isa.cc (14228:8c1143372c76) isa.cc (14282:1a6b51a56fa5)
1/*
2 * Copyright (c) 2010-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62 : SimObject(p),
63 system(NULL),
64 _decoderFlavour(p->decoderFlavour),
65 _vecRegRenameMode(Enums::Full),
66 pmu(p->pmu),
67 haveGICv3CPUInterface(false),
68 impdefAsNop(p->impdef_nop),
69 afterStartup(false)
70{
71 miscRegs[MISCREG_SCTLR_RST] = 0;
72
73 // Hook up a dummy device if we haven't been configured with a
74 // real PMU. By using a dummy device, we don't need to check that
75 // the PMU exist every time we try to access a PMU register.
76 if (!pmu)
77 pmu = &dummyDevice;
78
79 // Give all ISA devices a pointer to this ISA
80 pmu->setISA(this);
81
82 system = dynamic_cast<ArmSystem *>(p->system);
83
84 // Cache system-level properties
85 if (FullSystem && system) {
86 highestELIs64 = system->highestELIs64();
87 haveSecurity = system->haveSecurity();
88 haveLPAE = system->haveLPAE();
89 haveCrypto = system->haveCrypto();
90 haveVirtualization = system->haveVirtualization();
91 haveLargeAsid64 = system->haveLargeAsid64();
92 physAddrRange = system->physAddrRange();
93 haveSVE = system->haveSVE();
94 havePAN = system->havePAN();
95 sveVL = system->sveVL();
96 haveLSE = system->haveLSE();
97 } else {
98 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
99 haveSecurity = haveLPAE = haveVirtualization = false;
100 haveCrypto = true;
101 haveLargeAsid64 = false;
102 physAddrRange = 32; // dummy value
103 haveSVE = true;
104 havePAN = false;
105 sveVL = p->sve_vl_se;
106 haveLSE = true;
107 }
108
109 // Initial rename mode depends on highestEL
110 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
111 highestELIs64 ? Enums::Full : Enums::Elem;
112
113 initializeMiscRegMetadata();
114 preUnflattenMiscReg();
115
116 clear();
117}
118
119std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
120
121const ArmISAParams *
122ISA::params() const
123{
124 return dynamic_cast<const Params *>(_params);
125}
126
127void
128ISA::clear()
129{
130 const Params *p(params());
131
132 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
133 memset(miscRegs, 0, sizeof(miscRegs));
134
135 initID32(p);
136
137 // We always initialize AArch64 ID registers even
138 // if we are in AArch32. This is done since if we
139 // are in SE mode we don't know if our ArmProcess is
140 // AArch32 or AArch64
141 initID64(p);
142
143 // Start with an event in the mailbox
144 miscRegs[MISCREG_SEV_MAILBOX] = 1;
145
146 // Separate Instruction and Data TLBs
147 miscRegs[MISCREG_TLBTR] = 1;
148
149 MVFR0 mvfr0 = 0;
150 mvfr0.advSimdRegisters = 2;
151 mvfr0.singlePrecision = 2;
152 mvfr0.doublePrecision = 2;
153 mvfr0.vfpExceptionTrapping = 0;
154 mvfr0.divide = 1;
155 mvfr0.squareRoot = 1;
156 mvfr0.shortVectors = 1;
157 mvfr0.roundingModes = 1;
158 miscRegs[MISCREG_MVFR0] = mvfr0;
159
160 MVFR1 mvfr1 = 0;
161 mvfr1.flushToZero = 1;
162 mvfr1.defaultNaN = 1;
163 mvfr1.advSimdLoadStore = 1;
164 mvfr1.advSimdInteger = 1;
165 mvfr1.advSimdSinglePrecision = 1;
166 mvfr1.advSimdHalfPrecision = 1;
167 mvfr1.vfpHalfPrecision = 1;
168 miscRegs[MISCREG_MVFR1] = mvfr1;
169
170 // Reset values of PRRR and NMRR are implementation dependent
171
172 // @todo: PRRR and NMRR in secure state?
173 miscRegs[MISCREG_PRRR_NS] =
174 (1 << 19) | // 19
175 (0 << 18) | // 18
176 (0 << 17) | // 17
177 (1 << 16) | // 16
178 (2 << 14) | // 15:14
179 (0 << 12) | // 13:12
180 (2 << 10) | // 11:10
181 (2 << 8) | // 9:8
182 (2 << 6) | // 7:6
183 (2 << 4) | // 5:4
184 (1 << 2) | // 3:2
185 0; // 1:0
186
187 miscRegs[MISCREG_NMRR_NS] =
188 (1 << 30) | // 31:30
189 (0 << 26) | // 27:26
190 (0 << 24) | // 25:24
191 (3 << 22) | // 23:22
192 (2 << 20) | // 21:20
193 (0 << 18) | // 19:18
194 (0 << 16) | // 17:16
195 (1 << 14) | // 15:14
196 (0 << 12) | // 13:12
197 (2 << 10) | // 11:10
198 (0 << 8) | // 9:8
199 (3 << 6) | // 7:6
200 (2 << 4) | // 5:4
201 (0 << 2) | // 3:2
202 0; // 1:0
203
204 if (FullSystem && system->highestELIs64()) {
205 // Initialize AArch64 state
206 clear64(p);
207 return;
208 }
209
210 // Initialize AArch32 state...
211 clear32(p, sctlr_rst);
212}
213
214void
215ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
216{
217 CPSR cpsr = 0;
218 cpsr.mode = MODE_USER;
219
220 if (FullSystem) {
221 miscRegs[MISCREG_MVBAR] = system->resetAddr();
222 }
223
224 miscRegs[MISCREG_CPSR] = cpsr;
225 updateRegMap(cpsr);
226
227 SCTLR sctlr = 0;
228 sctlr.te = (bool) sctlr_rst.te;
229 sctlr.nmfi = (bool) sctlr_rst.nmfi;
230 sctlr.v = (bool) sctlr_rst.v;
231 sctlr.u = 1;
232 sctlr.xp = 1;
233 sctlr.rao2 = 1;
234 sctlr.rao3 = 1;
235 sctlr.rao4 = 0xf; // SCTLR[6:3]
236 sctlr.uci = 1;
237 sctlr.dze = 1;
238 miscRegs[MISCREG_SCTLR_NS] = sctlr;
239 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
240 miscRegs[MISCREG_HCPTR] = 0;
241
242 miscRegs[MISCREG_CPACR] = 0;
243
244 miscRegs[MISCREG_FPSID] = p->fpsid;
245
246 if (haveLPAE) {
247 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
248 ttbcr.eae = 0;
249 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
250 // Enforce consistency with system-level settings
251 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
252 }
253
254 if (haveSecurity) {
255 miscRegs[MISCREG_SCTLR_S] = sctlr;
256 miscRegs[MISCREG_SCR] = 0;
257 miscRegs[MISCREG_VBAR_S] = 0;
258 } else {
259 // we're always non-secure
260 miscRegs[MISCREG_SCR] = 1;
261 }
262
263 //XXX We need to initialize the rest of the state.
