBFFF;
680 }
681 // Set the bits for unimplemented coprocessors to RAO/WI
682 val |= 0x33FF;
683 return (val);
684 }
685 case MISCREG_HDFAR: // alias for secure DFAR
686 return readMiscRegNoEffect(MISCREG_DFAR_S);
687 case MISCREG_HIFAR: // alias for secure IFAR
688 return readMiscRegNoEffect(MISCREG_IFAR_S);
689
690 case MISCREG_ID_PFR0:
691 // !ThumbEE | !Jazelle | Thumb | ARM
692 return 0x00000031;
693 case MISCREG_ID_PFR1:
694 { // Timer | Virti | !M Profile | TrustZone | ARMv4
695 bool haveTimer = (system->getGenericTimer() != NULL);
696 return 0x00000001
697 | (haveSecurity ? 0x00000010 : 0x0)
698 | (haveVirtualization ? 0x00001000 : 0x0)
699 | (haveTimer ? 0x00010000 : 0x0);
700 }
701 case MISCREG_ID_AA64PFR0_EL1:
702 return 0x0000000000000002 | // AArch{64,32} supported at EL0
703 0x0000000000000020 | // EL1
704 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2
705 (haveSecurity ? 0x0000000000002000 : 0) | // EL3
706 (haveSVE ? 0x0000000100000000 : 0) | // SVE
707 (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
708 case MISCREG_ID_AA64PFR1_EL1:
709 return 0; // bits [63:0] RES0 (reserved for future use)
710
711 // Generic Timer registers
712 case MISCREG_CNTHV_CTL_EL2:
713 case MISCREG_CNTHV_CVAL_EL2:
714 case MISCREG_CNTHV_TVAL_EL2:
715 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
716 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
717 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
718 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
719 return getGenericTimer(tc).readMiscReg(misc_reg);
720
721 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
722 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
723 return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
724
725 default:
726 break;
727
728 }
729 return readMiscRegNoEffect(misc_reg);
730}
731
732void
733ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
734{
735 assert(misc_reg < NumMiscRegs);
736
737 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
738 const auto &map = getMiscIndices(misc_reg);
739 int lower = map.first, upper = map.second;
740
741 auto v = (val & ~reg.wi()) | reg.rao();
742 if (upper > 0) {
743 miscRegs[lower] = bits(v, 31, 0);
744 miscRegs[upper] = bits(v, 63, 32);
745 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
746 misc_reg, lower, upper, v);
747 } else {
748 miscRegs[lower] = v;
749 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
750 misc_reg, lower, v);
751 }
752}
753
754void
755ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
756{
757
758 RegVal newVal = val;
759 bool secure_lookup;
760 SCR scr;
761
762 if (misc_reg == MISCREG_CPSR) {
763 updateRegMap(val);
764
765
766 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
767 int old_mode = old_cpsr.mode;
768 CPSR cpsr = val;
769 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
770 getITBPtr(tc)->invalidateMiscReg();
771 getDTBPtr(tc)->invalidateMiscReg();
772 }
773
774 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
775 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
776 PCState pc = tc->pcState();
777 pc.nextThumb(cpsr.t);
778 pc.nextJazelle(cpsr.j);
779 pc.illegalExec(cpsr.il == 1);
780
781 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
782
783 // Follow slightly different semantics if a CheckerCPU object
784 // is connected
785 CheckerCPU *checker = tc->getCheckerCpuPtr();
786 if (checker) {
787 tc->pcStateNoRecord(pc);
788 } else {
789 tc->pcState(pc);
790 }
791 } else {
792#ifndef NDEBUG
793 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
794 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
795 warn("Unimplemented system register %s write with %#x.\n",
796 miscRegName[misc_reg], val);
797 else
798 panic("Unimplemented system register %s write with %#x.\n",
799 miscRegName[misc_reg], val);
800 }
801#endif
802 switch (unflattenMiscReg(misc_reg)) {
803 case MISCREG_CPACR:
804 {
805
806 const uint32_t ones = (uint32_t)(-1);
807 CPACR cpacrMask = 0;
808 // Only cp10, cp11, and ase are implemented, nothing else should
809 // be writable
810 cpacrMask.cp10 = ones;
811 cpacrMask.cp11 = ones;
812 cpacrMask.asedis = ones;
813
814 // Security Extensions may limit the writability of CPACR
815 if (haveSecurity) {
816 scr = readMiscRegNoEffect(MISCREG_SCR);
817 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
818 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
819 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
820 // NB: Skipping the full loop, here
821 if (!nsacr.cp10) cpacrMask.cp10 = 0;
822 if (!nsacr.cp11) cpacrMask.cp11 = 0;
823 }
824 }
825
826 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
827 newVal &= cpacrMask;
828 newVal |= old_val & ~cpacrMask;
829 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
830 miscRegName[misc_reg], newVal);
831 }
832 break;
833 case MISCREG_CPACR_EL1:
834 {
835 const uint32_t ones = (uint32_t)(-1);
836 CPACR cpacrMask = 0;
837 cpacrMask.tta = ones;
838 cpacrMask.fpen = ones;
839 if (haveSVE) {
840 cpacrMask.zen = ones;
841 }
842 newVal &= cpacrMask;
843 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
844 miscRegName[misc_reg], newVal);
845 }
846 break;
847 case MISCREG_CPTR_EL2:
848 {
849 const uint32_t ones = (uint32_t)(-1);
850 CPTR cptrMask = 0;
851 cptrMask.tcpac = ones;
852 cptrMask.tta = ones;
853 cptrMask.tfp = ones;
854 if (haveSVE) {
855 cptrMask.tz = ones;
856 }
857 newVal &= cptrMask;
858 cptrMask = 0;
859 cptrMask.res1_13_12_el2 = ones;
860 cptrMask.res1_7_0_el2 = ones;
861 if (!haveSVE) {
862 cptrMask.res1_8_el2 = ones;
863 }
864 cptrMask.res1_9_el2 = ones;
865 newVal |= cptrMask;
866 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
