1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "params/ArmISA.hh"
52#include "sim/faults.hh"
53#include "sim/stat_control.hh"
54#include "sim/system.hh"
55
56namespace ArmISA
57{
58
59ISA::ISA(Params *p)
60 : SimObject(p),
61 system(NULL),
62 _decoderFlavour(p->decoderFlavour),
63 _vecRegRenameMode(p->vecRegRenameMode),
64 pmu(p->pmu),
65 impdefAsNop(p->impdef_nop)
66{
67 miscRegs[MISCREG_SCTLR_RST] = 0;
68
69 // Hook up a dummy device if we haven't been configured with a
70 // real PMU. By using a dummy device, we don't need to check that
71 // the PMU exist every time we try to access a PMU register.
72 if (!pmu)
73 pmu = &dummyDevice;
74
75 // Give all ISA devices a pointer to this ISA
76 pmu->setISA(this);
77
78 system = dynamic_cast<ArmSystem *>(p->system);
79
80 // Cache system-level properties
81 if (FullSystem && system) {
82 highestELIs64 = system->highestELIs64();
83 haveSecurity = system->haveSecurity();
84 haveLPAE = system->haveLPAE();
85 haveVirtualization = system->haveVirtualization();
86 haveLargeAsid64 = system->haveLargeAsid64();
87 physAddrRange64 = system->physAddrRange64();
87 physAddrRange = system->physAddrRange();
88 } else {
89 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
90 haveSecurity = haveLPAE = haveVirtualization = false;
91 haveLargeAsid64 = false;
92 physAddrRange64 = 32; // dummy value
92 physAddrRange = 32; // dummy value
93 }
94
95 initializeMiscRegMetadata();
96 preUnflattenMiscReg();
97
98 clear();
99}
100
101std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
102
103const ArmISAParams *
104ISA::params() const
105{
106 return dynamic_cast<const Params *>(_params);
107}
108
109void
110ISA::clear()
111{
112 const Params *p(params());
113
114 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
115 memset(miscRegs, 0, sizeof(miscRegs));
116
117 // Initialize configurable default values
118 miscRegs[MISCREG_MIDR] = p->midr;
119 miscRegs[MISCREG_MIDR_EL1] = p->midr;
120 miscRegs[MISCREG_VPIDR] = p->midr;
117 initID32(p);
118
122 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
123 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
124 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
125 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
126 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
127 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
119 // We always initialize AArch64 ID registers even
120 // if we are in AArch32. This is done since if we
121 // are in SE mode we don't know if our ArmProcess is
122 // AArch32 or AArch64
123 initID64(p);
124
129 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
130 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
131 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
132 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
133
125 if (FullSystem && system->highestELIs64()) {
126 // Initialize AArch64 state
127 clear64(p);
128 return;
129 }
130
131 // Initialize AArch32 state...
132
133 CPSR cpsr = 0;
134 cpsr.mode = MODE_USER;
135 miscRegs[MISCREG_CPSR] = cpsr;
136 updateRegMap(cpsr);
137
138 SCTLR sctlr = 0;
139 sctlr.te = (bool) sctlr_rst.te;
140 sctlr.nmfi = (bool) sctlr_rst.nmfi;
141 sctlr.v = (bool) sctlr_rst.v;
142 sctlr.u = 1;
143 sctlr.xp = 1;
144 sctlr.rao2 = 1;
145 sctlr.rao3 = 1;
146 sctlr.rao4 = 0xf; // SCTLR[6:3]
147 sctlr.uci = 1;
148 sctlr.dze = 1;
149 miscRegs[MISCREG_SCTLR_NS] = sctlr;
150 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
151 miscRegs[MISCREG_HCPTR] = 0;
152
153 // Start with an event in the mailbox
154 miscRegs[MISCREG_SEV_MAILBOX] = 1;
155
156 // Separate Instruction and Data TLBs
157 miscRegs[MISCREG_TLBTR] = 1;
158
159 MVFR0 mvfr0 = 0;
160 mvfr0.advSimdRegisters = 2;
161 mvfr0.singlePrecision = 2;
162 mvfr0.doublePrecision = 2;
163 mvfr0.vfpExceptionTrapping = 0;
164 mvfr0.divide = 1;
165 mvfr0.squareRoot = 1;
166 mvfr0.shortVectors = 1;
167 mvfr0.roundingModes = 1;
168 miscRegs[MISCREG_MVFR0] = mvfr0;
169
170 MVFR1 mvfr1 = 0;
171 mvfr1.flushToZero = 1;
172 mvfr1.defaultNaN = 1;
173 mvfr1.advSimdLoadStore = 1;
174 mvfr1.advSimdInteger = 1;
175 mvfr1.advSimdSinglePrecision = 1;
176 mvfr1.advSimdHalfPrecision = 1;
177 mvfr1.vfpHalfPrecision = 1;
178 miscRegs[MISCREG_MVFR1] = mvfr1;
179
180 // Reset values of PRRR and NMRR are implementation dependent
181
182 // @todo: PRRR and NMRR in secure state?
183 miscRegs[MISCREG_PRRR_NS] =
184 (1 << 19) | // 19
185 (0 << 18) | // 18
186 (0 << 17) | // 17
187 (1 << 16) | // 16
188 (2 << 14) | // 15:14
189 (0 << 12) | // 13:12
190 (2 << 10) | // 11:10
191 (2 << 8) | // 9:8
192 (2 << 6) | // 7:6
193 (2 << 4) | // 5:4
194 (1 << 2) | // 3:2
195 0; // 1:0
196 miscRegs[MISCREG_NMRR_NS] =
197 (1 << 30) | // 31:30
198 (0 << 26) | // 27:26
199 (0 << 24) | // 25:24
200 (3 << 22) | // 23:22
201 (2 << 20) | // 21:20
202 (0 << 18) | // 19:18
203 (0 << 16) | // 17:16
204 (1 << 14) | // 15:14
205 (0 << 12) | // 13:12
206 (2 << 10) | // 11:10
207 (0 << 8) | // 9:8
208 (3 << 6) | // 7:6
209 (2 << 4) | // 5:4
210 (0 << 2) | // 3:2
211 0; // 1:0
212
213 miscRegs[MISCREG_CPACR] = 0;
214
215 miscRegs[MISCREG_FPSID] = p->fpsid;
216
217 if (haveLPAE) {
218 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
219 ttbcr.eae = 0;
220 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
221 // Enforce consistency with system-level settings
222 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
223 }
224
225 if (haveSecurity) {
226 miscRegs[MISCREG_SCTLR_S] = sctlr;
227 miscRegs[MISCREG_SCR] = 0;
228 miscRegs[MISCREG_VBAR_S] = 0;
229 } else {
230 // we're always non-secure
231 miscRegs[MISCREG_SCR] = 1;
232 }
233
234 //XXX We need to initialize the rest of the state.
235}
236
237void
238ISA::clear64(const ArmISAParams *p)
239{
240 CPSR cpsr = 0;
241 Addr rvbar = system->resetAddr64();
242 switch (system->highestEL()) {
243 // Set initial EL to highest implemented EL using associated stack
244 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
245 // value
246 case EL3:
247 cpsr.mode = MODE_EL3H;
248 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
249 break;
250 case EL2:
251 cpsr.mode = MODE_EL2H;
252 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
253 break;
254 case EL1:
255 cpsr.mode = MODE_EL1H;
256 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
257 break;
258 default:
259 panic("Invalid highest implemented exception level");
260 break;
261 }
262
263 // Initialize rest of CPSR
264 cpsr.daif = 0xf; // Mask all interrupts
265 cpsr.ss = 0;
266 cpsr.il = 0;
267 miscRegs[MISCREG_CPSR] = cpsr;
268 updateRegMap(cpsr);
269
270 // Initialize other control registers
271 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
272 if (haveSecurity) {
273 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
274 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
275 } else if (haveVirtualization) {
276 // also MISCREG_SCTLR_EL2 (by mapping)
277 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
278 } else {
279 // also MISCREG_SCTLR_EL1 (by mapping)
280 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
281 // Always non-secure
282 miscRegs[MISCREG_SCR_EL3] = 1;
283 }
284}
285
286void
287ISA::initID32(const ArmISAParams *p)
288{
289 // Initialize configurable default values
290 miscRegs[MISCREG_MIDR] = p->midr;
291 miscRegs[MISCREG_MIDR_EL1] = p->midr;
292 miscRegs[MISCREG_VPIDR] = p->midr;
293
294 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
295 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
296 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
297 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
298 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
299 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
300
301 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
302 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
303 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
304 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
305}
306
307void
308ISA::initID64(const ArmISAParams *p)
309{
310 // Initialize configurable id registers
311 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
312 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
313 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
314 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
315 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
316
317 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
318 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
319 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
320 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
321 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
322
323 miscRegs[MISCREG_ID_DFR0_EL1] =
324 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
325
326 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
327
328 // Enforce consistency with system-level settings...