264}
265
266void
267ISA::clear64(const ArmISAParams *p)
268{
269 CPSR cpsr = 0;
270 Addr rvbar = system->resetAddr();
271 switch (system->highestEL()) {
272 // Set initial EL to highest implemented EL using associated stack
273 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
274 // value
275 case EL3:
276 cpsr.mode = MODE_EL3H;
277 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
278 break;
279 case EL2:
280 cpsr.mode = MODE_EL2H;
281 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
282 break;
283 case EL1:
284 cpsr.mode = MODE_EL1H;
285 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
286 break;
287 default:
288 panic("Invalid highest implemented exception level");
289 break;
290 }
291
292 // Initialize rest of CPSR
293 cpsr.daif = 0xf; // Mask all interrupts
294 cpsr.ss = 0;
295 cpsr.il = 0;
296 miscRegs[MISCREG_CPSR] = cpsr;
297 updateRegMap(cpsr);
298
299 // Initialize other control registers
300 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
301 if (haveSecurity) {
302 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
303 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
304 } else if (haveVirtualization) {
305 // also MISCREG_SCTLR_EL2 (by mapping)
306 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
307 } else {
308 // also MISCREG_SCTLR_EL1 (by mapping)
309 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
310 // Always non-secure
311 miscRegs[MISCREG_SCR_EL3] = 1;
312 }
313}
314
315void
316ISA::initID32(const ArmISAParams *p)
317{
318 // Initialize configurable default values
319 miscRegs[MISCREG_MIDR] = p->midr;
320 miscRegs[MISCREG_MIDR_EL1] = p->midr;
321 miscRegs[MISCREG_VPIDR] = p->midr;
322
323 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
324 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
325 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
326 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
327 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
328 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
329
330 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
331 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
332 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
333 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
334
335 miscRegs[MISCREG_ID_ISAR5] = insertBits(
336 miscRegs[MISCREG_ID_ISAR5], 19, 4,
337 haveCrypto ? 0x1112 : 0x0);
338}
339
340void
341ISA::initID64(const ArmISAParams *p)
342{
343 // Initialize configurable id registers
344 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
345 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
346 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
347 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
348 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
349
350 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
351 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
352 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
353 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
354 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
355 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
356
357 miscRegs[MISCREG_ID_DFR0_EL1] =
358 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
359
360 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
361
362 // SVE
363 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0
364 if (haveSecurity) {
365 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
366 } else if (haveVirtualization) {
367 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
368 } else {
369 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
370 }
371
372 // Enforce consistency with system-level settings...
373
374 // EL3
375 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
376 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
377 haveSecurity ? 0x2 : 0x0);
378 // EL2
379 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
380 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
381 haveVirtualization ? 0x2 : 0x0);
382 // SVE
383 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
384 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
385 haveSVE ? 0x1 : 0x0);
386 // Large ASID support
387 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
388 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
389 haveLargeAsid64 ? 0x2 : 0x0);
390 // Physical address size
391 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
392 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
393 encodePhysAddrRange64(physAddrRange));
394 // Crypto
395 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
396 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
397 haveCrypto ? 0x1112 : 0x0);
398 // LSE
399 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
400 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 23, 20,
401 haveLSE ? 0x2 : 0x0);
402 // PAN
403 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits(
404 miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20,
405 havePAN ? 0x1 : 0x0);
406}
407
408void
409ISA::startup(ThreadContext *tc)
410{
411 pmu->setThreadContext(tc);
412
413 if (system) {
414 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
415 if (gicv3) {
416 haveGICv3CPUInterface = true;
417 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
418 gicv3CpuInterface->setISA(this);
419 gicv3CpuInterface->setThreadContext(tc);
420 }
421 }
422
423 afterStartup = true;
424}
425
426
427RegVal
428ISA::readMiscRegNoEffect(int misc_reg) const
429{
430 assert(misc_reg < NumMiscRegs);
431
432 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
433 const auto &map = getMiscIndices(misc_reg);
434 int lower = map.first, upper = map.second;
435 // NB!: apply architectural masks according to desired register,
436 // despite possibly getting value from different (mapped) register.
437 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
438 |(miscRegs[upper] << 32));
439 if (val & reg.res0()) {
440 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
441 miscRegName[misc_reg], val & reg.res0());
442 }
443 if ((val & reg.res1()) != reg.res1()) {
444 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
445 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
446 }
447 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
448}
449
450
451RegVal
452ISA::readMiscReg(int misc_reg, ThreadContext *tc)
453{
454 CPSR cpsr = 0;
455 PCState pc = 0;
456 SCR scr = 0;
457
458 if (misc_reg == MISCREG_CPSR) {
459 cpsr = miscRegs[misc_reg];
460 pc = tc->pcState();
461 cpsr.j = pc.jazelle() ? 1 : 0;
462 cpsr.t = pc.thumb() ? 1 : 0;
463 return cpsr;
464 }
465
466#ifndef NDEBUG
467 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
468 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
469 warn("Unimplemented system register %s read.\n",
470 miscRegName[misc_reg]);
471 else
472 panic("Unimplemented system register %s read.\n",
473 miscRegName[misc_reg]);
474 }
475#endif
476
477 switch (unflattenMiscReg(misc_reg)) {
478 case MISCREG_HCR:
479 {
480 if (!haveVirtualization)
481 return 0;
482 else
483 return readMiscRegNoEffect(MISCREG_HCR);
484 }
485 case MISCREG_CPACR:
486 {
487 const uint32_t ones = (uint32_t)(-1);
488 CPACR cpacrMask = 0;
489 // Only cp10, cp11, and ase are implemented, nothing else should
490 // be readable? (straight copy from the write code)
491 cpacrMask.cp10 = ones;
492 cpacrMask.cp11 = ones;
493 cpacrMask.asedis = ones;
494
495 // Security Extensions may limit the readability of CPACR
496 if (haveSecurity) {
497 scr = readMiscRegNoEffect(MISCREG_SCR);
498 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
499 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
500 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
501 // NB: Skipping the full loop, here
502 if (!nsacr.cp10) cpacrMask.cp10 = 0;
503 if (!nsacr.cp11) cpacrMask.cp11 = 0;
504 }
505 }
506 RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
507 val &= cpacrMask;
508 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
509 miscRegName[misc_reg], val);
510 return val;
511 }
512 case MISCREG_MPIDR:
513 case MISCREG_MPIDR_EL1:
514 return readMPIDR(system, tc);
515 case MISCREG_VMPIDR:
516 case MISCREG_VMPIDR_EL2:
517 // top bit defined as RES1
518 return readMiscRegNoEffect(misc_reg) | 0x80000000;
519 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
520 case MISCREG_REVIDR: // not implemented, so alias MIDR
521 case MISCREG_MIDR:
522 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
523 scr = readMiscRegNoEffect(MISCREG_SCR);
524 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
525 return readMiscRegNoEffect(misc_reg);
526 } else {
527 return readMiscRegNoEffect(MISCREG_VPIDR);
528 }
529 break;
530 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
531 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
532 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
533 case MISCREG_AIDR: // AUX ID set to 0
534 case MISCREG_TCMTR: // No TCM's
535 return 0;
536
537 case MISCREG_CLIDR:
538 warn_once("The clidr register always reports 0 caches.\n");
539 warn_once("clidr LoUIS field of 0b001 to match current "
540 "ARM implementations.\n");
541 return 0x00200000;
542 case MISCREG_CCSIDR:
543 warn_once("The ccsidr register isn't implemented and "
544 "always reads as 0.\n");
545 break;
546 case MISCREG_CTR: // AArch32, ARMv7, top bit set
547 case MISCREG_CTR_EL0: // AArch64
548 {
549 //all caches have the same line size in gem5
550 //4 byte words in ARM
551 unsigned lineSizeWords =
552 tc->getSystemPtr()->cacheLineSize() / 4;
553 unsigned log2LineSizeWords = 0;
554
555 while (lineSizeWords >>= 1) {
556 ++log2LineSizeWords;
557 }
558
559 CTR ctr = 0;
560 //log2 of minimun i-cache line size (words)
561 ctr.iCacheLineSize = log2LineSizeWords;
562 //b11 - gem5 uses pipt
563 ctr.l1IndexPolicy = 0x3;
564 //log2 of minimum d-cache line size (words)
565 ctr.dCacheLineSize = log2LineSizeWords;
566 //log2 of max reservation size (words)
567 ctr.erg = log2LineSizeWords;
568 //log2 of max writeback size (words)
569 ctr.cwg = log2LineSizeWords;
570 //b100 - gem5 format is ARMv7
571 ctr.format = 0x4;
572
573 return ctr;
574 }
575 case MISCREG_ACTLR:
576 warn("Not doing anything for miscreg ACTLR\n");
577 break;
578
579 case MISCREG_PMXEVTYPER_PMCCFILTR:
580 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
581 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
582 case MISCREG_PMCR ... MISCREG_PMOVSSET:
583 return pmu->readMiscReg(misc_reg);
584
585 case MISCREG_CPSR_Q:
586 panic("shouldn't be reading this register seperately\n");
587 case MISCREG_FPSCR_QC:
588 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
589 case MISCREG_FPSCR_EXC:
590 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
591 case MISCREG_FPSR:
592 {
593 const uint32_t ones = (uint32_t)(-1);
594 FPSCR fpscrMask = 0;
595 fpscrMask.ioc = ones;
596 fpscrMask.dzc = ones;
597 fpscrMask.ofc = ones;
598 fpscrMask.ufc = ones;
599 fpscrMask.ixc = ones;
600 fpscrMask.idc = ones;
601 fpscrMask.qc = ones;
602 fpscrMask.v = ones;
603 fpscrMask.c = ones;
604 fpscrMask.z = ones;
605 fpscrMask.n = ones;
606 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
607 }
608 case MISCREG_FPCR:
609 {
610 const uint32_t ones = (uint32_t)(-1);
611 FPSCR fpscrMask = 0;
612 fpscrMask.len = ones;
613 fpscrMask.fz16 = ones;
614 fpscrMask.stride = ones;
615 fpscrMask.rMode = ones;
616 fpscrMask.fz = ones;
617 fpscrMask.dn = ones;
618 fpscrMask.ahp = ones;
619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620 }
621 case MISCREG_NZCV:
622 {
623 CPSR cpsr = 0;
624 cpsr.nz = tc->readCCReg(CCREG_NZ);
625 cpsr.c = tc->readCCReg(CCREG_C);
626 cpsr.v = tc->readCCReg(CCREG_V);
627 return cpsr;
628 }
629 case MISCREG_DAIF:
630 {
631 CPSR cpsr = 0;
632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
633 return cpsr;
634 }
635 case MISCREG_SP_EL0:
636 {
637 return tc->readIntReg(INTREG_SP0);
638 }
639 case MISCREG_SP_EL1:
640 {
641 return tc->readIntReg(INTREG_SP1);
642 }
643 case MISCREG_SP_EL2:
644 {
645 return tc->readIntReg(INTREG_SP2);
646 }
647 case MISCREG_SPSEL:
648 {
649 return miscRegs[MISCREG_CPSR] & 0x1;
650 }
651 case MISCREG_CURRENTEL:
652 {
653 return miscRegs[MISCREG_CPSR] & 0xc;
654 }
655 case MISCREG_PAN:
656 {
657 return miscRegs[MISCREG_CPSR] & 0x400000;
658 }
659 case MISCREG_L2CTLR:
660 {
661 // mostly unimplemented, just set NumCPUs field from sim and return
662 L2CTLR l2ctlr = 0;
663 // b00:1CPU to b11:4CPUs
664 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
665 return l2ctlr;
666 }
667 case MISCREG_DBGDIDR:
668 /* For now just implement the version number.