867 miscRegName[misc_reg], newVal);
868 }
869 break;
870 case MISCREG_CPTR_EL3:
871 {
872 const uint32_t ones = (uint32_t)(-1);
873 CPTR cptrMask = 0;
874 cptrMask.tcpac = ones;
875 cptrMask.tta = ones;
876 cptrMask.tfp = ones;
877 if (haveSVE) {
878 cptrMask.ez = ones;
879 }
880 newVal &= cptrMask;
881 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
882 miscRegName[misc_reg], newVal);
883 }
884 break;
885 case MISCREG_CSSELR:
886 warn_once("The csselr register isn't implemented.\n");
887 return;
888
889 case MISCREG_DC_ZVA_Xt:
890 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
891 return;
892
893 case MISCREG_FPSCR:
894 {
895 const uint32_t ones = (uint32_t)(-1);
896 FPSCR fpscrMask = 0;
897 fpscrMask.ioc = ones;
898 fpscrMask.dzc = ones;
899 fpscrMask.ofc = ones;
900 fpscrMask.ufc = ones;
901 fpscrMask.ixc = ones;
902 fpscrMask.idc = ones;
903 fpscrMask.ioe = ones;
904 fpscrMask.dze = ones;
905 fpscrMask.ofe = ones;
906 fpscrMask.ufe = ones;
907 fpscrMask.ixe = ones;
908 fpscrMask.ide = ones;
909 fpscrMask.len = ones;
910 fpscrMask.fz16 = ones;
911 fpscrMask.stride = ones;
912 fpscrMask.rMode = ones;
913 fpscrMask.fz = ones;
914 fpscrMask.dn = ones;
915 fpscrMask.ahp = ones;
916 fpscrMask.qc = ones;
917 fpscrMask.v = ones;
918 fpscrMask.c = ones;
919 fpscrMask.z = ones;
920 fpscrMask.n = ones;
921 newVal = (newVal & (uint32_t)fpscrMask) |
922 (readMiscRegNoEffect(MISCREG_FPSCR) &
923 ~(uint32_t)fpscrMask);
924 tc->getDecoderPtr()->setContext(newVal);
925 }
926 break;
927 case MISCREG_FPSR:
928 {
929 const uint32_t ones = (uint32_t)(-1);
930 FPSCR fpscrMask = 0;
931 fpscrMask.ioc = ones;
932 fpscrMask.dzc = ones;
933 fpscrMask.ofc = ones;
934 fpscrMask.ufc = ones;
935 fpscrMask.ixc = ones;
936 fpscrMask.idc = ones;
937 fpscrMask.qc = ones;
938 fpscrMask.v = ones;
939 fpscrMask.c = ones;
940 fpscrMask.z = ones;
941 fpscrMask.n = ones;
942 newVal = (newVal & (uint32_t)fpscrMask) |
943 (readMiscRegNoEffect(MISCREG_FPSCR) &
944 ~(uint32_t)fpscrMask);
945 misc_reg = MISCREG_FPSCR;
946 }
947 break;
948 case MISCREG_FPCR:
949 {
950 const uint32_t ones = (uint32_t)(-1);
951 FPSCR fpscrMask = 0;
952 fpscrMask.len = ones;
953 fpscrMask.fz16 = ones;
954 fpscrMask.stride = ones;
955 fpscrMask.rMode = ones;
956 fpscrMask.fz = ones;
957 fpscrMask.dn = ones;
958 fpscrMask.ahp = ones;
959 newVal = (newVal & (uint32_t)fpscrMask) |
960 (readMiscRegNoEffect(MISCREG_FPSCR) &
961 ~(uint32_t)fpscrMask);
962 misc_reg = MISCREG_FPSCR;
963 }
964 break;
965 case MISCREG_CPSR_Q:
966 {
967 assert(!(newVal & ~CpsrMaskQ));
968 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
969 misc_reg = MISCREG_CPSR;
970 }
971 break;
972 case MISCREG_FPSCR_QC:
973 {
974 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
975 (newVal & FpscrQcMask);
976 misc_reg = MISCREG_FPSCR;
977 }
978 break;
979 case MISCREG_FPSCR_EXC:
980 {
981 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
982 (newVal & FpscrExcMask);
983 misc_reg = MISCREG_FPSCR;
984 }
985 break;
986 case MISCREG_FPEXC:
987 {
988 // vfpv3 architecture, section B.6.1 of DDI04068
989 // bit 29 - valid only if fpexc[31] is 0
990 const uint32_t fpexcMask = 0x60000000;
991 newVal = (newVal & fpexcMask) |
992 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
993 }
994 break;
995 case MISCREG_HCR:
996 {
997 if (!haveVirtualization)
998 return;
999 }
1000 break;
1001 case MISCREG_IFSR:
1002 {
1003 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1004 const uint32_t ifsrMask =
1005 mask(31, 13) | mask(11, 11) | mask(8, 6);
1006 newVal = newVal & ~ifsrMask;
1007 }
1008 break;
1009 case MISCREG_DFSR:
1010 {
1011 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1012 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1013 newVal = newVal & ~dfsrMask;
1014 }
1015 break;
1016 case MISCREG_AMAIR0:
1017 case MISCREG_AMAIR1:
1018 {
1019 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1020 // Valid only with LPAE
1021 if (!haveLPAE)
1022 return;
1023 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1024 }
1025 break;
1026 case MISCREG_SCR:
1027 getITBPtr(tc)->invalidateMiscReg();
1028 getDTBPtr(tc)->invalidateMiscReg();
1029 break;
1030 case MISCREG_SCTLR:
1031 {
1032 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1033 scr = readMiscRegNoEffect(MISCREG_SCR);
1034
1035 MiscRegIndex sctlr_idx;
1036 if (haveSecurity && !highestELIs64 && !scr.ns) {
1037 sctlr_idx = MISCREG_SCTLR_S;
1038 } else {
1039 sctlr_idx = MISCREG_SCTLR_NS;
1040 }
1041
1042 SCTLR sctlr = miscRegs[sctlr_idx];
1043 SCTLR new_sctlr = newVal;
1044 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1045 miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1046 getITBPtr(tc)->invalidateMiscReg();
1047 getDTBPtr(tc)->invalidateMiscReg();
1048 }
1049 case MISCREG_MIDR:
1050 case MISCREG_ID_PFR0:
1051 case MISCREG_ID_PFR1:
1052 case MISCREG_ID_DFR0:
1053 case MISCREG_ID_MMFR0:
1054 case MISCREG_ID_MMFR1:
1055 case MISCREG_ID_MMFR2:
1056 case MISCREG_ID_MMFR3:
1057 case MISCREG_ID_ISAR0:
1058 case MISCREG_ID_ISAR1:
1059 case MISCREG_ID_ISAR2:
1060 case MISCREG_ID_ISAR3:
1061 case MISCREG_ID_ISAR4:
1062 case MISCREG_ID_ISAR5:
1063
1064 case MISCREG_MPIDR:
1065 case MISCREG_FPSID:
1066 case MISCREG_TLBTR:
1067 case MISCREG_MVFR0:
1068 case MISCREG_MVFR1:
1069
1070 case MISCREG_ID_AA64AFR0_EL1:
1071 case MISCREG_ID_AA64AFR1_EL1:
1072 case MISCREG_ID_AA64DFR0_EL1:
1073 case MISCREG_ID_AA64DFR1_EL1:
1074 case MISCREG_ID_AA64ISAR0_EL1:
1075 case MISCREG_ID_AA64ISAR1_EL1:
1076 case MISCREG_ID_AA64MMFR0_EL1:
1077 case MISCREG_ID_AA64MMFR1_EL1:
1078 case MISCREG_ID_AA64MMFR2_EL1:
1079 case MISCREG_ID_AA64PFR0_EL1:
1080 case MISCREG_ID_AA64PFR1_EL1:
1081 // ID registers are constants.