329
330 // EL3
331 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
332 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
333 haveSecurity ? 0x2 : 0x0);
334 // EL2
335 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
336 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
337 haveVirtualization ? 0x2 : 0x0);
338 // Large ASID support
339 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
340 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
341 haveLargeAsid64 ? 0x2 : 0x0);
342 // Physical address size
343 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
344 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
329 encodePhysAddrRange64(physAddrRange64));
345 encodePhysAddrRange64(physAddrRange));
346}
347
348void
349ISA::startup(ThreadContext *tc)
350{
351 pmu->setThreadContext(tc);
352
353}
354
355
356MiscReg
357ISA::readMiscRegNoEffect(int misc_reg) const
358{
359 assert(misc_reg < NumMiscRegs);
360
361 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
362 const auto &map = getMiscIndices(misc_reg);
363 int lower = map.first, upper = map.second;
364 // NB!: apply architectural masks according to desired register,
365 // despite possibly getting value from different (mapped) register.
366 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
367 |(miscRegs[upper] << 32));
368 if (val & reg.res0()) {
369 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
370 miscRegName[misc_reg], val & reg.res0());
371 }
372 if ((val & reg.res1()) != reg.res1()) {
373 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
374 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
375 }
376 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
377}
378
379
380MiscReg
381ISA::readMiscReg(int misc_reg, ThreadContext *tc)
382{
383 CPSR cpsr = 0;
384 PCState pc = 0;
385 SCR scr = 0;
386
387 if (misc_reg == MISCREG_CPSR) {
388 cpsr = miscRegs[misc_reg];
389 pc = tc->pcState();
390 cpsr.j = pc.jazelle() ? 1 : 0;
391 cpsr.t = pc.thumb() ? 1 : 0;
392 return cpsr;
393 }
394
395#ifndef NDEBUG
396 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
397 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
398 warn("Unimplemented system register %s read.\n",
399 miscRegName[misc_reg]);
400 else
401 panic("Unimplemented system register %s read.\n",
402 miscRegName[misc_reg]);
403 }
404#endif
405
406 switch (unflattenMiscReg(misc_reg)) {
407 case MISCREG_HCR:
408 {
409 if (!haveVirtualization)
410 return 0;
411 else
412 return readMiscRegNoEffect(MISCREG_HCR);
413 }
414 case MISCREG_CPACR:
415 {
416 const uint32_t ones = (uint32_t)(-1);
417 CPACR cpacrMask = 0;
418 // Only cp10, cp11, and ase are implemented, nothing else should
419 // be readable? (straight copy from the write code)
420 cpacrMask.cp10 = ones;
421 cpacrMask.cp11 = ones;
422 cpacrMask.asedis = ones;
423
424 // Security Extensions may limit the readability of CPACR
425 if (haveSecurity) {
426 scr = readMiscRegNoEffect(MISCREG_SCR);
427 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
428 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
429 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
430 // NB: Skipping the full loop, here
431 if (!nsacr.cp10) cpacrMask.cp10 = 0;
432 if (!nsacr.cp11) cpacrMask.cp11 = 0;
433 }
434 }
435 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
436 val &= cpacrMask;
437 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
438 miscRegName[misc_reg], val);
439 return val;
440 }
441 case MISCREG_MPIDR:
442 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
443 scr = readMiscRegNoEffect(MISCREG_SCR);
444 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
445 return getMPIDR(system, tc);
446 } else {
447 return readMiscReg(MISCREG_VMPIDR, tc);
448 }
449 break;
450 case MISCREG_MPIDR_EL1:
451 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
452 return getMPIDR(system, tc) & 0xffffffff;
453 case MISCREG_VMPIDR:
454 // top bit defined as RES1
455 return readMiscRegNoEffect(misc_reg) | 0x80000000;
456 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
457 case MISCREG_REVIDR: // not implemented, so alias MIDR
458 case MISCREG_MIDR:
459 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
460 scr = readMiscRegNoEffect(MISCREG_SCR);
461 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
462 return readMiscRegNoEffect(misc_reg);
463 } else {
464 return readMiscRegNoEffect(MISCREG_VPIDR);
465 }
466 break;
467 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
468 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
469 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
470 case MISCREG_AIDR: // AUX ID set to 0
471 case MISCREG_TCMTR: // No TCM's
472 return 0;
473
474 case MISCREG_CLIDR:
475 warn_once("The clidr register always reports 0 caches.\n");
476 warn_once("clidr LoUIS field of 0b001 to match current "
477 "ARM implementations.\n");
478 return 0x00200000;
479 case MISCREG_CCSIDR:
480 warn_once("The ccsidr register isn't implemented and "
481 "always reads as 0.\n");
482 break;
483 case MISCREG_CTR: // AArch32, ARMv7, top bit set
484 case MISCREG_CTR_EL0: // AArch64
485 {
486 //all caches have the same line size in gem5
487 //4 byte words in ARM
488 unsigned lineSizeWords =
489 tc->getSystemPtr()->cacheLineSize() / 4;
490 unsigned log2LineSizeWords = 0;
491
492 while (lineSizeWords >>= 1) {
493 ++log2LineSizeWords;
494 }
495
496 CTR ctr = 0;
497 //log2 of minimun i-cache line size (words)
498 ctr.iCacheLineSize = log2LineSizeWords;
499 //b11 - gem5 uses pipt
500 ctr.l1IndexPolicy = 0x3;
501 //log2 of minimum d-cache line size (words)
502 ctr.dCacheLineSize = log2LineSizeWords;
503 //log2 of max reservation size (words)
504 ctr.erg = log2LineSizeWords;
505 //log2 of max writeback size (words)
506 ctr.cwg = log2LineSizeWords;
507 //b100 - gem5 format is ARMv7
508 ctr.format = 0x4;
509
510 return ctr;
511 }
512 case MISCREG_ACTLR:
513 warn("Not doing anything for miscreg ACTLR\n");
514 break;
515
516 case MISCREG_PMXEVTYPER_PMCCFILTR:
517 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
518 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
519 case MISCREG_PMCR ... MISCREG_PMOVSSET:
520 return pmu->readMiscReg(misc_reg);
521
522 case MISCREG_CPSR_Q:
523 panic("shouldn't be reading this register seperately\n");
524 case MISCREG_FPSCR_QC:
525 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
526 case MISCREG_FPSCR_EXC:
527 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
528 case MISCREG_FPSR:
529 {
530 const uint32_t ones = (uint32_t)(-1);
531 FPSCR fpscrMask = 0;
532 fpscrMask.ioc = ones;
533 fpscrMask.dzc = ones;
534 fpscrMask.ofc = ones;
535 fpscrMask.ufc = ones;
536 fpscrMask.ixc = ones;
537 fpscrMask.idc = ones;
538 fpscrMask.qc = ones;
539 fpscrMask.v = ones;
540 fpscrMask.c = ones;
541 fpscrMask.z = ones;
542 fpscrMask.n = ones;
543 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
544 }
545 case MISCREG_FPCR:
546 {
547 const uint32_t ones = (uint32_t)(-1);
548 FPSCR fpscrMask = 0;
549 fpscrMask.len = ones;
550 fpscrMask.stride = ones;
551 fpscrMask.rMode = ones;
552 fpscrMask.fz = ones;
553 fpscrMask.dn = ones;
554 fpscrMask.ahp = ones;
555 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
556 }
557 case MISCREG_NZCV:
558 {
559 CPSR cpsr = 0;
560 cpsr.nz = tc->readCCReg(CCREG_NZ);
561 cpsr.c = tc->readCCReg(CCREG_C);
562 cpsr.v = tc->readCCReg(CCREG_V);
563 return cpsr;
564 }
565 case MISCREG_DAIF:
566 {
567 CPSR cpsr = 0;
568 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
569 return cpsr;
570 }
571 case MISCREG_SP_EL0:
572 {
573 return tc->readIntReg(INTREG_SP0);
574 }
575 case MISCREG_SP_EL1:
576 {
577 return tc->readIntReg(INTREG_SP1);
578 }
579 case MISCREG_SP_EL2:
580 {
581 return tc->readIntReg(INTREG_SP2);
582 }
583 case MISCREG_SPSEL:
584 {
585 return miscRegs[MISCREG_CPSR] & 0x1;
586 }
587 case MISCREG_CURRENTEL:
588 {
589 return miscRegs[MISCREG_CPSR] & 0xc;
590 }
591 case MISCREG_L2CTLR:
592 {
593 // mostly unimplemented, just set NumCPUs field from sim and return
594 L2CTLR l2ctlr = 0;
595 // b00:1CPU to b11:4CPUs
596 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
597 return l2ctlr;
598 }
599 case MISCREG_DBGDIDR:
600 /* For now just implement the version number.