669 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
670 */
671 return 0x5 << 16;
672 case MISCREG_DBGDSCRint:
673 return 0;
674 case MISCREG_ISR:
675 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
676 readMiscRegNoEffect(MISCREG_HCR),
677 readMiscRegNoEffect(MISCREG_CPSR),
678 readMiscRegNoEffect(MISCREG_SCR));
679 case MISCREG_ISR_EL1:
680 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
681 readMiscRegNoEffect(MISCREG_HCR_EL2),
682 readMiscRegNoEffect(MISCREG_CPSR),
683 readMiscRegNoEffect(MISCREG_SCR_EL3));
684 case MISCREG_DCZID_EL0:
685 return 0x04; // DC ZVA clear 64-byte chunks
686 case MISCREG_HCPTR:
687 {
688 RegVal val = readMiscRegNoEffect(misc_reg);
689 // The trap bit associated with CP14 is defined as RAZ
690 val &= ~(1 << 14);
691 // If a CP bit in NSACR is 0 then the corresponding bit in
692 // HCPTR is RAO/WI
693 bool secure_lookup = haveSecurity &&
694 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
695 readMiscRegNoEffect(MISCREG_CPSR));
696 if (!secure_lookup) {
697 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
698 val |= (mask ^ 0x7FFF) & 0xBFFF;
699 }
700 // Set the bits for unimplemented coprocessors to RAO/WI
701 val |= 0x33FF;
702 return (val);
703 }
704 case MISCREG_HDFAR: // alias for secure DFAR
705 return readMiscRegNoEffect(MISCREG_DFAR_S);
706 case MISCREG_HIFAR: // alias for secure IFAR
707 return readMiscRegNoEffect(MISCREG_IFAR_S);
708
709 case MISCREG_ID_PFR0:
710 // !ThumbEE | !Jazelle | Thumb | ARM
711 return 0x00000031;
712 case MISCREG_ID_PFR1:
713 { // Timer | Virti | !M Profile | TrustZone | ARMv4
714 bool haveTimer = (system->getGenericTimer() != NULL);
715 return 0x00000001
716 | (haveSecurity ? 0x00000010 : 0x0)
717 | (haveVirtualization ? 0x00001000 : 0x0)
718 | (haveTimer ? 0x00010000 : 0x0);
719 }
720 case MISCREG_ID_AA64PFR0_EL1:
721 return 0x0000000000000002 | // AArch{64,32} supported at EL0
722 0x0000000000000020 | // EL1
723 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2
724 (haveSecurity ? 0x0000000000002000 : 0) | // EL3
725 (haveSVE ? 0x0000000100000000 : 0) | // SVE
726 (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
727 case MISCREG_ID_AA64PFR1_EL1:
728 return 0; // bits [63:0] RES0 (reserved for future use)
729
730 // Generic Timer registers
731 case MISCREG_CNTHV_CTL_EL2:
732 case MISCREG_CNTHV_CVAL_EL2:
733 case MISCREG_CNTHV_TVAL_EL2:
734 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
735 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
736 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
737 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
738 return getGenericTimer(tc).readMiscReg(misc_reg);
739
740 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15:
741 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
742 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
743 return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
744
745 default:
746 break;
747
748 }
749 return readMiscRegNoEffect(misc_reg);
750}
751
752void
753ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
754{
755 assert(misc_reg < NumMiscRegs);
756
757 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
758 const auto &map = getMiscIndices(misc_reg);
759 int lower = map.first, upper = map.second;
760
761 auto v = (val & ~reg.wi()) | reg.rao();
762 if (upper > 0) {
763 miscRegs[lower] = bits(v, 31, 0);
764 miscRegs[upper] = bits(v, 63, 32);
765 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
766 misc_reg, lower, upper, v);
767 } else {
768 miscRegs[lower] = v;
769 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
770 misc_reg, lower, v);
771 }
772}
773
774void
775ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
776{
777
778 RegVal newVal = val;
779 bool secure_lookup;
780 SCR scr;
781
782 if (misc_reg == MISCREG_CPSR) {
783 updateRegMap(val);
784
785
786 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
787 int old_mode = old_cpsr.mode;
788 CPSR cpsr = val;
789 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
790 getITBPtr(tc)->invalidateMiscReg();
791 getDTBPtr(tc)->invalidateMiscReg();
792 }
793
1/*
2 * Copyright (c) 2010-2019 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62 : SimObject(p),
63 system(NULL),
64 _decoderFlavour(p->decoderFlavour),
65 _vecRegRenameMode(Enums::Full),
66 pmu(p->pmu),
67 haveGICv3CPUInterface(false),
68 impdefAsNop(p->impdef_nop),
69 afterStartup(false)
70{
71 miscRegs[MISCREG_SCTLR_RST] = 0;
72
73 // Hook up a dummy device if we haven't been configured with a
74 // real PMU. By using a dummy device, we don't need to check that
75 // the PMU exist every time we try to access a PMU register.