1082 return;
1083
1084 // TLB Invalidate All
1085 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1086 {
1087 assert32(tc);
1088 scr = readMiscReg(MISCREG_SCR, tc);
1089
1090 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1091 tlbiOp(tc);
1092 return;
1093 }
1094 // TLB Invalidate All, Inner Shareable
1095 case MISCREG_TLBIALLIS:
1096 {
1097 assert32(tc);
1098 scr = readMiscReg(MISCREG_SCR, tc);
1099
1100 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1101 tlbiOp.broadcast(tc);
1102 return;
1103 }
1104 // Instruction TLB Invalidate All
1105 case MISCREG_ITLBIALL:
1106 {
1107 assert32(tc);
1108 scr = readMiscReg(MISCREG_SCR, tc);
1109
1110 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1111 tlbiOp(tc);
1112 return;
1113 }
1114 // Data TLB Invalidate All
1115 case MISCREG_DTLBIALL:
1116 {
1117 assert32(tc);
1118 scr = readMiscReg(MISCREG_SCR, tc);
1119
1120 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1121 tlbiOp(tc);
1122 return;
1123 }
1124 // TLB Invalidate by VA
1125 // mcr tlbimval(is) is invalidating all matching entries
1126 // regardless of the level of lookup, since in gem5 we cache
1127 // in the tlb the last level of lookup only.
1128 case MISCREG_TLBIMVA:
1129 case MISCREG_TLBIMVAL:
1130 {
1131 assert32(tc);
1132 scr = readMiscReg(MISCREG_SCR, tc);
1133
1134 TLBIMVA tlbiOp(EL1,
1135 haveSecurity && !scr.ns,
1136 mbits(newVal, 31, 12),
1137 bits(newVal, 7,0));
1138
1139 tlbiOp(tc);
1140 return;
1141 }
1142 // TLB Invalidate by VA, Inner Shareable
1143 case MISCREG_TLBIMVAIS:
1144 case MISCREG_TLBIMVALIS:
1145 {
1146 assert32(tc);
1147 scr = readMiscReg(MISCREG_SCR, tc);
1148
1149 TLBIMVA tlbiOp(EL1,
1150 haveSecurity && !scr.ns,
1151 mbits(newVal, 31, 12),
1152 bits(newVal, 7,0));
1153
1154 tlbiOp.broadcast(tc);
1155 return;
1156 }
1157 // TLB Invalidate by ASID match
1158 case MISCREG_TLBIASID:
1159 {
1160 assert32(tc);
1161 scr = readMiscReg(MISCREG_SCR, tc);
1162
1163 TLBIASID tlbiOp(EL1,
1164 haveSecurity && !scr.ns,
1165 bits(newVal, 7,0));
1166
1167 tlbiOp(tc);
1168 return;
1169 }
1170 // TLB Invalidate by ASID match, Inner Shareable
1171 case MISCREG_TLBIASIDIS:
1172 {
1173 assert32(tc);
1174 scr = readMiscReg(MISCREG_SCR, tc);
1175
1176 TLBIASID tlbiOp(EL1,
1177 haveSecurity && !scr.ns,
1178 bits(newVal, 7,0));
1179
1180 tlbiOp.broadcast(tc);
1181 return;
1182 }
1183 // mcr tlbimvaal(is) is invalidating all matching entries
1184 // regardless of the level of lookup, since in gem5 we cache
1185 // in the tlb the last level of lookup only.
1186 // TLB Invalidate by VA, All ASID
1187 case MISCREG_TLBIMVAA:
1188 case MISCREG_TLBIMVAAL:
1189 {
1190 assert32(tc);
1191 scr = readMiscReg(MISCREG_SCR, tc);
1192
1193 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1194 mbits(newVal, 31,12), false);
1195
1196 tlbiOp(tc);
1197 return;
1198 }
1199 // TLB Invalidate by VA, All ASID, Inner Shareable
1200 case MISCREG_TLBIMVAAIS:
1201 case MISCREG_TLBIMVAALIS:
1202 {
1203 assert32(tc);
1204 scr = readMiscReg(MISCREG_SCR, tc);
1205
1206 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1207 mbits(newVal, 31,12), false);
1208
1209 tlbiOp.broadcast(tc);
1210 return;
1211 }
1212 // mcr tlbimvalh(is) is invalidating all matching entries
1213 // regardless of the level of lookup, since in gem5 we cache
1214 // in the tlb the last level of lookup only.
1215 // TLB Invalidate by VA, Hyp mode
1216 case MISCREG_TLBIMVAH:
1217 case MISCREG_TLBIMVALH:
1218 {
1219 assert32(tc);
1220 scr = readMiscReg(MISCREG_SCR, tc);
1221
1222 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1223 mbits(newVal, 31,12), true);
1224
1225 tlbiOp(tc);
1226 return;
1227 }
1228 // TLB Invalidate by VA, Hyp mode, Inner Shareable
1229 case MISCREG_TLBIMVAHIS:
1230 case MISCREG_TLBIMVALHIS:
1231 {
1232 assert32(tc);
1233 scr = readMiscReg(MISCREG_SCR, tc);
1234
1235 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1236 mbits(newVal, 31,12), true);
1237
1238 tlbiOp.broadcast(tc);
1239 return;
1240 }
1241 // mcr tlbiipas2l(is) is invalidating all matching entries
1242 // regardless of the level of lookup, since in gem5 we cache
1243 // in the tlb the last level of lookup only.