601 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
602 */
603 return 0x5 << 16;
604 case MISCREG_DBGDSCRint:
605 return 0;
606 case MISCREG_ISR:
607 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
608 readMiscRegNoEffect(MISCREG_HCR),
609 readMiscRegNoEffect(MISCREG_CPSR),
610 readMiscRegNoEffect(MISCREG_SCR));
611 case MISCREG_ISR_EL1:
612 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
613 readMiscRegNoEffect(MISCREG_HCR_EL2),
614 readMiscRegNoEffect(MISCREG_CPSR),
615 readMiscRegNoEffect(MISCREG_SCR_EL3));
616 case MISCREG_DCZID_EL0:
617 return 0x04; // DC ZVA clear 64-byte chunks
618 case MISCREG_HCPTR:
619 {
620 MiscReg val = readMiscRegNoEffect(misc_reg);
621 // The trap bit associated with CP14 is defined as RAZ
622 val &= ~(1 << 14);
623 // If a CP bit in NSACR is 0 then the corresponding bit in
624 // HCPTR is RAO/WI
625 bool secure_lookup = haveSecurity &&
626 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
627 readMiscRegNoEffect(MISCREG_CPSR));
628 if (!secure_lookup) {
629 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
630 val |= (mask ^ 0x7FFF) & 0xBFFF;
631 }
632 // Set the bits for unimplemented coprocessors to RAO/WI
633 val |= 0x33FF;
634 return (val);
635 }
636 case MISCREG_HDFAR: // alias for secure DFAR
637 return readMiscRegNoEffect(MISCREG_DFAR_S);
638 case MISCREG_HIFAR: // alias for secure IFAR
639 return readMiscRegNoEffect(MISCREG_IFAR_S);
640 case MISCREG_HVBAR: // bottom bits reserved
641 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
642 case MISCREG_SCTLR:
643 return (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818;
644 case MISCREG_SCTLR_EL1:
645 return (readMiscRegNoEffect(misc_reg) & 0x37DDDBBF) | 0x30D00800;
646 case MISCREG_SCTLR_EL2:
647 case MISCREG_SCTLR_EL3:
648 case MISCREG_HSCTLR:
649 return (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830;
650
651 case MISCREG_ID_PFR0:
652 // !ThumbEE | !Jazelle | Thumb | ARM
653 return 0x00000031;
654 case MISCREG_ID_PFR1:
655 { // Timer | Virti | !M Profile | TrustZone | ARMv4
656 bool haveTimer = (system->getGenericTimer() != NULL);
657 return 0x00000001
658 | (haveSecurity ? 0x00000010 : 0x0)
659 | (haveVirtualization ? 0x00001000 : 0x0)
660 | (haveTimer ? 0x00010000 : 0x0);
661 }
662 case MISCREG_ID_AA64PFR0_EL1:
663 return 0x0000000000000002 // AArch{64,32} supported at EL0
664 | 0x0000000000000020 // EL1
665 | (haveVirtualization ? 0x0000000000000200 : 0) // EL2
666 | (haveSecurity ? 0x0000000000002000 : 0); // EL3
667 case MISCREG_ID_AA64PFR1_EL1:
668 return 0; // bits [63:0] RES0 (reserved for future use)
669
670 // Generic Timer registers
671 case MISCREG_CNTHV_CTL_EL2:
672 case MISCREG_CNTHV_CVAL_EL2:
673 case MISCREG_CNTHV_TVAL_EL2:
674 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
675 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
676 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
677 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
678 return getGenericTimer(tc).readMiscReg(misc_reg);
679
680 default:
681 break;
682
683 }
684 return readMiscRegNoEffect(misc_reg);
685}
686
687void
688ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
689{
690 assert(misc_reg < NumMiscRegs);
691
692 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
693 const auto &map = getMiscIndices(misc_reg);
694 int lower = map.first, upper = map.second;
695
696 auto v = (val & ~reg.wi()) | reg.rao();
697 if (upper > 0) {
698 miscRegs[lower] = bits(v, 31, 0);
699 miscRegs[upper] = bits(v, 63, 32);
700 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
701 misc_reg, lower, upper, v);
702 } else {
703 miscRegs[lower] = v;
704 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
705 misc_reg, lower, v);
706 }
707}
708
709void
710ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
711{
712
713 MiscReg newVal = val;
714 bool secure_lookup;
715 SCR scr;
716
717 if (misc_reg == MISCREG_CPSR) {
718 updateRegMap(val);
719
720
721 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
722 int old_mode = old_cpsr.mode;
723 CPSR cpsr = val;
724 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
725 getITBPtr(tc)->invalidateMiscReg();
726 getDTBPtr(tc)->invalidateMiscReg();
727 }
728
729 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
730 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
731 PCState pc = tc->pcState();
732 pc.nextThumb(cpsr.t);
733 pc.nextJazelle(cpsr.j);
734 pc.illegalExec(cpsr.il == 1);
735
736 // Follow slightly different semantics if a CheckerCPU object
737 // is connected
738 CheckerCPU *checker = tc->getCheckerCpuPtr();
739 if (checker) {
740 tc->pcStateNoRecord(pc);
741 } else {
742 tc->pcState(pc);
743 }
744 } else {
745#ifndef NDEBUG
746 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
747 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
748 warn("Unimplemented system register %s write with %#x.\n",
749 miscRegName[misc_reg], val);
750 else
751 panic("Unimplemented system register %s write with %#x.\n",
752 miscRegName[misc_reg], val);
753 }
754#endif
755 switch (unflattenMiscReg(misc_reg)) {
756 case MISCREG_CPACR:
757 {
758
759 const uint32_t ones = (uint32_t)(-1);
760 CPACR cpacrMask = 0;
761 // Only cp10, cp11, and ase are implemented, nothing else should
762 // be writable
763 cpacrMask.cp10 = ones;
764 cpacrMask.cp11 = ones;
765 cpacrMask.asedis = ones;
766
767 // Security Extensions may limit the writability of CPACR
768 if (haveSecurity) {
769 scr = readMiscRegNoEffect(MISCREG_SCR);
770 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
771 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
772 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
773 // NB: Skipping the full loop, here
774 if (!nsacr.cp10) cpacrMask.cp10 = 0;
775 if (!nsacr.cp11) cpacrMask.cp11 = 0;
776 }
777 }
778
779 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
780 newVal &= cpacrMask;
781 newVal |= old_val & ~cpacrMask;
782 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
783 miscRegName[misc_reg], newVal);
784 }
785 break;
786 case MISCREG_CPTR_EL2:
787 {
788 const uint32_t ones = (uint32_t)(-1);
789 CPTR cptrMask = 0;
790 cptrMask.tcpac = ones;
791 cptrMask.tta = ones;
792 cptrMask.tfp = ones;
793 newVal &= cptrMask;
794 cptrMask = 0;
795 cptrMask.res1_13_12_el2 = ones;
796 cptrMask.res1_9_0_el2 = ones;
797 newVal |= cptrMask;
798 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
799 miscRegName[misc_reg], newVal);
800 }
801 break;
802 case MISCREG_CPTR_EL3:
803 {
804 const uint32_t ones = (uint32_t)(-1);