76 if (!pmu)
77 pmu = &dummyDevice;
78
79 // Give all ISA devices a pointer to this ISA
80 pmu->setISA(this);
81
82 system = dynamic_cast<ArmSystem *>(p->system);
83
84 // Cache system-level properties
85 if (FullSystem && system) {
86 highestELIs64 = system->highestELIs64();
87 haveSecurity = system->haveSecurity();
88 haveLPAE = system->haveLPAE();
89 haveCrypto = system->haveCrypto();
90 haveVirtualization = system->haveVirtualization();
91 haveLargeAsid64 = system->haveLargeAsid64();
92 physAddrRange = system->physAddrRange();
93 haveSVE = system->haveSVE();
94 havePAN = system->havePAN();
95 sveVL = system->sveVL();
96 haveLSE = system->haveLSE();
97 } else {
98 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
99 haveSecurity = haveLPAE = haveVirtualization = false;
100 haveCrypto = true;
101 haveLargeAsid64 = false;
102 physAddrRange = 32; // dummy value
103 haveSVE = true;
104 havePAN = false;
105 sveVL = p->sve_vl_se;
106 haveLSE = true;
107 }
108
109 // Initial rename mode depends on highestEL
110 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
111 highestELIs64 ? Enums::Full : Enums::Elem;
112
113 initializeMiscRegMetadata();
114 preUnflattenMiscReg();
115
116 clear();
117}
118
119std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
120
121const ArmISAParams *
122ISA::params() const
123{
124 return dynamic_cast<const Params *>(_params);
125}
126
127void
128ISA::clear()
129{
130 const Params *p(params());
131
132 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
133 memset(miscRegs, 0, sizeof(miscRegs));
134
135 initID32(p);
136
137 // We always initialize AArch64 ID registers even
138 // if we are in AArch32. This is done since if we
139 // are in SE mode we don't know if our ArmProcess is
140 // AArch32 or AArch64
141 initID64(p);
142
143 // Start with an event in the mailbox
144 miscRegs[MISCREG_SEV_MAILBOX] = 1;
145
146 // Separate Instruction and Data TLBs
147 miscRegs[MISCREG_TLBTR] = 1;
148
149 MVFR0 mvfr0 = 0;
150 mvfr0.advSimdRegisters = 2;
151 mvfr0.singlePrecision = 2;
152 mvfr0.doublePrecision = 2;
153 mvfr0.vfpExceptionTrapping = 0;
154 mvfr0.divide = 1;
155 mvfr0.squareRoot = 1;
156 mvfr0.shortVectors = 1;
157 mvfr0.roundingModes = 1;
158 miscRegs[MISCREG_MVFR0] = mvfr0;
159
160 MVFR1 mvfr1 = 0;
161 mvfr1.flushToZero = 1;
162 mvfr1.defaultNaN = 1;
163 mvfr1.advSimdLoadStore = 1;
164 mvfr1.advSimdInteger = 1;
165 mvfr1.advSimdSinglePrecision = 1;
166 mvfr1.advSimdHalfPrecision = 1;
167 mvfr1.vfpHalfPrecision = 1;
168 miscRegs[MISCREG_MVFR1] = mvfr1;
169
170 // Reset values of PRRR and NMRR are implementation dependent
171
172 // @todo: PRRR and NMRR in secure state?
173 miscRegs[MISCREG_PRRR_NS] =
174 (1 << 19) | // 19
175 (0 << 18) | // 18
176 (0 << 17) | // 17
177 (1 << 16) | // 16
178 (2 << 14) | // 15:14
179 (0 << 12) | // 13:12
180 (2 << 10) | // 11:10
181 (2 << 8) | // 9:8
182 (2 << 6) | // 7:6
183 (2 << 4) | // 5:4
184 (1 << 2) | // 3:2
185 0; // 1:0
186
187 miscRegs[MISCREG_NMRR_NS] =
188 (1 << 30) | // 31:30
189 (0 << 26) | // 27:26
190 (0 << 24) | // 25:24
191 (3 << 22) | // 23:22
192 (2 << 20) | // 21:20
193 (0 << 18) | // 19:18
194 (0 << 16) | // 17:16
195 (1 << 14) | // 15:14
196 (0 << 12) | // 13:12
197 (2 << 10) | // 11:10
198 (0 << 8) | // 9:8
199 (3 << 6) | // 7:6
200 (2 << 4) | // 5:4
201 (0 << 2) | // 3:2
202 0; // 1:0
203
204 if (FullSystem && system->highestELIs64()) {
205 // Initialize AArch64 state
206 clear64(p);
207 return;
208 }
209
210 // Initialize AArch32 state...
211 clear32(p, sctlr_rst);
212}
213
214void
215ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
216{
217 CPSR cpsr = 0;
218 cpsr.mode = MODE_USER;
219
220 if (FullSystem) {
221 miscRegs[MISCREG_MVBAR] = system->resetAddr();
222 }
223
224 miscRegs[MISCREG_CPSR] = cpsr;
225 updateRegMap(cpsr);
226
227 SCTLR sctlr = 0;
228 sctlr.te = (bool) sctlr_rst.te;
229 sctlr.nmfi = (bool) sctlr_rst.nmfi;
230 sctlr.v = (bool) sctlr_rst.v;
231 sctlr.u = 1;
232 sctlr.xp = 1;
233 sctlr.rao2 = 1;
234 sctlr.rao3 = 1;
235 sctlr.rao4 = 0xf; // SCTLR[6:3]
236 sctlr.uci = 1;
237 sctlr.dze = 1;
238 miscRegs[MISCREG_SCTLR_NS] = sctlr;
239 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
240 miscRegs[MISCREG_HCPTR] = 0;
241
242 miscRegs[MISCREG_CPACR] = 0;
243
244 miscRegs[MISCREG_FPSID] = p->fpsid;
245
246 if (haveLPAE) {
247 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
248 ttbcr.eae = 0;
249 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
250 // Enforce consistency with system-level settings
251 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
252 }
253
254 if (haveSecurity) {
255 miscRegs[MISCREG_SCTLR_S] = sctlr;
256 miscRegs[MISCREG_SCR] = 0;
257 miscRegs[MISCREG_VBAR_S] = 0;
258 } else {
259 // we're always non-secure
260 miscRegs[MISCREG_SCR] = 1;
261 }
262
263 //XXX We need to initialize the rest of the state.
264}
265
266void
267ISA::clear64(const ArmISAParams *p)
268{
269 CPSR cpsr = 0;
270 Addr rvbar = system->resetAddr();
271 switch (system->highestEL()) {
272 // Set initial EL to highest implemented EL using associated stack
273 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
274 // value
275 case EL3:
276 cpsr.mode = MODE_EL3H;
277 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
278 break;
279 case EL2:
280 cpsr.mode = MODE_EL2H;
281 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
282 break;
283 case EL1:
284 cpsr.mode = MODE_EL1H;
285 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
286 break;
287 default:
288 panic("Invalid highest implemented exception level");
289 break;
290 }
291
292 // Initialize rest of CPSR
293 cpsr.daif = 0xf; // Mask all interrupts
294 cpsr.ss = 0;
295 cpsr.il = 0;
296 miscRegs[MISCREG_CPSR] = cpsr;
297 updateRegMap(cpsr);
298
299 // Initialize other control registers
300 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
301 if (haveSecurity) {
302 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
303 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
304 } else if (haveVirtualization) {
305 // also MISCREG_SCTLR_EL2 (by mapping)
306 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
307 } else {
308 // also MISCREG_SCTLR_EL1 (by mapping)
309 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
310 // Always non-secure
311 miscRegs[MISCREG_SCR_EL3] = 1;
312 }
313}
314
315void
316ISA::initID32(const ArmISAParams *p)
317{
318 // Initialize configurable default values
319 miscRegs[MISCREG_MIDR] = p->midr;
320 miscRegs[MISCREG_MIDR_EL1] = p->midr;
321 miscRegs[MISCREG_VPIDR] = p->midr;
322
323 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
324 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
325 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
326 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
327 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
328 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
329
330 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
331 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
332 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
333 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
334
335 miscRegs[MISCREG_ID_ISAR5] = insertBits(
336 miscRegs[MISCREG_ID_ISAR5], 19, 4,
337 haveCrypto ? 0x1112 : 0x0);
338}
339
340void
341ISA::initID64(const ArmISAParams *p)
342{
343 // Initialize configurable id registers
344 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
345 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
346 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
347 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
348 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
349
350 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
351 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
352 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
353 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
354 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
355 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
356
357 miscRegs[MISCREG_ID_DFR0_EL1] =
358 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
359
360 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
361
362 // SVE
363 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0
364 if (haveSecurity) {
365 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
366 } else if (haveVirtualization) {
367 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
368 } else {
369 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
370 }
371
372 // Enforce consistency with system-level settings...