1244 // TLB Invalidate by Intermediate Physical Address, Stage 2
1245 case MISCREG_TLBIIPAS2:
1246 case MISCREG_TLBIIPAS2L:
1247 {
1248 assert32(tc);
1249 scr = readMiscReg(MISCREG_SCR, tc);
1250
1251 TLBIIPA tlbiOp(EL1,
1252 haveSecurity && !scr.ns,
1253 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1254
1255 tlbiOp(tc);
1256 return;
1257 }
1258 // TLB Invalidate by Intermediate Physical Address, Stage 2,
1259 // Inner Shareable
1260 case MISCREG_TLBIIPAS2IS:
1261 case MISCREG_TLBIIPAS2LIS:
1262 {
1263 assert32(tc);
1264 scr = readMiscReg(MISCREG_SCR, tc);
1265
1266 TLBIIPA tlbiOp(EL1,
1267 haveSecurity && !scr.ns,
1268 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1269
1270 tlbiOp.broadcast(tc);
1271 return;
1272 }
1273 // Instruction TLB Invalidate by VA
1274 case MISCREG_ITLBIMVA:
1275 {
1276 assert32(tc);
1277 scr = readMiscReg(MISCREG_SCR, tc);
1278
1279 ITLBIMVA tlbiOp(EL1,
1280 haveSecurity && !scr.ns,
1281 mbits(newVal, 31, 12),
1282 bits(newVal, 7,0));
1283
1284 tlbiOp(tc);
1285 return;
1286 }
1287 // Data TLB Invalidate by VA
1288 case MISCREG_DTLBIMVA:
1289 {
1290 assert32(tc);
1291 scr = readMiscReg(MISCREG_SCR, tc);
1292
1293 DTLBIMVA tlbiOp(EL1,
1294 haveSecurity && !scr.ns,
1295 mbits(newVal, 31, 12),
1296 bits(newVal, 7,0));
1297
1298 tlbiOp(tc);
1299 return;
1300 }
1301 // Instruction TLB Invalidate by ASID match
1302 case MISCREG_ITLBIASID:
1303 {
1304 assert32(tc);
1305 scr = readMiscReg(MISCREG_SCR, tc);
1306
1307 ITLBIASID tlbiOp(EL1,
1308 haveSecurity && !scr.ns,
1309 bits(newVal, 7,0));
1310
1311 tlbiOp(tc);
1312 return;
1313 }
1314 // Data TLB Invalidate by ASID match
1315 case MISCREG_DTLBIASID:
1316 {
1317 assert32(tc);
1318 scr = readMiscReg(MISCREG_SCR, tc);
1319
1320 DTLBIASID tlbiOp(EL1,
1321 haveSecurity && !scr.ns,
1322 bits(newVal, 7,0));
1323
1324 tlbiOp(tc);
1325 return;
1326 }
1327 // TLB Invalidate All, Non-Secure Non-Hyp
1328 case MISCREG_TLBIALLNSNH:
1329 {
1330 assert32(tc);
1331
1332 TLBIALLN tlbiOp(EL1, false);
1333 tlbiOp(tc);
1334 return;
1335 }
1336 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1337 case MISCREG_TLBIALLNSNHIS:
1338 {
1339 assert32(tc);
1340
1341 TLBIALLN tlbiOp(EL1, false);
1342 tlbiOp.broadcast(tc);
1343 return;
1344 }
1345 // TLB Invalidate All, Hyp mode
1346 case MISCREG_TLBIALLH:
1347 {
1348 assert32(tc);
1349
1350 TLBIALLN tlbiOp(EL1, true);
1351 tlbiOp(tc);
1352 return;
1353 }
1354 // TLB Invalidate All, Hyp mode, Inner Shareable
1355 case MISCREG_TLBIALLHIS:
1356 {
1357 assert32(tc);
1358
1359 TLBIALLN tlbiOp(EL1, true);
1360 tlbiOp.broadcast(tc);
1361 return;
1362 }
1363 // AArch64 TLB Invalidate All, EL3
1364 case MISCREG_TLBI_ALLE3:
1365 {
1366 assert64(tc);
1367
1368 TLBIALL tlbiOp(EL3, true);
1369 tlbiOp(tc);
1370 return;
1371 }
1372 // AArch64 TLB Invalidate All, EL3, Inner Shareable
1373 case MISCREG_TLBI_ALLE3IS:
1374 {
1375 assert64(tc);
1376
1377 TLBIALL tlbiOp(EL3, true);
1378 tlbiOp.broadcast(tc);
1379 return;
1380 }
1381 // AArch64 TLB Invalidate All, EL2, Inner Shareable
1382 case MISCREG_TLBI_ALLE2:
1383 case MISCREG_TLBI_ALLE2IS:
1384 {
1385 assert64(tc);
1386 scr = readMiscReg(MISCREG_SCR, tc);
1387
1388 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1389 tlbiOp(tc);
1390 return;
1391 }
1392 // AArch64 TLB Invalidate All, EL1
1393 case MISCREG_TLBI_ALLE1:
1394 case MISCREG_TLBI_VMALLE1:
1395 case MISCREG_TLBI_VMALLS12E1:
1396 // @todo: handle VMID and stage 2 to enable Virtualization
1397 {
1398 assert64(tc);
1399 scr = readMiscReg(MISCREG_SCR, tc);
1400
1401 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1402 tlbiOp(tc);
1403 return;
1404 }
1405 // AArch64 TLB Invalidate All, EL1, Inner Shareable
1406 case MISCREG_TLBI_ALLE1IS:
1407 case MISCREG_TLBI_VMALLE1IS:
1408 case MISCREG_TLBI_VMALLS12E1IS:
1409 // @todo: handle VMID and stage 2 to enable Virtualization
1410 {
1411 assert64(tc);
1412 scr = readMiscReg(MISCREG_SCR, tc);
1413
1414 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1415 tlbiOp.broadcast(tc);
1416 return;
1417 }
1418 // VAEx(IS) and VALEx(IS) are the same because TLBs
1419 // only store entries
1420 // from the last level of translation table walks
1421 // @todo: handle VMID to enable Virtualization
1422 // AArch64 TLB Invalidate by VA, EL3
1423 case MISCREG_TLBI_VAE3_Xt:
1424 case MISCREG_TLBI_VALE3_Xt:
1425 {
1426 assert64(tc);
1427
1428 TLBIMVA tlbiOp(EL3, true,
1429 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1430 0xbeef);
1431 tlbiOp(tc);
1432 return;
1433 }
1434 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1435 case MISCREG_TLBI_VAE3IS_Xt:
1436 case MISCREG_TLBI_VALE3IS_Xt:
1437 {
1438 assert64(tc);
1439
1440 TLBIMVA tlbiOp(EL3, true,
1441 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1442 0xbeef);
1443
1444 tlbiOp.broadcast(tc);
1445 return;
1446 }
1447 // AArch64 TLB Invalidate by VA, EL2
1448 case MISCREG_TLBI_VAE2_Xt:
1449 case MISCREG_TLBI_VALE2_Xt:
1450 {
1451 assert64(tc);
1452 scr = readMiscReg(MISCREG_SCR, tc);
1453