805 CPTR cptrMask = 0;
806 cptrMask.tcpac = ones;
807 cptrMask.tta = ones;
808 cptrMask.tfp = ones;
809 newVal &= cptrMask;
810 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
811 miscRegName[misc_reg], newVal);
812 }
813 break;
814 case MISCREG_CSSELR:
815 warn_once("The csselr register isn't implemented.\n");
816 return;
817
818 case MISCREG_DC_ZVA_Xt:
819 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
820 return;
821
822 case MISCREG_FPSCR:
823 {
824 const uint32_t ones = (uint32_t)(-1);
825 FPSCR fpscrMask = 0;
826 fpscrMask.ioc = ones;
827 fpscrMask.dzc = ones;
828 fpscrMask.ofc = ones;
829 fpscrMask.ufc = ones;
830 fpscrMask.ixc = ones;
831 fpscrMask.idc = ones;
832 fpscrMask.ioe = ones;
833 fpscrMask.dze = ones;
834 fpscrMask.ofe = ones;
835 fpscrMask.ufe = ones;
836 fpscrMask.ixe = ones;
837 fpscrMask.ide = ones;
838 fpscrMask.len = ones;
839 fpscrMask.stride = ones;
840 fpscrMask.rMode = ones;
841 fpscrMask.fz = ones;
842 fpscrMask.dn = ones;
843 fpscrMask.ahp = ones;
844 fpscrMask.qc = ones;
845 fpscrMask.v = ones;
846 fpscrMask.c = ones;
847 fpscrMask.z = ones;
848 fpscrMask.n = ones;
849 newVal = (newVal & (uint32_t)fpscrMask) |
850 (readMiscRegNoEffect(MISCREG_FPSCR) &
851 ~(uint32_t)fpscrMask);
852 tc->getDecoderPtr()->setContext(newVal);
853 }
854 break;
855 case MISCREG_FPSR:
856 {
857 const uint32_t ones = (uint32_t)(-1);
858 FPSCR fpscrMask = 0;
859 fpscrMask.ioc = ones;
860 fpscrMask.dzc = ones;
861 fpscrMask.ofc = ones;
862 fpscrMask.ufc = ones;
863 fpscrMask.ixc = ones;
864 fpscrMask.idc = ones;
865 fpscrMask.qc = ones;
866 fpscrMask.v = ones;
867 fpscrMask.c = ones;
868 fpscrMask.z = ones;
869 fpscrMask.n = ones;
870 newVal = (newVal & (uint32_t)fpscrMask) |
871 (readMiscRegNoEffect(MISCREG_FPSCR) &
872 ~(uint32_t)fpscrMask);
873 misc_reg = MISCREG_FPSCR;
874 }
875 break;
876 case MISCREG_FPCR:
877 {
878 const uint32_t ones = (uint32_t)(-1);
879 FPSCR fpscrMask = 0;
880 fpscrMask.len = ones;
881 fpscrMask.stride = ones;
882 fpscrMask.rMode = ones;
883 fpscrMask.fz = ones;
884 fpscrMask.dn = ones;
885 fpscrMask.ahp = ones;
886 newVal = (newVal & (uint32_t)fpscrMask) |
887 (readMiscRegNoEffect(MISCREG_FPSCR) &
888 ~(uint32_t)fpscrMask);
889 misc_reg = MISCREG_FPSCR;
890 }
891 break;
892 case MISCREG_CPSR_Q:
893 {
894 assert(!(newVal & ~CpsrMaskQ));
895 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
896 misc_reg = MISCREG_CPSR;
897 }
898 break;
899 case MISCREG_FPSCR_QC:
900 {
901 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
902 (newVal & FpscrQcMask);
903 misc_reg = MISCREG_FPSCR;
904 }
905 break;
906 case MISCREG_FPSCR_EXC:
907 {
908 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
909 (newVal & FpscrExcMask);
910 misc_reg = MISCREG_FPSCR;
911 }
912 break;
913 case MISCREG_FPEXC:
914 {
915 // vfpv3 architecture, section B.6.1 of DDI04068
916 // bit 29 - valid only if fpexc[31] is 0
917 const uint32_t fpexcMask = 0x60000000;
918 newVal = (newVal & fpexcMask) |
919 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
920 }
921 break;
922 case MISCREG_HCR:
923 {
924 if (!haveVirtualization)
925 return;
926 }
927 break;
928 case MISCREG_IFSR:
929 {
930 // ARM ARM (ARM DDI 0406C.b) B4.1.96
931 const uint32_t ifsrMask =
932 mask(31, 13) | mask(11, 11) | mask(8, 6);
933 newVal = newVal & ~ifsrMask;
934 }
935 break;
936 case MISCREG_DFSR:
937 {
938 // ARM ARM (ARM DDI 0406C.b) B4.1.52
939 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
940 newVal = newVal & ~dfsrMask;
941 }
942 break;
943 case MISCREG_AMAIR0:
944 case MISCREG_AMAIR1:
945 {
946 // ARM ARM (ARM DDI 0406C.b) B4.1.5
947 // Valid only with LPAE
948 if (!haveLPAE)
949 return;
950 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
951 }
952 break;
953 case MISCREG_SCR:
954 getITBPtr(tc)->invalidateMiscReg();
955 getDTBPtr(tc)->invalidateMiscReg();
956 break;
957 case MISCREG_SCTLR:
958 {
959 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
960 scr = readMiscRegNoEffect(MISCREG_SCR);
961
962 MiscRegIndex sctlr_idx;
963 if (haveSecurity && !highestELIs64 && !scr.ns) {
964 sctlr_idx = MISCREG_SCTLR_S;
965 } else {
966 sctlr_idx = MISCREG_SCTLR_NS;
967 }
968
969 SCTLR sctlr = miscRegs[sctlr_idx];
970 SCTLR new_sctlr = newVal;
971 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
972 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
973 getITBPtr(tc)->invalidateMiscReg();
974 getDTBPtr(tc)->invalidateMiscReg();
975 }
976 case MISCREG_MIDR:
977 case MISCREG_ID_PFR0:
978 case MISCREG_ID_PFR1:
979 case MISCREG_ID_DFR0:
980 case MISCREG_ID_MMFR0:
981 case MISCREG_ID_MMFR1:
982 case MISCREG_ID_MMFR2:
983 case MISCREG_ID_MMFR3:
984 case MISCREG_ID_ISAR0:
985 case MISCREG_ID_ISAR1:
986 case MISCREG_ID_ISAR2:
987 case MISCREG_ID_ISAR3:
988 case MISCREG_ID_ISAR4:
989 case MISCREG_ID_ISAR5:
990
991 case MISCREG_MPIDR:
992 case MISCREG_FPSID:
993 case MISCREG_TLBTR:
994 case MISCREG_MVFR0:
995 case MISCREG_MVFR1:
996
997 case MISCREG_ID_AA64AFR0_EL1:
998 case MISCREG_ID_AA64AFR1_EL1:
999 case MISCREG_ID_AA64DFR0_EL1:
1000 case MISCREG_ID_AA64DFR1_EL1:
1001 case MISCREG_ID_AA64ISAR0_EL1:
1002 case MISCREG_ID_AA64ISAR1_EL1:
1003 case MISCREG_ID_AA64MMFR0_EL1:
1004 case MISCREG_ID_AA64MMFR1_EL1:
1005 case MISCREG_ID_AA64PFR0_EL1:
1006 case MISCREG_ID_AA64PFR1_EL1:
1007 // ID registers are constants.
1008 return;
1009
1010 // TLB Invalidate All
1011 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1012 {
1013 assert32(tc);
1014 scr = readMiscReg(MISCREG_SCR, tc);
1015
1016 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1017 tlbiOp(tc);
1018 return;
1019 }
1020 // TLB Invalidate All, Inner Shareable
1021 case MISCREG_TLBIALLIS:
1022 {
1023 assert32(tc);
1024 scr = readMiscReg(MISCREG_SCR, tc);
1025
1026 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1027 tlbiOp.broadcast(tc);
1028 return;
1029 }
1030 // Instruction TLB Invalidate All
1031 case MISCREG_ITLBIALL:
1032 {
1033 assert32(tc);
1034 scr = readMiscReg(MISCREG_SCR, tc);
1035
1036 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1037 tlbiOp(tc);
1038 return;
1039 }
1040 // Data TLB Invalidate All
1041 case MISCREG_DTLBIALL:
1042 {
1043 assert32(tc);
1044 scr = readMiscReg(MISCREG_SCR, tc);
1045
1046 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1047 tlbiOp(tc);
1048 return;
1049 }
1050 // TLB Invalidate by VA
1051 // mcr tlbimval(is) is invalidating all matching entries
1052 // regardless of the level of lookup, since in gem5 we cache
1053 // in the tlb the last level of lookup only.