373
374 // EL3
375 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
376 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
377 haveSecurity ? 0x2 : 0x0);
378 // EL2
379 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
380 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
381 haveVirtualization ? 0x2 : 0x0);
382 // SVE
383 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
384 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
385 haveSVE ? 0x1 : 0x0);
386 // Large ASID support
387 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
388 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
389 haveLargeAsid64 ? 0x2 : 0x0);
390 // Physical address size
391 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
392 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
393 encodePhysAddrRange64(physAddrRange));
394 // Crypto
395 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
396 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
397 haveCrypto ? 0x1112 : 0x0);
398 // LSE
399 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
400 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 23, 20,
401 haveLSE ? 0x2 : 0x0);
402 // PAN
403 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits(
404 miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20,
405 havePAN ? 0x1 : 0x0);
406}
407
408void
409ISA::startup(ThreadContext *tc)
410{
411 pmu->setThreadContext(tc);
412
413 if (system) {
414 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
415 if (gicv3) {
416 haveGICv3CPUInterface = true;
417 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
418 gicv3CpuInterface->setISA(this);
419 gicv3CpuInterface->setThreadContext(tc);
420 }
421 }
422
423 afterStartup = true;
424}
425
426
427RegVal
428ISA::readMiscRegNoEffect(int misc_reg) const
429{
430 assert(misc_reg < NumMiscRegs);
431
432 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
433 const auto &map = getMiscIndices(misc_reg);
434 int lower = map.first, upper = map.second;
435 // NB!: apply architectural masks according to desired register,
436 // despite possibly getting value from different (mapped) register.
437 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
438 |(miscRegs[upper] << 32));
439 if (val & reg.res0()) {
440 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
441 miscRegName[misc_reg], val & reg.res0());
442 }
443 if ((val & reg.res1()) != reg.res1()) {
444 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
445 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
446 }
447 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
448}
449
450
451RegVal
452ISA::readMiscReg(int misc_reg, ThreadContext *tc)
453{
454 CPSR cpsr = 0;
455 PCState pc = 0;
456 SCR scr = 0;
457
458 if (misc_reg == MISCREG_CPSR) {
459 cpsr = miscRegs[misc_reg];
460 pc = tc->pcState();
461 cpsr.j = pc.jazelle() ? 1 : 0;
462 cpsr.t = pc.thumb() ? 1 : 0;
463 return cpsr;
464 }
465
466#ifndef NDEBUG
467 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
468 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
469 warn("Unimplemented system register %s read.\n",
470 miscRegName[misc_reg]);
471 else
472 panic("Unimplemented system register %s read.\n",
473 miscRegName[misc_reg]);
474 }
475#endif
476
477 switch (unflattenMiscReg(misc_reg)) {
478 case MISCREG_HCR:
479 {
480 if (!haveVirtualization)
481 return 0;
482 else
483 return readMiscRegNoEffect(MISCREG_HCR);
484 }
485 case MISCREG_CPACR:
486 {
487 const uint32_t ones = (uint32_t)(-1);
488 CPACR cpacrMask = 0;
489 // Only cp10, cp11, and ase are implemented, nothing else should
490 // be readable? (straight copy from the write code)
491 cpacrMask.cp10 = ones;
492 cpacrMask.cp11 = ones;
493 cpacrMask.asedis = ones;
494
495 // Security Extensions may limit the readability of CPACR
496 if (haveSecurity) {
497 scr = readMiscRegNoEffect(MISCREG_SCR);
498 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
499 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
500 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
501 // NB: Skipping the full loop, here
502 if (!nsacr.cp10) cpacrMask.cp10 = 0;
503 if (!nsacr.cp11) cpacrMask.cp11 = 0;
504 }
505 }
506 RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
507 val &= cpacrMask;
508 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
509 miscRegName[misc_reg], val);
510 return val;
511 }
512 case MISCREG_MPIDR:
513 case MISCREG_MPIDR_EL1:
514 return readMPIDR(system, tc);
515 case MISCREG_VMPIDR:
516 case MISCREG_VMPIDR_EL2:
517 // top bit defined as RES1
518 return readMiscRegNoEffect(misc_reg) | 0x80000000;
519 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
520 case MISCREG_REVIDR: // not implemented, so alias MIDR
521 case MISCREG_MIDR:
522 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
523 scr = readMiscRegNoEffect(MISCREG_SCR);
524 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
525 return readMiscRegNoEffect(misc_reg);
526 } else {
527 return readMiscRegNoEffect(MISCREG_VPIDR);
528 }
529 break;
530 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
531 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
532 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
533 case MISCREG_AIDR: // AUX ID set to 0
534 case MISCREG_TCMTR: // No TCM's
535 return 0;
536
537 case MISCREG_CLIDR:
538 warn_once("The clidr register always reports 0 caches.\n");
539 warn_once("clidr LoUIS field of 0b001 to match current "
540 "ARM implementations.\n");
541 return 0x00200000;
542 case MISCREG_CCSIDR:
543 warn_once("The ccsidr register isn't implemented and "
544 "always reads as 0.\n");
545 break;
546 case MISCREG_CTR: // AArch32, ARMv7, top bit set
547 case MISCREG_CTR_EL0: // AArch64
548 {
549 //all caches have the same line size in gem5
550 //4 byte words in ARM
551 unsigned lineSizeWords =
552 tc->getSystemPtr()->cacheLineSize() / 4;
553 unsigned log2LineSizeWords = 0;
554
555 while (lineSizeWords >>= 1) {
556 ++log2LineSizeWords;
557 }
558
559 CTR ctr = 0;
560 //log2 of minimun i-cache line size (words)
561 ctr.iCacheLineSize = log2LineSizeWords;
562 //b11 - gem5 uses pipt
563 ctr.l1IndexPolicy = 0x3;
564 //log2 of minimum d-cache line size (words)
565 ctr.dCacheLineSize = log2LineSizeWords;
566 //log2 of max reservation size (words)
567 ctr.erg = log2LineSizeWords;
568 //log2 of max writeback size (words)
569 ctr.cwg = log2LineSizeWords;
570 //b100 - gem5 format is ARMv7
571 ctr.format = 0x4;
572
573 return ctr;
574 }
575 case MISCREG_ACTLR:
576 warn("Not doing anything for miscreg ACTLR\n");
577 break;
578
579 case MISCREG_PMXEVTYPER_PMCCFILTR:
580 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
581 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
582 case MISCREG_PMCR ... MISCREG_PMOVSSET:
583 return pmu->readMiscReg(misc_reg);
584
585 case MISCREG_CPSR_Q:
586 panic("shouldn't be reading this register seperately\n");
587 case MISCREG_FPSCR_QC:
588 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
589 case MISCREG_FPSCR_EXC:
590 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
591 case MISCREG_FPSR:
592 {
593 const uint32_t ones = (uint32_t)(-1);
594 FPSCR fpscrMask = 0;
595 fpscrMask.ioc = ones;
596 fpscrMask.dzc = ones;
597 fpscrMask.ofc = ones;
598 fpscrMask.ufc = ones;
599 fpscrMask.ixc = ones;
600 fpscrMask.idc = ones;
601 fpscrMask.qc = ones;
602 fpscrMask.v = ones;
603 fpscrMask.c = ones;
604 fpscrMask.z = ones;
605 fpscrMask.n = ones;
606 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
607 }
608 case MISCREG_FPCR:
609 {
610 const uint32_t ones = (uint32_t)(-1);
611 FPSCR fpscrMask = 0;
612 fpscrMask.len = ones;
613 fpscrMask.fz16 = ones;
614 fpscrMask.stride = ones;
615 fpscrMask.rMode = ones;
616 fpscrMask.fz = ones;
617 fpscrMask.dn = ones;
618 fpscrMask.ahp = ones;
619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620 }
621 case MISCREG_NZCV:
622 {
623 CPSR cpsr = 0;
624 cpsr.nz = tc->readCCReg(CCREG_NZ);
625 cpsr.c = tc->readCCReg(CCREG_C);
626 cpsr.v = tc->readCCReg(CCREG_V);
627 return cpsr;
628 }
629 case MISCREG_DAIF:
630 {
631 CPSR cpsr = 0;
632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
633 return cpsr;
634 }
635 case MISCREG_SP_EL0:
636 {
637 return tc->readIntReg(INTREG_SP0);
638 }
639 case MISCREG_SP_EL1:
640 {
641 return tc->readIntReg(INTREG_SP1);
642 }
643 case MISCREG_SP_EL2:
644 {
645 return tc->readIntReg(INTREG_SP2);
646 }
647 case MISCREG_SPSEL:
648 {
649 return miscRegs[MISCREG_CPSR] & 0x1;
650 }
651 case MISCREG_CURRENTEL:
652 {
653 return miscRegs[MISCREG_CPSR] & 0xc;
654 }
655 case MISCREG_PAN:
656 {
657 return miscRegs[MISCREG_CPSR] & 0x400000;
658 }
659 case MISCREG_L2CTLR:
660 {
661 // mostly unimplemented, just set NumCPUs field from sim and return
662 L2CTLR l2ctlr = 0;
663 // b00:1CPU to b11:4CPUs
664 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
665 return l2ctlr;
666 }
667 case MISCREG_DBGDIDR:
668 /* For now just implement the version number.