1454 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1455 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1456 0xbeef);
1457 tlbiOp(tc);
1458 return;
1459 }
1460 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1461 case MISCREG_TLBI_VAE2IS_Xt:
1462 case MISCREG_TLBI_VALE2IS_Xt:
1463 {
1464 assert64(tc);
1465 scr = readMiscReg(MISCREG_SCR, tc);
1466
1467 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1468 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1469 0xbeef);
1470
1471 tlbiOp.broadcast(tc);
1472 return;
1473 }
1474 // AArch64 TLB Invalidate by VA, EL1
1475 case MISCREG_TLBI_VAE1_Xt:
1476 case MISCREG_TLBI_VALE1_Xt:
1477 {
1478 assert64(tc);
1479 scr = readMiscReg(MISCREG_SCR, tc);
1480 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1481 bits(newVal, 55, 48);
1482
1483 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1484 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1485 asid);
1486
1487 tlbiOp(tc);
1488 return;
1489 }
1490 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1491 case MISCREG_TLBI_VAE1IS_Xt:
1492 case MISCREG_TLBI_VALE1IS_Xt:
1493 {
1494 assert64(tc);
1495 scr = readMiscReg(MISCREG_SCR, tc);
1496 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1497 bits(newVal, 55, 48);
1498
1499 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1500 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1501 asid);
1502
1503 tlbiOp.broadcast(tc);
1504 return;
1505 }
1506 // AArch64 TLB Invalidate by ASID, EL1
1507 // @todo: handle VMID to enable Virtualization
1508 case MISCREG_TLBI_ASIDE1_Xt:
1509 {
1510 assert64(tc);
1511 scr = readMiscReg(MISCREG_SCR, tc);
1512 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1513 bits(newVal, 55, 48);
1514
1515 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1516 tlbiOp(tc);
1517 return;
1518 }
1519 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1520 case MISCREG_TLBI_ASIDE1IS_Xt:
1521 {
1522 assert64(tc);
1523 scr = readMiscReg(MISCREG_SCR, tc);
1524 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1525 bits(newVal, 55, 48);
1526
1527 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1528 tlbiOp.broadcast(tc);
1529 return;
1530 }
1531 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1532 // entries from the last level of translation table walks
1533 // AArch64 TLB Invalidate by VA, All ASID, EL1
1534 case MISCREG_TLBI_VAAE1_Xt:
1535 case MISCREG_TLBI_VAALE1_Xt:
1536 {
1537 assert64(tc);
1538 scr = readMiscReg(MISCREG_SCR, tc);
1539
1540 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1541 static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1542
1543 tlbiOp(tc);
1544 return;
1545 }
1546 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1547 case MISCREG_TLBI_VAAE1IS_Xt:
1548 case MISCREG_TLBI_VAALE1IS_Xt:
1549 {
1550 assert64(tc);
1551 scr = readMiscReg(MISCREG_SCR, tc);
1552
1553 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1554 static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1555
1556 tlbiOp.broadcast(tc);
1557 return;
1558 }
1559 // AArch64 TLB Invalidate by Intermediate Physical Address,
1560 // Stage 2, EL1
1561 case MISCREG_TLBI_IPAS2E1_Xt:
1562 case MISCREG_TLBI_IPAS2LE1_Xt:
1563 {
1564 assert64(tc);
1565 scr = readMiscReg(MISCREG_SCR, tc);
1566
1567 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1568 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1569
1570 tlbiOp(tc);
1571 return;
1572 }
1573 // AArch64 TLB Invalidate by Intermediate Physical Address,
1574 // Stage 2, EL1, Inner Shareable
1575 case MISCREG_TLBI_IPAS2E1IS_Xt:
1576 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1577 {
1578 assert64(tc);
1579 scr = readMiscReg(MISCREG_SCR, tc);
1580
1581 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1582 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1583
1584 tlbiOp.broadcast(tc);
1585 return;
1586 }
1587 case MISCREG_ACTLR:
1588 warn("Not doing anything for write of miscreg ACTLR\n");
1589 break;
1590
1591 case MISCREG_PMXEVTYPER_PMCCFILTR:
1592 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1593 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1594 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1595 pmu->setMiscReg(misc_reg, newVal);
1596 break;
1597
1598
1599 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1600 {
1601 HSTR hstrMask = 0;
1602 hstrMask.tjdbx = 1;
1603 newVal &= ~((uint32_t) hstrMask);
1604 break;
1605 }
1606 case MISCREG_HCPTR:
1607 {
1608 // If a CP bit in NSACR is 0 then the corresponding bit in
1609 // HCPTR is RAO/WI. Same applies to NSASEDIS
1610 secure_lookup = haveSecurity &&
1611 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1612 readMiscRegNoEffect(MISCREG_CPSR));
1613 if (!secure_lookup) {
1614 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1615 RegVal mask =
1616 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1617 newVal = (newVal & ~mask) | (oldValue & mask);
1618 }
1619 break;
1620 }
1621 case MISCREG_HDFAR: // alias for secure DFAR
1622 misc_reg = MISCREG_DFAR_S;
1623 break;
1624 case MISCREG_HIFAR: // alias for secure IFAR