1054 case MISCREG_TLBIMVA:
1055 case MISCREG_TLBIMVAL:
1056 {
1057 assert32(tc);
1058 scr = readMiscReg(MISCREG_SCR, tc);
1059
1060 TLBIMVA tlbiOp(EL1,
1061 haveSecurity && !scr.ns,
1062 mbits(newVal, 31, 12),
1063 bits(newVal, 7,0));
1064
1065 tlbiOp(tc);
1066 return;
1067 }
1068 // TLB Invalidate by VA, Inner Shareable
1069 case MISCREG_TLBIMVAIS:
1070 case MISCREG_TLBIMVALIS:
1071 {
1072 assert32(tc);
1073 scr = readMiscReg(MISCREG_SCR, tc);
1074
1075 TLBIMVA tlbiOp(EL1,
1076 haveSecurity && !scr.ns,
1077 mbits(newVal, 31, 12),
1078 bits(newVal, 7,0));
1079
1080 tlbiOp.broadcast(tc);
1081 return;
1082 }
1083 // TLB Invalidate by ASID match
1084 case MISCREG_TLBIASID:
1085 {
1086 assert32(tc);
1087 scr = readMiscReg(MISCREG_SCR, tc);
1088
1089 TLBIASID tlbiOp(EL1,
1090 haveSecurity && !scr.ns,
1091 bits(newVal, 7,0));
1092
1093 tlbiOp(tc);
1094 return;
1095 }
1096 // TLB Invalidate by ASID match, Inner Shareable
1097 case MISCREG_TLBIASIDIS:
1098 {
1099 assert32(tc);
1100 scr = readMiscReg(MISCREG_SCR, tc);
1101
1102 TLBIASID tlbiOp(EL1,
1103 haveSecurity && !scr.ns,
1104 bits(newVal, 7,0));
1105
1106 tlbiOp.broadcast(tc);
1107 return;
1108 }
1109 // mcr tlbimvaal(is) is invalidating all matching entries
1110 // regardless of the level of lookup, since in gem5 we cache
1111 // in the tlb the last level of lookup only.
1112 // TLB Invalidate by VA, All ASID
1113 case MISCREG_TLBIMVAA:
1114 case MISCREG_TLBIMVAAL:
1115 {
1116 assert32(tc);
1117 scr = readMiscReg(MISCREG_SCR, tc);
1118
1119 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1120 mbits(newVal, 31,12), false);
1121
1122 tlbiOp(tc);
1123 return;
1124 }
1125 // TLB Invalidate by VA, All ASID, Inner Shareable
1126 case MISCREG_TLBIMVAAIS:
1127 case MISCREG_TLBIMVAALIS:
1128 {
1129 assert32(tc);
1130 scr = readMiscReg(MISCREG_SCR, tc);
1131
1132 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1133 mbits(newVal, 31,12), false);
1134
1135 tlbiOp.broadcast(tc);
1136 return;
1137 }
1138 // mcr tlbimvalh(is) is invalidating all matching entries
1139 // regardless of the level of lookup, since in gem5 we cache
1140 // in the tlb the last level of lookup only.
1141 // TLB Invalidate by VA, Hyp mode
1142 case MISCREG_TLBIMVAH:
1143 case MISCREG_TLBIMVALH:
1144 {
1145 assert32(tc);
1146 scr = readMiscReg(MISCREG_SCR, tc);
1147
1148 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1149 mbits(newVal, 31,12), true);
1150
1151 tlbiOp(tc);
1152 return;
1153 }
1154 // TLB Invalidate by VA, Hyp mode, Inner Shareable
1155 case MISCREG_TLBIMVAHIS:
1156 case MISCREG_TLBIMVALHIS:
1157 {
1158 assert32(tc);
1159 scr = readMiscReg(MISCREG_SCR, tc);
1160
1161 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1162 mbits(newVal, 31,12), true);
1163
1164 tlbiOp.broadcast(tc);
1165 return;
1166 }
1167 // mcr tlbiipas2l(is) is invalidating all matching entries
1168 // regardless of the level of lookup, since in gem5 we cache
1169 // in the tlb the last level of lookup only.
1170 // TLB Invalidate by Intermediate Physical Address, Stage 2
1171 case MISCREG_TLBIIPAS2:
1172 case MISCREG_TLBIIPAS2L:
1173 {
1174 assert32(tc);
1175 scr = readMiscReg(MISCREG_SCR, tc);
1176
1177 TLBIIPA tlbiOp(EL1,
1178 haveSecurity && !scr.ns,
1179 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1180
1181 tlbiOp(tc);
1182 return;
1183 }
1184 // TLB Invalidate by Intermediate Physical Address, Stage 2,
1185 // Inner Shareable
1186 case MISCREG_TLBIIPAS2IS:
1187 case MISCREG_TLBIIPAS2LIS:
1188 {
1189 assert32(tc);
1190 scr = readMiscReg(MISCREG_SCR, tc);
1191
1192 TLBIIPA tlbiOp(EL1,
1193 haveSecurity && !scr.ns,
1194 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1195
1196 tlbiOp.broadcast(tc);
1197 return;
1198 }
1199 // Instruction TLB Invalidate by VA
1200 case MISCREG_ITLBIMVA:
1201 {
1202 assert32(tc);
1203 scr = readMiscReg(MISCREG_SCR, tc);
1204
1205 ITLBIMVA tlbiOp(EL1,
1206 haveSecurity && !scr.ns,
1207 mbits(newVal, 31, 12),
1208 bits(newVal, 7,0));
1209
1210 tlbiOp(tc);
1211 return;
1212 }
1213 // Data TLB Invalidate by VA
1214 case MISCREG_DTLBIMVA:
1215 {
1216 assert32(tc);
1217 scr = readMiscReg(MISCREG_SCR, tc);
1218
1219 DTLBIMVA tlbiOp(EL1,
1220 haveSecurity && !scr.ns,
1221 mbits(newVal, 31, 12),
1222 bits(newVal, 7,0));
1223
1224 tlbiOp(tc);
1225 return;
1226 }
1227 // Instruction TLB Invalidate by ASID match
1228 case MISCREG_ITLBIASID:
1229 {
1230 assert32(tc);
1231 scr = readMiscReg(MISCREG_SCR, tc);
1232
1233 ITLBIASID tlbiOp(EL1,
1234 haveSecurity && !scr.ns,
1235 bits(newVal, 7,0));
1236
1237 tlbiOp(tc);
1238 return;
1239 }
1240 // Data TLB Invalidate by ASID match
1241 case MISCREG_DTLBIASID:
1242 {
1243 assert32(tc);
1244 scr = readMiscReg(MISCREG_SCR, tc);
1245
1246 DTLBIASID tlbiOp(EL1,
1247 haveSecurity && !scr.ns,
1248 bits(newVal, 7,0));
1249
1250 tlbiOp(tc);
1251 return;
1252 }
1253 // TLB Invalidate All, Non-Secure Non-Hyp
1254 case MISCREG_TLBIALLNSNH:
1255 {
1256 assert32(tc);
1257
1258 TLBIALLN tlbiOp(EL1, false);
1259 tlbiOp(tc);
1260 return;
1261 }
1262 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1263 case MISCREG_TLBIALLNSNHIS:
1264 {
1265 assert32(tc);
1266
1267 TLBIALLN tlbiOp(EL1, false);
1268 tlbiOp.broadcast(tc);
1269 return;
1270 }
1271 // TLB Invalidate All, Hyp mode
1272 case MISCREG_TLBIALLH:
1273 {
1274 assert32(tc);
1275
1276 TLBIALLN tlbiOp(EL1, true);
1277 tlbiOp(tc);
1278 return;
1279 }
1280 // TLB Invalidate All, Hyp mode, Inner Shareable
1281 case MISCREG_TLBIALLHIS:
1282 {
1283 assert32(tc);
1284
1285 TLBIALLN tlbiOp(EL1, true);
1286 tlbiOp.broadcast(tc);
1287 return;
1288 }
1289 // AArch64 TLB Invalidate All, EL3
1290 case MISCREG_TLBI_ALLE3:
1291 {
1292 assert64(tc);
1293
1294 TLBIALL tlbiOp(EL3, true);
1295 tlbiOp(tc);
1296 return;
1297 }
1298 // AArch64 TLB Invalidate All, EL3, Inner Shareable
1299 case MISCREG_TLBI_ALLE3IS:
1300 {
1301 assert64(tc);
1302
1303 TLBIALL tlbiOp(EL3, true);
1304 tlbiOp.broadcast(tc);
1305 return;
1306 }
1307 // @todo: uncomment this to enable Virtualization
1308 // case MISCREG_TLBI_ALLE2IS:
1309 // case MISCREG_TLBI_ALLE2:
1310 // AArch64 TLB Invalidate All, EL1
1311 case MISCREG_TLBI_ALLE1:
1312 case MISCREG_TLBI_VMALLE1:
1313 case MISCREG_TLBI_VMALLS12E1:
1314 // @todo: handle VMID and stage 2 to enable Virtualization
1315 {
1316 assert64(tc);
1317 scr = readMiscReg(MISCREG_SCR, tc);
1318
1319 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1320 tlbiOp(tc);
1321 return;
1322 }
1323 // AArch64 TLB Invalidate All, EL1, Inner Shareable
1324 case MISCREG_TLBI_ALLE1IS:
1325 case MISCREG_TLBI_VMALLE1IS:
1326 case MISCREG_TLBI_VMALLS12E1IS:
1327 // @todo: handle VMID and stage 2 to enable Virtualization
1328 {
1329 assert64(tc);
1330 scr = readMiscReg(MISCREG_SCR, tc);
1331
1332 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1333 tlbiOp.broadcast(tc);
1334 return;
1335 }
1336 // VAEx(IS) and VALEx(IS) are the same because TLBs
1337 // only store entries
1338 // from the last level of translation table walks
1339 // @todo: handle VMID to enable Virtualization
1340 // AArch64 TLB Invalidate by VA, EL3
1341 case MISCREG_TLBI_VAE3_Xt:
1342 case MISCREG_TLBI_VALE3_Xt:
1343 {
1344 assert64(tc);
1345
1346 TLBIMVA tlbiOp(EL3, true,
1347 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1348 0xbeef);
1349 tlbiOp(tc);
1350 return;
1351 }
1352 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1353 case MISCREG_TLBI_VAE3IS_Xt:
1354 case MISCREG_TLBI_VALE3IS_Xt:
1355 {
1356 assert64(tc);
1357
1358 TLBIMVA tlbiOp(EL3, true,
1359 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1360 0xbeef);
1361
1362 tlbiOp.broadcast(tc);
1363 return;
1364 }
1365 // AArch64 TLB Invalidate by VA, EL2
1366 case MISCREG_TLBI_VAE2_Xt:
1367 case MISCREG_TLBI_VALE2_Xt:
1368 {
1369 assert64(tc);
1370 scr = readMiscReg(MISCREG_SCR, tc);
1371
1372 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1373 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1374 0xbeef);
1375 tlbiOp(tc);
1376 return;
1377 }
1378 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1379 case MISCREG_TLBI_VAE2IS_Xt:
1380 case MISCREG_TLBI_VALE2IS_Xt:
1381 {
1382 assert64(tc);
1383 scr = readMiscReg(MISCREG_SCR, tc);
1384
1385 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1386 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1387 0xbeef);
1388
1389 tlbiOp.broadcast(tc);
1390 return;
1391 }
1392 // AArch64 TLB Invalidate by VA, EL1
1393 case MISCREG_TLBI_VAE1_Xt:
1394 case MISCREG_TLBI_VALE1_Xt:
1395 {
1396 assert64(tc);
1397 scr = readMiscReg(MISCREG_SCR, tc);
1398 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1399 bits(newVal, 55, 48);
1400
1401 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1402 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1403 asid);
1404
1405 tlbiOp(tc);
1406 return;
1407 }
1408 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1409 case MISCREG_TLBI_VAE1IS_Xt:
1410 case MISCREG_TLBI_VALE1IS_Xt:
1411 {
1412 assert64(tc);
1413 scr = readMiscReg(MISCREG_SCR, tc);
1414 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1415 bits(newVal, 55, 48);
1416
1417 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1418 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1419 asid);
1420
1421 tlbiOp.broadcast(tc);
1422 return;
1423 }
1424 // AArch64 TLB Invalidate by ASID, EL1
1425 // @todo: handle VMID to enable Virtualization
1426 case MISCREG_TLBI_ASIDE1_Xt:
1427 {
1428 assert64(tc);
1429 scr = readMiscReg(MISCREG_SCR, tc);
1430 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1431 bits(newVal, 55, 48);
1432
1433 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1434 tlbiOp(tc);
1435 return;
1436 }
1437 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1438 case MISCREG_TLBI_ASIDE1IS_Xt:
1439 {
1440 assert64(tc);
1441 scr = readMiscReg(MISCREG_SCR, tc);
1442 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1443 bits(newVal, 55, 48);
1444
1445 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1446 tlbiOp.broadcast(tc);
1447 return;
1448 }
1449 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1450 // entries from the last level of translation table walks
1451 // AArch64 TLB Invalidate by VA, All ASID, EL1
1452 case MISCREG_TLBI_VAAE1_Xt:
1453 case MISCREG_TLBI_VAALE1_Xt:
1454 {
1455 assert64(tc);
1456 scr = readMiscReg(MISCREG_SCR, tc);
1457
1458 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1459 static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1460
1461 tlbiOp(tc);
1462 return;
1463 }
1464 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1465 case MISCREG_TLBI_VAAE1IS_Xt:
1466 case MISCREG_TLBI_VAALE1IS_Xt:
1467 {
1468 assert64(tc);
1469 scr = readMiscReg(MISCREG_SCR, tc);
1470
1471 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1472 static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1473
1474 tlbiOp.broadcast(tc);
1475 return;
1476 }
1477 // AArch64 TLB Invalidate by Intermediate Physical Address,
1478 // Stage 2, EL1
1479 case MISCREG_TLBI_IPAS2E1_Xt:
1480 case MISCREG_TLBI_IPAS2LE1_Xt:
1481 {
1482 assert64(tc);
1483 scr = readMiscReg(MISCREG_SCR, tc);
1484
1485 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1486 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1487
1488 tlbiOp(tc);
1489 return;
1490 }
1491 // AArch64 TLB Invalidate by Intermediate Physical Address,
1492 // Stage 2, EL1, Inner Shareable
1493 case MISCREG_TLBI_IPAS2E1IS_Xt:
1494 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1495 {
1496 assert64(tc);
1497 scr = readMiscReg(MISCREG_SCR, tc);
1498
1499 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1500 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1501
1502 tlbiOp.broadcast(tc);
1503 return;
1504 }
1505 case MISCREG_ACTLR:
1506 warn("Not doing anything for write of miscreg ACTLR\n");
1507 break;
1508
1509 case MISCREG_PMXEVTYPER_PMCCFILTR:
1510 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1511 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1512 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1513 pmu->setMiscReg(misc_reg, newVal);
1514 break;
1515
1516
1517 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1518 {
1519 HSTR hstrMask = 0;
1520 hstrMask.tjdbx = 1;
1521 newVal &= ~((uint32_t) hstrMask);
1522 break;
1523 }
1524 case MISCREG_HCPTR:
1525 {
1526 // If a CP bit in NSACR is 0 then the corresponding bit in
1527 // HCPTR is RAO/WI. Same applies to NSASEDIS
1528 secure_lookup = haveSecurity &&
1529 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1530 readMiscRegNoEffect(MISCREG_CPSR));
1531 if (!secure_lookup) {
1532 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1533 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1534 newVal = (newVal & ~mask) | (oldValue & mask);
1535 }
1536 break;
1537 }
1538 case MISCREG_HDFAR: // alias for secure DFAR
1539 misc_reg = MISCREG_DFAR_S;
1540 break;
1541 case MISCREG_HIFAR: // alias for secure IFAR
1542 misc_reg = MISCREG_IFAR_S;
1543 break;
1544 case MISCREG_ATS1CPR:
1545 case MISCREG_ATS1CPW:
1546 case MISCREG_ATS1CUR:
1547 case MISCREG_ATS1CUW:
1548 case MISCREG_ATS12NSOPR:
1549 case MISCREG_ATS12NSOPW:
1550 case MISCREG_ATS12NSOUR:
1551 case MISCREG_ATS12NSOUW:
1552 case MISCREG_ATS1HR:
1553 case MISCREG_ATS1HW:
1554 {
1555 Request::Flags flags = 0;
1556 BaseTLB::Mode mode = BaseTLB::Read;
1557 TLB::ArmTranslationType tranType = TLB::NormalTran;
1558 Fault fault;
1559 switch(misc_reg) {
1560 case MISCREG_ATS1CPR:
1561 flags = TLB::MustBeOne;
1562 tranType = TLB::S1CTran;
1563 mode = BaseTLB::Read;
1564 break;
1565 case MISCREG_ATS1CPW:
1566 flags = TLB::MustBeOne;
1567 tranType = TLB::S1CTran;
1568 mode = BaseTLB::Write;
1569 break;
1570 case MISCREG_ATS1CUR:
1571 flags = TLB::MustBeOne | TLB::UserMode;
1572 tranType = TLB::S1CTran;
1573 mode = BaseTLB::Read;
1574 break;
1575 case MISCREG_ATS1CUW:
1576 flags = TLB::MustBeOne | TLB::UserMode;
1577 tranType = TLB::S1CTran;
1578 mode = BaseTLB::Write;
1579 break;
1580 case MISCREG_ATS12NSOPR:
1581 if (!haveSecurity)
1582 panic("Security Extensions required for ATS12NSOPR");
1583 flags = TLB::MustBeOne;
1584 tranType = TLB::S1S2NsTran;
1585 mode = BaseTLB::Read;
1586 break;
1587 case MISCREG_ATS12NSOPW:
1588 if (!haveSecurity)
1589 panic("Security Extensions required for ATS12NSOPW");
1590 flags = TLB::MustBeOne;
1591 tranType = TLB::S1S2NsTran;
1592 mode = BaseTLB::Write;
1593 break;
1594 case MISCREG_ATS12NSOUR:
1595 if (!haveSecurity)
1596 panic("Security Extensions required for ATS12NSOUR");
1597 flags = TLB::MustBeOne | TLB::UserMode;
1598 tranType = TLB::S1S2NsTran;
1599 mode = BaseTLB::Read;
1600 break;
1601 case MISCREG_ATS12NSOUW:
1602 if (!haveSecurity)
1603 panic("Security Extensions required for ATS12NSOUW");
1604 flags = TLB::MustBeOne | TLB::UserMode;
1605 tranType = TLB::S1S2NsTran;
1606 mode = BaseTLB::Write;
1607 break;
1608 case MISCREG_ATS1HR: // only really useful from secure mode.
1609 flags = TLB::MustBeOne;
1610 tranType = TLB::HypMode;
1611 mode = BaseTLB::Read;
1612 break;
1613 case MISCREG_ATS1HW:
1614 flags = TLB::MustBeOne;
1615 tranType = TLB::HypMode;
1616 mode = BaseTLB::Write;
1617 break;
1618 }
1619 // If we're in timing mode then doing the translation in
1620 // functional mode then we're slightly distorting performance
1621 // results obtained from simulations. The translation should be
1622 // done in the same mode the core is running in. NOTE: This
1623 // can't be an atomic translation because that causes problems
1624 // with unexpected atomic snoop requests.
1625 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1626
1627 auto req = std::make_shared<Request>(
1628 0, val, 0, flags, Request::funcMasterId,
1629 tc->pcState().pc(), tc->contextId());
1630
1631 fault = getDTBPtr(tc)->translateFunctional(
1632 req, tc, mode, tranType);
1633
1634 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1635 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1636
1637 MiscReg newVal;
1638 if (fault == NoFault) {
1639 Addr paddr = req->getPaddr();
1640 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1641 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1642 newVal = (paddr & mask(39, 12)) |
1643 (getDTBPtr(tc)->getAttr());
1644 } else {
1645 newVal = (paddr & 0xfffff000) |
1646 (getDTBPtr(tc)->getAttr());
1647 }
1648 DPRINTF(MiscRegs,
1649 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1650 val, newVal);
1651 } else {
1652 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1653 armFault->update(tc);
1654 // Set fault bit and FSR
1655 FSR fsr = armFault->getFsr(tc);
1656
1657 newVal = ((fsr >> 9) & 1) << 11;
1658 if (newVal) {
1659 // LPAE - rearange fault status
1660 newVal |= ((fsr >> 0) & 0x3f) << 1;
1661 } else {
1662 // VMSA - rearange fault status
1663 newVal |= ((fsr >> 0) & 0xf) << 1;
1664 newVal |= ((fsr >> 10) & 0x1) << 5;
1665 newVal |= ((fsr >> 12) & 0x1) << 6;
1666 }
1667 newVal |= 0x1; // F bit
1668 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1669 newVal |= armFault->isStage2() ? 0x200 : 0;
1670 DPRINTF(MiscRegs,
1671 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1672 val, fsr, newVal);
1673 }
1674 setMiscRegNoEffect(MISCREG_PAR, newVal);
1675 return;
1676 }
1677 case MISCREG_TTBCR:
1678 {
1679 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1680 const uint32_t ones = (uint32_t)(-1);
1681 TTBCR ttbcrMask = 0;
1682 TTBCR ttbcrNew = newVal;
1683
1684 // ARM DDI 0406C.b, ARMv7-32
1685 ttbcrMask.n = ones; // T0SZ
1686 if (haveSecurity) {
1687 ttbcrMask.pd0 = ones;
1688 ttbcrMask.pd1 = ones;
1689 }
1690 ttbcrMask.epd0 = ones;
1691 ttbcrMask.irgn0 = ones;
1692 ttbcrMask.orgn0 = ones;
1693 ttbcrMask.sh0 = ones;
1694 ttbcrMask.ps = ones; // T1SZ
1695 ttbcrMask.a1 = ones;
1696 ttbcrMask.epd1 = ones;
1697 ttbcrMask.irgn1 = ones;
1698 ttbcrMask.orgn1 = ones;
1699 ttbcrMask.sh1 = ones;
1700 if (haveLPAE)
1701 ttbcrMask.eae = ones;
1702
1703 if (haveLPAE && ttbcrNew.eae) {
1704 newVal = newVal & ttbcrMask;
1705 } else {
1706 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1707 }
1708 // Invalidate TLB MiscReg
1709 getITBPtr(tc)->invalidateMiscReg();
1710 getDTBPtr(tc)->invalidateMiscReg();
1711 break;
1712 }
1713 case MISCREG_TTBR0:
1714 case MISCREG_TTBR1:
1715 {
1716 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1717 if (haveLPAE) {
1718 if (ttbcr.eae) {
1719 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1720 // ARMv8 AArch32 bit 63-56 only
1721 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1722 newVal = (newVal & (~ttbrMask));
1723 }
1724 }
1725 // Invalidate TLB MiscReg
1726 getITBPtr(tc)->invalidateMiscReg();
1727 getDTBPtr(tc)->invalidateMiscReg();
1728 break;
1729 }
1730 case MISCREG_SCTLR_EL1:
1731 case MISCREG_CONTEXTIDR:
1732 case MISCREG_PRRR:
1733 case MISCREG_NMRR:
1734 case MISCREG_MAIR0:
1735 case MISCREG_MAIR1:
1736 case MISCREG_DACR:
1737 case MISCREG_VTTBR:
1738 case MISCREG_SCR_EL3:
1739 case MISCREG_HCR_EL2:
1740 case MISCREG_TCR_EL1:
1741 case MISCREG_TCR_EL2:
1742 case MISCREG_TCR_EL3:
1743 case MISCREG_SCTLR_EL2:
1744 case MISCREG_SCTLR_EL3:
1745 case MISCREG_HSCTLR:
1746 case MISCREG_TTBR0_EL1:
1747 case MISCREG_TTBR1_EL1:
1748 case MISCREG_TTBR0_EL2:
1749 case MISCREG_TTBR1_EL2:
1750 case MISCREG_TTBR0_EL3:
1751 getITBPtr(tc)->invalidateMiscReg();
1752 getDTBPtr(tc)->invalidateMiscReg();
1753 break;
1754 case MISCREG_NZCV:
1755 {
1756 CPSR cpsr = val;
1757
1758 tc->setCCReg(CCREG_NZ, cpsr.nz);
1759 tc->setCCReg(CCREG_C, cpsr.c);
1760 tc->setCCReg(CCREG_V, cpsr.v);
1761 }
1762 break;
1763 case MISCREG_DAIF:
1764 {
1765 CPSR cpsr = miscRegs[MISCREG_CPSR];
1766 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1767 newVal = cpsr;