669 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
670 */
671 return 0x5 << 16;
672 case MISCREG_DBGDSCRint:
673 return 0;
674 case MISCREG_ISR:
675 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
676 readMiscRegNoEffect(MISCREG_HCR),
677 readMiscRegNoEffect(MISCREG_CPSR),
678 readMiscRegNoEffect(MISCREG_SCR));
679 case MISCREG_ISR_EL1:
680 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
681 readMiscRegNoEffect(MISCREG_HCR_EL2),
682 readMiscRegNoEffect(MISCREG_CPSR),
683 readMiscRegNoEffect(MISCREG_SCR_EL3));
684 case MISCREG_DCZID_EL0:
685 return 0x04; // DC ZVA clear 64-byte chunks
686 case MISCREG_HCPTR:
687 {
688 RegVal val = readMiscRegNoEffect(misc_reg);
689 // The trap bit associated with CP14 is defined as RAZ
690 val &= ~(1 << 14);
691 // If a CP bit in NSACR is 0 then the corresponding bit in
692 // HCPTR is RAO/WI
693 bool secure_lookup = haveSecurity &&
694 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
695 readMiscRegNoEffect(MISCREG_CPSR));
696 if (!secure_lookup) {
697 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
698 val |= (mask ^ 0x7FFF) & 0xBFFF;
699 }
700 // Set the bits for unimplemented coprocessors to RAO/WI
701 val |= 0x33FF;
702 return (val);
703 }
704 case MISCREG_HDFAR: // alias for secure DFAR
705 return readMiscRegNoEffect(MISCREG_DFAR_S);
706 case MISCREG_HIFAR: // alias for secure IFAR
707 return readMiscRegNoEffect(MISCREG_IFAR_S);
708
709 case MISCREG_ID_PFR0:
710 // !ThumbEE | !Jazelle | Thumb | ARM
711 return 0x00000031;
712 case MISCREG_ID_PFR1:
713 { // Timer | Virti | !M Profile | TrustZone | ARMv4
714 bool haveTimer = (system->getGenericTimer() != NULL);
715 return 0x00000001
716 | (haveSecurity ? 0x00000010 : 0x0)
717 | (haveVirtualization ? 0x00001000 : 0x0)
718 | (haveTimer ? 0x00010000 : 0x0);
719 }
720 case MISCREG_ID_AA64PFR0_EL1:
721 return 0x0000000000000002 | // AArch{64,32} supported at EL0
722 0x0000000000000020 | // EL1
723 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2
724 (haveSecurity ? 0x0000000000002000 : 0) | // EL3
725 (haveSVE ? 0x0000000100000000 : 0) | // SVE
726 (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
727 case MISCREG_ID_AA64PFR1_EL1:
728 return 0; // bits [63:0] RES0 (reserved for future use)
729
730 // Generic Timer registers
731 case MISCREG_CNTHV_CTL_EL2:
732 case MISCREG_CNTHV_CVAL_EL2:
733 case MISCREG_CNTHV_TVAL_EL2:
734 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
735 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
736 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
737 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
738 return getGenericTimer(tc).readMiscReg(misc_reg);
739
740 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15:
741 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
742 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
743 return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
744
745 default:
746 break;
747
748 }
749 return readMiscRegNoEffect(misc_reg);
750}
751
752void
753ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
754{
755 assert(misc_reg < NumMiscRegs);
756
757 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
758 const auto &map = getMiscIndices(misc_reg);
759 int lower = map.first, upper = map.second;
760
761 auto v = (val & ~reg.wi()) | reg.rao();
762 if (upper > 0) {
763 miscRegs[lower] = bits(v, 31, 0);
764 miscRegs[upper] = bits(v, 63, 32);
765 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
766 misc_reg, lower, upper, v);
767 } else {
768 miscRegs[lower] = v;
769 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
770 misc_reg, lower, v);
771 }
772}
773
774void
775ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
776{
777
778 RegVal newVal = val;
779 bool secure_lookup;
780 SCR scr;
781
782 if (misc_reg == MISCREG_CPSR) {
783 updateRegMap(val);
784
785
786 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
787 int old_mode = old_cpsr.mode;
788 CPSR cpsr = val;
789 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
790 getITBPtr(tc)->invalidateMiscReg();
791 getDTBPtr(tc)->invalidateMiscReg();
792 }
793
794 if (cpsr.pan != old_cpsr.pan) {
795 getDTBPtr(tc)->invalidateMiscReg();
796 }
797
794 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
795 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
796 PCState pc = tc->pcState();
797 pc.nextThumb(cpsr.t);
798 pc.nextJazelle(cpsr.j);
799 pc.illegalExec(cpsr.il == 1);
800
801 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
802
803 // Follow slightly different semantics if a CheckerCPU object
804 // is connected
805 CheckerCPU *checker = tc->getCheckerCpuPtr();
806 if (checker) {
807 tc->pcStateNoRecord(pc);
808 } else {
809 tc->pcState(pc);
810 }
811 } else {
812#ifndef NDEBUG
813 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
814 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
815 warn("Unimplemented system register %s write with %#x.\n",
816 miscRegName[misc_reg], val);
817 else
818 panic("Unimplemented system register %s write with %#x.\n",
819 miscRegName[misc_reg], val);
820 }
821#endif
822 switch (unflattenMiscReg(misc_reg)) {
823 case MISCREG_CPACR:
824 {
825
826 const uint32_t ones = (uint32_t)(-1);
827 CPACR cpacrMask = 0;
828 // Only cp10, cp11, and ase are implemented, nothing else should
829 // be writable
830 cpacrMask.cp10 = ones;
831 cpacrMask.cp11 = ones;
832 cpacrMask.asedis = ones;
833
834 // Security Extensions may limit the writability of CPACR
835 if (haveSecurity) {
836 scr = readMiscRegNoEffect(MISCREG_SCR);
837 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
838 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
839 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
840 // NB: Skipping the full loop, here
841 if (!nsacr.cp10) cpacrMask.cp10 = 0;
842 if (!nsacr.cp11) cpacrMask.cp11 = 0;
843 }
844 }
845
846 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
847 newVal &= cpacrMask;
848 newVal |= old_val & ~cpacrMask;
849 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
850 miscRegName[misc_reg], newVal);
851 }
852 break;
853 case MISCREG_CPACR_EL1:
854 {
855 const uint32_t ones = (uint32_t)(-1);
856 CPACR cpacrMask = 0;
857 cpacrMask.tta = ones;
858 cpacrMask.fpen = ones;
859 if (haveSVE) {
860 cpacrMask.zen = ones;
861 }
862 newVal &= cpacrMask;
863 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
864 miscRegName[misc_reg], newVal);
865 }
866 break;
867 case MISCREG_CPTR_EL2:
868 {
869 const uint32_t ones = (uint32_t)(-1);
870 CPTR cptrMask = 0;
871 cptrMask.tcpac = ones;
872 cptrMask.tta = ones;
873 cptrMask.tfp = ones;
874 if (haveSVE) {
875 cptrMask.tz = ones;
876 }
877 newVal &= cptrMask;
878 cptrMask = 0;
879 cptrMask.res1_13_12_el2 = ones;
880 cptrMask.res1_7_0_el2 = ones;
881 if (!haveSVE) {
882 cptrMask.res1_8_el2 = ones;
883 }
884 cptrMask.res1_9_el2 = ones;
885 newVal |= cptrMask;
886 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