1625 misc_reg = MISCREG_IFAR_S;
1626 break;
1627 case MISCREG_ATS1CPR:
1628 case MISCREG_ATS1CPW:
1629 case MISCREG_ATS1CUR:
1630 case MISCREG_ATS1CUW:
1631 case MISCREG_ATS12NSOPR:
1632 case MISCREG_ATS12NSOPW:
1633 case MISCREG_ATS12NSOUR:
1634 case MISCREG_ATS12NSOUW:
1635 case MISCREG_ATS1HR:
1636 case MISCREG_ATS1HW:
1637 {
1638 Request::Flags flags = 0;
1639 BaseTLB::Mode mode = BaseTLB::Read;
1640 TLB::ArmTranslationType tranType = TLB::NormalTran;
1641 Fault fault;
1642 switch(misc_reg) {
1643 case MISCREG_ATS1CPR:
1644 flags = TLB::MustBeOne;
1645 tranType = TLB::S1CTran;
1646 mode = BaseTLB::Read;
1647 break;
1648 case MISCREG_ATS1CPW:
1649 flags = TLB::MustBeOne;
1650 tranType = TLB::S1CTran;
1651 mode = BaseTLB::Write;
1652 break;
1653 case MISCREG_ATS1CUR:
1654 flags = TLB::MustBeOne | TLB::UserMode;
1655 tranType = TLB::S1CTran;
1656 mode = BaseTLB::Read;
1657 break;
1658 case MISCREG_ATS1CUW:
1659 flags = TLB::MustBeOne | TLB::UserMode;
1660 tranType = TLB::S1CTran;
1661 mode = BaseTLB::Write;
1662 break;
1663 case MISCREG_ATS12NSOPR:
1664 if (!haveSecurity)
1665 panic("Security Extensions required for ATS12NSOPR");
1666 flags = TLB::MustBeOne;
1667 tranType = TLB::S1S2NsTran;
1668 mode = BaseTLB::Read;
1669 break;
1670 case MISCREG_ATS12NSOPW:
1671 if (!haveSecurity)
1672 panic("Security Extensions required for ATS12NSOPW");
1673 flags = TLB::MustBeOne;
1674 tranType = TLB::S1S2NsTran;
1675 mode = BaseTLB::Write;
1676 break;
1677 case MISCREG_ATS12NSOUR:
1678 if (!haveSecurity)
1679 panic("Security Extensions required for ATS12NSOUR");
1680 flags = TLB::MustBeOne | TLB::UserMode;
1681 tranType = TLB::S1S2NsTran;
1682 mode = BaseTLB::Read;
1683 break;
1684 case MISCREG_ATS12NSOUW:
1685 if (!haveSecurity)
1686 panic("Security Extensions required for ATS12NSOUW");
1687 flags = TLB::MustBeOne | TLB::UserMode;
1688 tranType = TLB::S1S2NsTran;
1689 mode = BaseTLB::Write;
1690 break;
1691 case MISCREG_ATS1HR: // only really useful from secure mode.
1692 flags = TLB::MustBeOne;
1693 tranType = TLB::HypMode;
1694 mode = BaseTLB::Read;
1695 break;
1696 case MISCREG_ATS1HW:
1697 flags = TLB::MustBeOne;
1698 tranType = TLB::HypMode;
1699 mode = BaseTLB::Write;
1700 break;
1701 }
1702 // If we're in timing mode then doing the translation in
1703 // functional mode then we're slightly distorting performance
1704 // results obtained from simulations. The translation should be
1705 // done in the same mode the core is running in. NOTE: This
1706 // can't be an atomic translation because that causes problems
1707 // with unexpected atomic snoop requests.
1708 warn("Translating via %s in functional mode! Fix Me!\n",
1709 miscRegName[misc_reg]);
1710
1711 auto req = std::make_shared<Request>(
1712 0, val, 0, flags, Request::funcMasterId,
1713 tc->pcState().pc(), tc->contextId());
1714
1715 fault = getDTBPtr(tc)->translateFunctional(
1716 req, tc, mode, tranType);
1717
1718 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1719 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1720
1721 RegVal newVal;
1722 if (fault == NoFault) {
1723 Addr paddr = req->getPaddr();
1724 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1725 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1726 newVal = (paddr & mask(39, 12)) |
1727 (getDTBPtr(tc)->getAttr());
1728 } else {
1729 newVal = (paddr & 0xfffff000) |
1730 (getDTBPtr(tc)->getAttr());
1731 }
1732 DPRINTF(MiscRegs,
1733 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1734 val, newVal);
1735 } else {
1736 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1737 armFault->update(tc);
1738 // Set fault bit and FSR
1739 FSR fsr = armFault->getFsr(tc);
1740
1741 newVal = ((fsr >> 9) & 1) << 11;
1742 if (newVal) {
1743 // LPAE - rearange fault status
1744 newVal |= ((fsr >> 0) & 0x3f) << 1;
1745 } else {
1746 // VMSA - rearange fault status
1747 newVal |= ((fsr >> 0) & 0xf) << 1;
1748 newVal |= ((fsr >> 10) & 0x1) << 5;
1749 newVal |= ((fsr >> 12) & 0x1) << 6;
1750 }
1751 newVal |= 0x1; // F bit
1752 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1753 newVal |= armFault->isStage2() ? 0x200 : 0;
1754 DPRINTF(MiscRegs,
1755 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1756 val, fsr, newVal);
1757 }
1758 setMiscRegNoEffect(MISCREG_PAR, newVal);
1759 return;
1760 }
1761 case MISCREG_TTBCR:
1762 {
1763 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1764 const uint32_t ones = (uint32_t)(-1);
1765 TTBCR ttbcrMask = 0;
1766 TTBCR ttbcrNew = newVal;
1767
1768 // ARM DDI 0406C.b, ARMv7-32
1769 ttbcrMask.n = ones; // T0SZ
1770 if (haveSecurity) {
1771 ttbcrMask.pd0 = ones;
1772 ttbcrMask.pd1 = ones;
1773 }
1774 ttbcrMask.epd0 = ones;
1775 ttbcrMask.irgn0 = ones;
1776 ttbcrMask.orgn0 = ones;
1777 ttbcrMask.sh0 = ones;
1778 ttbcrMask.ps = ones; // T1SZ
1779 ttbcrMask.a1 = ones;
1780 ttbcrMask.epd1 = ones;
1781 ttbcrMask.irgn1 = ones;
1782 ttbcrMask.orgn1 = ones;
1783 ttbcrMask.sh1 = ones;
1784 if (haveLPAE)
1785 ttbcrMask.eae = ones;
1786
1787 if (haveLPAE && ttbcrNew.eae) {
1788 newVal = newVal & ttbcrMask;