1768 misc_reg = MISCREG_CPSR;
1769 }
1770 break;
1771 case MISCREG_SP_EL0:
1772 tc->setIntReg(INTREG_SP0, newVal);
1773 break;
1774 case MISCREG_SP_EL1:
1775 tc->setIntReg(INTREG_SP1, newVal);
1776 break;
1777 case MISCREG_SP_EL2:
1778 tc->setIntReg(INTREG_SP2, newVal);
1779 break;
1780 case MISCREG_SPSEL:
1781 {
1782 CPSR cpsr = miscRegs[MISCREG_CPSR];
1783 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1784 newVal = cpsr;
1785 misc_reg = MISCREG_CPSR;
1786 }
1787 break;
1788 case MISCREG_CURRENTEL:
1789 {
1790 CPSR cpsr = miscRegs[MISCREG_CPSR];
1791 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1792 newVal = cpsr;
1793 misc_reg = MISCREG_CPSR;
1794 }
1795 break;
1796 case MISCREG_AT_S1E1R_Xt:
1797 case MISCREG_AT_S1E1W_Xt:
1798 case MISCREG_AT_S1E0R_Xt:
1799 case MISCREG_AT_S1E0W_Xt:
1800 case MISCREG_AT_S1E2R_Xt:
1801 case MISCREG_AT_S1E2W_Xt:
1802 case MISCREG_AT_S12E1R_Xt:
1803 case MISCREG_AT_S12E1W_Xt:
1804 case MISCREG_AT_S12E0R_Xt:
1805 case MISCREG_AT_S12E0W_Xt:
1806 case MISCREG_AT_S1E3R_Xt:
1807 case MISCREG_AT_S1E3W_Xt:
1808 {
1809 RequestPtr req = std::make_shared<Request>();
1810 Request::Flags flags = 0;
1811 BaseTLB::Mode mode = BaseTLB::Read;
1812 TLB::ArmTranslationType tranType = TLB::NormalTran;
1813 Fault fault;
1814 switch(misc_reg) {
1815 case MISCREG_AT_S1E1R_Xt:
1816 flags = TLB::MustBeOne;
1817 tranType = TLB::S1E1Tran;
1818 mode = BaseTLB::Read;
1819 break;
1820 case MISCREG_AT_S1E1W_Xt:
1821 flags = TLB::MustBeOne;
1822 tranType = TLB::S1E1Tran;
1823 mode = BaseTLB::Write;
1824 break;
1825 case MISCREG_AT_S1E0R_Xt:
1826 flags = TLB::MustBeOne | TLB::UserMode;
1827 tranType = TLB::S1E0Tran;
1828 mode = BaseTLB::Read;
1829 break;
1830 case MISCREG_AT_S1E0W_Xt:
1831 flags = TLB::MustBeOne | TLB::UserMode;
1832 tranType = TLB::S1E0Tran;
1833 mode = BaseTLB::Write;
1834 break;
1835 case MISCREG_AT_S1E2R_Xt:
1836 flags = TLB::MustBeOne;
1837 tranType = TLB::S1E2Tran;
1838 mode = BaseTLB::Read;
1839 break;
1840 case MISCREG_AT_S1E2W_Xt:
1841 flags = TLB::MustBeOne;
1842 tranType = TLB::S1E2Tran;
1843 mode = BaseTLB::Write;
1844 break;
1845 case MISCREG_AT_S12E0R_Xt:
1846 flags = TLB::MustBeOne | TLB::UserMode;
1847 tranType = TLB::S12E0Tran;
1848 mode = BaseTLB::Read;
1849 break;
1850 case MISCREG_AT_S12E0W_Xt:
1851 flags = TLB::MustBeOne | TLB::UserMode;
1852 tranType = TLB::S12E0Tran;
1853 mode = BaseTLB::Write;
1854 break;
1855 case MISCREG_AT_S12E1R_Xt:
1856 flags = TLB::MustBeOne;
1857 tranType = TLB::S12E1Tran;
1858 mode = BaseTLB::Read;
1859 break;
1860 case MISCREG_AT_S12E1W_Xt:
1861 flags = TLB::MustBeOne;
1862 tranType = TLB::S12E1Tran;
1863 mode = BaseTLB::Write;
1864 break;
1865 case MISCREG_AT_S1E3R_Xt:
1866 flags = TLB::MustBeOne;
1867 tranType = TLB::S1E3Tran;
1868 mode = BaseTLB::Read;
1869 break;
1870 case MISCREG_AT_S1E3W_Xt:
1871 flags = TLB::MustBeOne;
1872 tranType = TLB::S1E3Tran;
1873 mode = BaseTLB::Write;
1874 break;
1875 }
1876 // If we're in timing mode then doing the translation in
1877 // functional mode then we're slightly distorting performance
1878 // results obtained from simulations. The translation should be
1879 // done in the same mode the core is running in. NOTE: This
1880 // can't be an atomic translation because that causes problems
1881 // with unexpected atomic snoop requests.
1882 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1883 req->setVirt(0, val, 0, flags, Request::funcMasterId,
1884 tc->pcState().pc());
1885 req->setContext(tc->contextId());
1886 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1887 tranType);
1888
1889 MiscReg newVal;
1890 if (fault == NoFault) {
1891 Addr paddr = req->getPaddr();
1892 uint64_t attr = getDTBPtr(tc)->getAttr();
1893 uint64_t attr1 = attr >> 56;
1894 if (!attr1 || attr1 ==0x44) {
1895 attr |= 0x100;
1896 attr &= ~ uint64_t(0x80);
1897 }
1898 newVal = (paddr & mask(47, 12)) | attr;
1899 DPRINTF(MiscRegs,
1900 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1901 val, newVal);
1902 } else {
1903 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1904 armFault->update(tc);
1905 // Set fault bit and FSR
1906 FSR fsr = armFault->getFsr(tc);
1907
1908 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1909 if (cpsr.width) { // AArch32
1910 newVal = ((fsr >> 9) & 1) << 11;
1911 // rearrange fault status
1912 newVal |= ((fsr >> 0) & 0x3f) << 1;
1913 newVal |= 0x1; // F bit
1914 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1915 newVal |= armFault->isStage2() ? 0x200 : 0;
1916 } else { // AArch64
1917 newVal = 1; // F bit
1918 newVal |= fsr << 1; // FST
1919 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1920 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1921 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1922 newVal |= 1 << 11; // RES1
1923 }
1924 DPRINTF(MiscRegs,
1925 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1926 val, fsr, newVal);
1927 }
1928 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1929 return;
1930 }
1931 case MISCREG_SPSR_EL3:
1932 case MISCREG_SPSR_EL2:
1933 case MISCREG_SPSR_EL1:
1934 // Force bits 23:21 to 0
1935 newVal = val & ~(0x7 << 21);
1936 break;
1937 case MISCREG_L2CTLR:
1938 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1939 miscRegName[misc_reg], uint32_t(val));
1940 break;
1941
1942 // Generic Timer registers
1943 case MISCREG_CNTHV_CTL_EL2:
1944 case MISCREG_CNTHV_CVAL_EL2:
1945 case MISCREG_CNTHV_TVAL_EL2:
1946 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1947 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1948 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1949 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1950 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1951 break;
1952 }
1953 }
1954 setMiscRegNoEffect(misc_reg, newVal);
1955}
1956
1957BaseISADevice &
1958ISA::getGenericTimer(ThreadContext *tc)
1959{
1960 // We only need to create an ISA interface the first time we try
1961 // to access the timer.
1962 if (timer)
1963 return *timer.get();
1964
1965 assert(system);
1966 GenericTimer *generic_timer(system->getGenericTimer());
1967 if (!generic_timer) {
1968 panic("Trying to get a generic timer from a system that hasn't "
1969 "been configured to use a generic timer.\n");
1970 }
1971
1972 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
1973 timer->setThreadContext(tc);
1974
1975 return *timer.get();
1976}
1977
1978}
1979
1980ArmISA::ISA *
1981ArmISAParams::create()
1982{
1983 return new ArmISA::ISA(this);
1984}