887 miscRegName[misc_reg], newVal);
888 }
889 break;
890 case MISCREG_CPTR_EL3:
891 {
892 const uint32_t ones = (uint32_t)(-1);
893 CPTR cptrMask = 0;
894 cptrMask.tcpac = ones;
895 cptrMask.tta = ones;
896 cptrMask.tfp = ones;
897 if (haveSVE) {
898 cptrMask.ez = ones;
899 }
900 newVal &= cptrMask;
901 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
902 miscRegName[misc_reg], newVal);
903 }
904 break;
905 case MISCREG_CSSELR:
906 warn_once("The csselr register isn't implemented.\n");
907 return;
908
909 case MISCREG_DC_ZVA_Xt:
910 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
911 return;
912
913 case MISCREG_FPSCR:
914 {
915 const uint32_t ones = (uint32_t)(-1);
916 FPSCR fpscrMask = 0;
917 fpscrMask.ioc = ones;
918 fpscrMask.dzc = ones;
919 fpscrMask.ofc = ones;
920 fpscrMask.ufc = ones;
921 fpscrMask.ixc = ones;
922 fpscrMask.idc = ones;
923 fpscrMask.ioe = ones;
924 fpscrMask.dze = ones;
925 fpscrMask.ofe = ones;
926 fpscrMask.ufe = ones;
927 fpscrMask.ixe = ones;
928 fpscrMask.ide = ones;
929 fpscrMask.len = ones;
930 fpscrMask.fz16 = ones;
931 fpscrMask.stride = ones;
932 fpscrMask.rMode = ones;
933 fpscrMask.fz = ones;
934 fpscrMask.dn = ones;
935 fpscrMask.ahp = ones;
936 fpscrMask.qc = ones;
937 fpscrMask.v = ones;
938 fpscrMask.c = ones;
939 fpscrMask.z = ones;
940 fpscrMask.n = ones;
941 newVal = (newVal & (uint32_t)fpscrMask) |
942 (readMiscRegNoEffect(MISCREG_FPSCR) &
943 ~(uint32_t)fpscrMask);
944 tc->getDecoderPtr()->setContext(newVal);
945 }
946 break;
947 case MISCREG_FPSR:
948 {
949 const uint32_t ones = (uint32_t)(-1);
950 FPSCR fpscrMask = 0;
951 fpscrMask.ioc = ones;
952 fpscrMask.dzc = ones;
953 fpscrMask.ofc = ones;
954 fpscrMask.ufc = ones;
955 fpscrMask.ixc = ones;
956 fpscrMask.idc = ones;
957 fpscrMask.qc = ones;
958 fpscrMask.v = ones;
959 fpscrMask.c = ones;
960 fpscrMask.z = ones;
961 fpscrMask.n = ones;
962 newVal = (newVal & (uint32_t)fpscrMask) |
963 (readMiscRegNoEffect(MISCREG_FPSCR) &
964 ~(uint32_t)fpscrMask);
965 misc_reg = MISCREG_FPSCR;
966 }
967 break;
968 case MISCREG_FPCR:
969 {
970 const uint32_t ones = (uint32_t)(-1);
971 FPSCR fpscrMask = 0;
972 fpscrMask.len = ones;
973 fpscrMask.fz16 = ones;
974 fpscrMask.stride = ones;
975 fpscrMask.rMode = ones;
976 fpscrMask.fz = ones;
977 fpscrMask.dn = ones;
978 fpscrMask.ahp = ones;
979 newVal = (newVal & (uint32_t)fpscrMask) |
980 (readMiscRegNoEffect(MISCREG_FPSCR) &
981 ~(uint32_t)fpscrMask);
982 misc_reg = MISCREG_FPSCR;
983 }
984 break;
985 case MISCREG_CPSR_Q:
986 {
987 assert(!(newVal & ~CpsrMaskQ));
988 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
989 misc_reg = MISCREG_CPSR;
990 }
991 break;
992 case MISCREG_FPSCR_QC:
993 {
994 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
995 (newVal & FpscrQcMask);
996 misc_reg = MISCREG_FPSCR;
997 }
998 break;
999 case MISCREG_FPSCR_EXC:
1000 {
1001 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1002 (newVal & FpscrExcMask);
1003 misc_reg = MISCREG_FPSCR;
1004 }
1005 break;
1006 case MISCREG_FPEXC:
1007 {
1008 // vfpv3 architecture, section B.6.1 of DDI04068
1009 // bit 29 - valid only if fpexc[31] is 0
1010 const uint32_t fpexcMask = 0x60000000;
1011 newVal = (newVal & fpexcMask) |
1012 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1013 }
1014 break;
1015 case MISCREG_HCR:
1016 {
1017 if (!haveVirtualization)
1018 return;
1019 }
1020 break;
1021 case MISCREG_IFSR:
1022 {
1023 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1024 const uint32_t ifsrMask =
1025 mask(31, 13) | mask(11, 11) | mask(8, 6);
1026 newVal = newVal & ~ifsrMask;
1027 }
1028 break;
1029 case MISCREG_DFSR:
1030 {
1031 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1032 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1033 newVal = newVal & ~dfsrMask;
1034 }
1035 break;
1036 case MISCREG_AMAIR0:
1037 case MISCREG_AMAIR1:
1038 {
1039 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1040 // Valid only with LPAE
1041 if (!haveLPAE)
1042 return;
1043 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1044 }
1045 break;
1046 case MISCREG_SCR:
1047 getITBPtr(tc)->invalidateMiscReg();
1048 getDTBPtr(tc)->invalidateMiscReg();
1049 break;
1050 case MISCREG_SCTLR:
1051 {
1052 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1053 scr = readMiscRegNoEffect(MISCREG_SCR);
1054
1055 MiscRegIndex sctlr_idx;
1056 if (haveSecurity && !highestELIs64 && !scr.ns) {
1057 sctlr_idx = MISCREG_SCTLR_S;
1058 } else {
1059 sctlr_idx = MISCREG_SCTLR_NS;
1060 }
1061
1062 SCTLR sctlr = miscRegs[sctlr_idx];
1063 SCTLR new_sctlr = newVal;
1064 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1065 miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1066 getITBPtr(tc)->invalidateMiscReg();
1067 getDTBPtr(tc)->invalidateMiscReg();
1068 }
1069 case MISCREG_MIDR:
1070 case MISCREG_ID_PFR0:
1071 case MISCREG_ID_PFR1:
1072 case MISCREG_ID_DFR0:
1073 case MISCREG_ID_MMFR0:
1074 case MISCREG_ID_MMFR1:
1075 case MISCREG_ID_MMFR2:
1076 case MISCREG_ID_MMFR3:
1077 case MISCREG_ID_ISAR0:
1078 case MISCREG_ID_ISAR1:
1079 case MISCREG_ID_ISAR2:
1080 case MISCREG_ID_ISAR3:
1081 case MISCREG_ID_ISAR4:
1082 case MISCREG_ID_ISAR5:
1083
1084 case MISCREG_MPIDR:
1085 case MISCREG_FPSID:
1086 case MISCREG_TLBTR:
1087 case MISCREG_MVFR0:
1088 case MISCREG_MVFR1:
1089
1090 case MISCREG_ID_AA64AFR0_EL1:
1091 case MISCREG_ID_AA64AFR1_EL1:
1092 case MISCREG_ID_AA64DFR0_EL1:
1093 case MISCREG_ID_AA64DFR1_EL1:
1094 case MISCREG_ID_AA64ISAR0_EL1:
1095 case MISCREG_ID_AA64ISAR1_EL1:
1096 case MISCREG_ID_AA64MMFR0_EL1:
1097 case MISCREG_ID_AA64MMFR1_EL1:
1098 case MISCREG_ID_AA64MMFR2_EL1:
1099 case MISCREG_ID_AA64PFR0_EL1:
1100 case MISCREG_ID_AA64PFR1_EL1:
1101 // ID registers are constants.
1102 return;
1103
1104 // TLB Invalidate All
1105 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1106 {
1107 assert32(tc);
1108 scr = readMiscReg(MISCREG_SCR, tc);
1109
1110 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1111 tlbiOp(tc);
1112 return;
1113 }
1114 // TLB Invalidate All, Inner Shareable
1115 case MISCREG_TLBIALLIS:
1116 {
1117 assert32(tc);
1118 scr = readMiscReg(MISCREG_SCR, tc);
1119
1120 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1121 tlbiOp.broadcast(tc);
1122 return;
1123 }
1124 // Instruction TLB Invalidate All
1125 case MISCREG_ITLBIALL:
1126 {
1127 assert32(tc);
1128 scr = readMiscReg(MISCREG_SCR, tc);
1129
1130 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1131 tlbiOp(tc);
1132 return;
1133 }
1134 // Data TLB Invalidate All
1135 case MISCREG_DTLBIALL:
1136 {
1137 assert32(tc);
1138 scr = readMiscReg(MISCREG_SCR, tc);
1139
1140 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1141 tlbiOp(tc);
1142 return;
1143 }
1144 // TLB Invalidate by VA
1145 // mcr tlbimval(is) is invalidating all matching entries
1146 // regardless of the level of lookup, since in gem5 we cache
1147 // in the tlb the last level of lookup only.