1789 } else {
1790 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1791 }
1792 // Invalidate TLB MiscReg
1793 getITBPtr(tc)->invalidateMiscReg();
1794 getDTBPtr(tc)->invalidateMiscReg();
1795 break;
1796 }
1797 case MISCREG_TTBR0:
1798 case MISCREG_TTBR1:
1799 {
1800 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1801 if (haveLPAE) {
1802 if (ttbcr.eae) {
1803 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1804 // ARMv8 AArch32 bit 63-56 only
1805 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1806 newVal = (newVal & (~ttbrMask));
1807 }
1808 }
1809 // Invalidate TLB MiscReg
1810 getITBPtr(tc)->invalidateMiscReg();
1811 getDTBPtr(tc)->invalidateMiscReg();
1812 break;
1813 }
1814 case MISCREG_SCTLR_EL1:
1815 case MISCREG_CONTEXTIDR:
1816 case MISCREG_PRRR:
1817 case MISCREG_NMRR:
1818 case MISCREG_MAIR0:
1819 case MISCREG_MAIR1:
1820 case MISCREG_DACR:
1821 case MISCREG_VTTBR:
1822 case MISCREG_SCR_EL3:
1823 case MISCREG_HCR_EL2:
1824 case MISCREG_TCR_EL1:
1825 case MISCREG_TCR_EL2:
1826 case MISCREG_TCR_EL3:
1827 case MISCREG_SCTLR_EL2:
1828 case MISCREG_SCTLR_EL3:
1829 case MISCREG_HSCTLR:
1830 case MISCREG_TTBR0_EL1:
1831 case MISCREG_TTBR1_EL1:
1832 case MISCREG_TTBR0_EL2:
1833 case MISCREG_TTBR1_EL2:
1834 case MISCREG_TTBR0_EL3:
1835 getITBPtr(tc)->invalidateMiscReg();
1836 getDTBPtr(tc)->invalidateMiscReg();
1837 break;
1838 case MISCREG_NZCV:
1839 {
1840 CPSR cpsr = val;
1841
1842 tc->setCCReg(CCREG_NZ, cpsr.nz);
1843 tc->setCCReg(CCREG_C, cpsr.c);
1844 tc->setCCReg(CCREG_V, cpsr.v);
1845 }
1846 break;
1847 case MISCREG_DAIF:
1848 {
1849 CPSR cpsr = miscRegs[MISCREG_CPSR];
1850 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1851 newVal = cpsr;
1852 misc_reg = MISCREG_CPSR;
1853 }
1854 break;
1855 case MISCREG_SP_EL0:
1856 tc->setIntReg(INTREG_SP0, newVal);
1857 break;
1858 case MISCREG_SP_EL1:
1859 tc->setIntReg(INTREG_SP1, newVal);
1860 break;
1861 case MISCREG_SP_EL2:
1862 tc->setIntReg(INTREG_SP2, newVal);
1863 break;
1864 case MISCREG_SPSEL:
1865 {
1866 CPSR cpsr = miscRegs[MISCREG_CPSR];
1867 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1868 newVal = cpsr;
1869 misc_reg = MISCREG_CPSR;
1870 }
1871 break;
1872 case MISCREG_CURRENTEL:
1873 {
1874 CPSR cpsr = miscRegs[MISCREG_CPSR];
1875 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1876 newVal = cpsr;
1877 misc_reg = MISCREG_CPSR;
1878 }
1879 break;
1880 case MISCREG_AT_S1E1R_Xt:
1881 case MISCREG_AT_S1E1W_Xt:
1882 case MISCREG_AT_S1E0R_Xt:
1883 case MISCREG_AT_S1E0W_Xt:
1884 case MISCREG_AT_S1E2R_Xt:
1885 case MISCREG_AT_S1E2W_Xt:
1886 case MISCREG_AT_S12E1R_Xt:
1887 case MISCREG_AT_S12E1W_Xt:
1888 case MISCREG_AT_S12E0R_Xt:
1889 case MISCREG_AT_S12E0W_Xt:
1890 case MISCREG_AT_S1E3R_Xt:
1891 case MISCREG_AT_S1E3W_Xt:
1892 {
1893 RequestPtr req = std::make_shared<Request>();
1894 Request::Flags flags = 0;
1895 BaseTLB::Mode mode = BaseTLB::Read;
1896 TLB::ArmTranslationType tranType = TLB::NormalTran;
1897 Fault fault;
1898 switch(misc_reg) {
1899 case MISCREG_AT_S1E1R_Xt:
1900 flags = TLB::MustBeOne;
1901 tranType = TLB::S1E1Tran;
1902 mode = BaseTLB::Read;
1903 break;
1904 case MISCREG_AT_S1E1W_Xt:
1905 flags = TLB::MustBeOne;
1906 tranType = TLB::S1E1Tran;
1907 mode = BaseTLB::Write;
1908 break;
1909 case MISCREG_AT_S1E0R_Xt:
1910 flags = TLB::MustBeOne | TLB::UserMode;
1911 tranType = TLB::S1E0Tran;
1912 mode = BaseTLB::Read;
1913 break;
1914 case MISCREG_AT_S1E0W_Xt:
1915 flags = TLB::MustBeOne | TLB::UserMode;
1916 tranType = TLB::S1E0Tran;
1917 mode = BaseTLB::Write;
1918 break;
1919 case MISCREG_AT_S1E2R_Xt:
1920 flags = TLB::MustBeOne;
1921 tranType = TLB::S1E2Tran;
1922 mode = BaseTLB::Read;
1923 break;
1924 case MISCREG_AT_S1E2W_Xt:
1925 flags = TLB::MustBeOne;
1926 tranType = TLB::S1E2Tran;
1927 mode = BaseTLB::Write;
1928 break;
1929 case MISCREG_AT_S12E0R_Xt:
1930 flags = TLB::MustBeOne | TLB::UserMode;
1931 tranType = TLB::S12E0Tran;
1932 mode = BaseTLB::Read;
1933 break;
1934 case MISCREG_AT_S12E0W_Xt:
1935 flags = TLB::MustBeOne | TLB::UserMode;
1936 tranType = TLB::S12E0Tran;
1937 mode = BaseTLB::Write;
1938 break;
1939 case MISCREG_AT_S12E1R_Xt:
1940 flags = TLB::MustBeOne;
1941 tranType = TLB::S12E1Tran;
1942 mode = BaseTLB::Read;
1943 break;
1944 case MISCREG_AT_S12E1W_Xt:
1945 flags = TLB::MustBeOne;
1946 tranType = TLB::S12E1Tran;
1947 mode = BaseTLB::Write;
1948 break;
1949 case MISCREG_AT_S1E3R_Xt:
1950 flags = TLB::MustBeOne;
1951 tranType = TLB::S1E3Tran;
1952 mode = BaseTLB::Read;
1953 break;
1954 case MISCREG_AT_S1E3W_Xt:
1955 flags = TLB::MustBeOne;
1956 tranType = TLB::S1E3Tran;
1957 mode = BaseTLB::Write;
1958 break;
1959 }
1960 // If we're in timing mode then doing the translation in
1961 // functional mode then we're slightly distorting performance
1962 // results obtained from simulations. The translation should be
1963 // done in the same mode the core is running in. NOTE: This
1964 // can't be an atomic translation because that causes problems
1965 // with unexpected atomic snoop requests.
1966 warn("Translating via %s in functional mode! Fix Me!\n",
1967 miscRegName[misc_reg]);
1968
1969 req->setVirt(0, val, 0, flags, Request::funcMasterId,
1970 tc->pcState().pc());
1971 req->setContext(tc->contextId());
1972 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1973 tranType);
1974
1975 RegVal newVal;
1976 if (fault == NoFault) {
1977 Addr paddr = req->getPaddr();
1978 uint64_t attr = getDTBPtr(tc)->getAttr();
1979 uint64_t attr1 = attr >> 56;
1980 if (!attr1 || attr1 ==0x44) {
1981 attr |= 0x100;
1982 attr &= ~ uint64_t(0x80);
1983 }
1984 newVal = (paddr & mask(47, 12)) | attr;
1985 DPRINTF(MiscRegs,
1986 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1987 val, newVal);
1988 } else {
1989 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1990 armFault->update(tc);
1991 // Set fault bit and FSR
1992 FSR fsr = armFault->getFsr(tc);
1993
1994 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1995 if (cpsr.width) { // AArch32
1996 newVal = ((fsr >> 9) & 1) << 11;
1997 // rearrange fault status
1998 newVal |= ((fsr >> 0) & 0x3f) << 1;
1999 newVal |= 0x1; // F bit
2000 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2001 newVal |= armFault->isStage2() ? 0x200 : 0;
2002 } else { // AArch64
2003 newVal = 1; // F bit
2004 newVal |= fsr << 1; // FST
2005 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2006 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2007 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2008 newVal |= 1 << 11; // RES1
2009 }
2010 DPRINTF(MiscRegs,
2011 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2012 val, fsr, newVal);
2013 }
2014 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2015 return;
2016 }
2017 case MISCREG_SPSR_EL3:
2018 case MISCREG_SPSR_EL2:
2019 case MISCREG_SPSR_EL1:
2020 // Force bits 23:21 to 0
2021 newVal = val & ~(0x7 << 21);
2022 break;
2023 case MISCREG_L2CTLR:
2024 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2025 miscRegName[misc_reg], uint32_t(val));
2026 break;
2027
2028 // Generic Timer registers
2029 case MISCREG_CNTHV_CTL_EL2:
2030 case MISCREG_CNTHV_CVAL_EL2:
2031 case MISCREG_CNTHV_TVAL_EL2:
2032 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2033 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2034 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2035 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2036 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2037 break;
2038 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2039 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2040 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2041 return;
2042 case MISCREG_ZCR_EL3:
2043 case MISCREG_ZCR_EL2:
2044 case MISCREG_ZCR_EL1:
2045 tc->getDecoderPtr()->setSveLen(
2046 (getCurSveVecLenInBits(tc) >> 7) - 1);
2047 break;
2048 }
2049 }
2050 setMiscRegNoEffect(misc_reg, newVal);
2051}
2052
2053BaseISADevice &
2054ISA::getGenericTimer(ThreadContext *tc)
2055{
2056 // We only need to create an ISA interface the first time we try
2057 // to access the timer.
2058 if (timer)
2059 return *timer.get();
2060
2061 assert(system);
2062 GenericTimer *generic_timer(system->getGenericTimer());
2063 if (!generic_timer) {
2064 panic("Trying to get a generic timer from a system that hasn't "
2065 "been configured to use a generic timer.\n");
2066 }
2067
2068 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2069 timer->setThreadContext(tc);
2070
2071 return *timer.get();
2072}
2073
2074BaseISADevice &
2075ISA::getGICv3CPUInterface(ThreadContext *tc)
2076{
2077 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2078 return *gicv3CpuInterface.get();
2079}
2080
2081unsigned
2082ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2083{
2084 if (!FullSystem) {
2085 return sveVL * 128;
2086 }
2087
2088 panic_if(!tc,
2089 "A ThreadContext is needed to determine the SVE vector length "
2090 "in full-system mode");
2091
2092 CPSR cpsr = miscRegs[MISCREG_CPSR];
2093 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2094
2095 unsigned len = 0;
2096
2097 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2098 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2099 }
2100
2101 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2102 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2103 } else if (haveVirtualization && !inSecureState(tc) &&
2104 (el == EL0 || el == EL1)) {
2105 len = std::min(
2106 len,
2107 static_cast<unsigned>(
2108 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2109 }
2110
2111 if (el == EL3) {
2112 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2113 } else if (haveSecurity) {
2114 len = std::min(
2115 len,
2116 static_cast<unsigned>(
2117 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2118 }
2119
2120 len = std::min(len, sveVL - 1);
2121
2122 return (len + 1) * 128;
2123}
2124
2125void
2126ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2127{
2128 auto vv = vc.as<uint64_t>();
2129 for (int i = 2; i < eCount; ++i) {
2130 vv[i] = 0;
2131 }
2132}
2133
2134} // namespace ArmISA
2135
2136ArmISA::ISA *
2137ArmISAParams::create()
2138{
2139 return new ArmISA::ISA(this);
2140}