1148 case MISCREG_TLBIMVA:
1149 case MISCREG_TLBIMVAL:
1150 {
1151 assert32(tc);
1152 scr = readMiscReg(MISCREG_SCR, tc);
1153
1154 TLBIMVA tlbiOp(EL1,
1155 haveSecurity && !scr.ns,
1156 mbits(newVal, 31, 12),
1157 bits(newVal, 7,0));
1158
1159 tlbiOp(tc);
1160 return;
1161 }
1162 // TLB Invalidate by VA, Inner Shareable
1163 case MISCREG_TLBIMVAIS:
1164 case MISCREG_TLBIMVALIS:
1165 {
1166 assert32(tc);
1167 scr = readMiscReg(MISCREG_SCR, tc);
1168
1169 TLBIMVA tlbiOp(EL1,
1170 haveSecurity && !scr.ns,
1171 mbits(newVal, 31, 12),
1172 bits(newVal, 7,0));
1173
1174 tlbiOp.broadcast(tc);
1175 return;
1176 }
1177 // TLB Invalidate by ASID match
1178 case MISCREG_TLBIASID:
1179 {
1180 assert32(tc);
1181 scr = readMiscReg(MISCREG_SCR, tc);
1182
1183 TLBIASID tlbiOp(EL1,
1184 haveSecurity && !scr.ns,
1185 bits(newVal, 7,0));
1186
1187 tlbiOp(tc);
1188 return;
1189 }
1190 // TLB Invalidate by ASID match, Inner Shareable
1191 case MISCREG_TLBIASIDIS:
1192 {
1193 assert32(tc);
1194 scr = readMiscReg(MISCREG_SCR, tc);
1195
1196 TLBIASID tlbiOp(EL1,
1197 haveSecurity && !scr.ns,
1198 bits(newVal, 7,0));
1199
1200 tlbiOp.broadcast(tc);
1201 return;
1202 }
1203 // mcr tlbimvaal(is) is invalidating all matching entries
1204 // regardless of the level of lookup, since in gem5 we cache
1205 // in the tlb the last level of lookup only.
1206 // TLB Invalidate by VA, All ASID
1207 case MISCREG_TLBIMVAA:
1208 case MISCREG_TLBIMVAAL:
1209 {
1210 assert32(tc);
1211 scr = readMiscReg(MISCREG_SCR, tc);
1212
1213 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1214 mbits(newVal, 31,12));
1215
1216 tlbiOp(tc);
1217 return;
1218 }
1219 // TLB Invalidate by VA, All ASID, Inner Shareable
1220 case MISCREG_TLBIMVAAIS:
1221 case MISCREG_TLBIMVAALIS:
1222 {
1223 assert32(tc);
1224 scr = readMiscReg(MISCREG_SCR, tc);
1225
1226 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1227 mbits(newVal, 31,12));
1228
1229 tlbiOp.broadcast(tc);
1230 return;
1231 }
1232 // mcr tlbimvalh(is) is invalidating all matching entries
1233 // regardless of the level of lookup, since in gem5 we cache
1234 // in the tlb the last level of lookup only.
1235 // TLB Invalidate by VA, Hyp mode
1236 case MISCREG_TLBIMVAH:
1237 case MISCREG_TLBIMVALH:
1238 {
1239 assert32(tc);
1240 scr = readMiscReg(MISCREG_SCR, tc);
1241
1242 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1243 mbits(newVal, 31,12));
1244
1245 tlbiOp(tc);
1246 return;
1247 }
1248 // TLB Invalidate by VA, Hyp mode, Inner Shareable
1249 case MISCREG_TLBIMVAHIS:
1250 case MISCREG_TLBIMVALHIS:
1251 {
1252 assert32(tc);
1253 scr = readMiscReg(MISCREG_SCR, tc);
1254
1255 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1256 mbits(newVal, 31,12));
1257
1258 tlbiOp.broadcast(tc);
1259 return;
1260 }
1261 // mcr tlbiipas2l(is) is invalidating all matching entries
1262 // regardless of the level of lookup, since in gem5 we cache
1263 // in the tlb the last level of lookup only.
1264 // TLB Invalidate by Intermediate Physical Address, Stage 2
1265 case MISCREG_TLBIIPAS2:
1266 case MISCREG_TLBIIPAS2L:
1267 {
1268 assert32(tc);
1269 scr = readMiscReg(MISCREG_SCR, tc);
1270
1271 TLBIIPA tlbiOp(EL1,
1272 haveSecurity && !scr.ns,
1273 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1274
1275 tlbiOp(tc);
1276 return;
1277 }
1278 // TLB Invalidate by Intermediate Physical Address, Stage 2,
1279 // Inner Shareable
1280 case MISCREG_TLBIIPAS2IS:
1281 case MISCREG_TLBIIPAS2LIS:
1282 {
1283 assert32(tc);
1284 scr = readMiscReg(MISCREG_SCR, tc);
1285
1286 TLBIIPA tlbiOp(EL1,
1287 haveSecurity && !scr.ns,
1288 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1289
1290 tlbiOp.broadcast(tc);
1291 return;
1292 }
1293 // Instruction TLB Invalidate by VA
1294 case MISCREG_ITLBIMVA:
1295 {
1296 assert32(tc);
1297 scr = readMiscReg(MISCREG_SCR, tc);
1298
1299 ITLBIMVA tlbiOp(EL1,
1300 haveSecurity && !scr.ns,
1301 mbits(newVal, 31, 12),
1302 bits(newVal, 7,0));
1303
1304 tlbiOp(tc);
1305 return;
1306 }
1307 // Data TLB Invalidate by VA
1308 case MISCREG_DTLBIMVA:
1309 {
1310 assert32(tc);
1311 scr = readMiscReg(MISCREG_SCR, tc);
1312
1313 DTLBIMVA tlbiOp(EL1,
1314 haveSecurity && !scr.ns,
1315 mbits(newVal, 31, 12),
1316 bits(newVal, 7,0));
1317
1318 tlbiOp(tc);
1319 return;
1320 }
1321 // Instruction TLB Invalidate by ASID match
1322 case MISCREG_ITLBIASID:
1323 {
1324 assert32(tc);
1325 scr = readMiscReg(MISCREG_SCR, tc);
1326
1327 ITLBIASID tlbiOp(EL1,
1328 haveSecurity && !scr.ns,
1329 bits(newVal, 7,0));
1330
1331 tlbiOp(tc);
1332 return;
1333 }
1334 // Data TLB Invalidate by ASID match
1335 case MISCREG_DTLBIASID:
1336 {
1337 assert32(tc);
1338 scr = readMiscReg(MISCREG_SCR, tc);
1339
1340 DTLBIASID tlbiOp(EL1,
1341 haveSecurity && !scr.ns,
1342 bits(newVal, 7,0));
1343
1344 tlbiOp(tc);
1345 return;
1346 }
1347 // TLB Invalidate All, Non-Secure Non-Hyp
1348 case MISCREG_TLBIALLNSNH:
1349 {
1350 assert32(tc);
1351
1352 TLBIALLN tlbiOp(EL1);
1353 tlbiOp(tc);
1354 return;
1355 }
1356 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1357 case MISCREG_TLBIALLNSNHIS:
1358 {
1359 assert32(tc);
1360
1361 TLBIALLN tlbiOp(EL1);
1362 tlbiOp.broadcast(tc);
1363 return;
1364 }
1365 // TLB Invalidate All, Hyp mode
1366 case MISCREG_TLBIALLH:
1367 {
1368 assert32(tc);
1369
1370 TLBIALLN tlbiOp(EL2);
1371 tlbiOp(tc);
1372 return;
1373 }
1374 // TLB Invalidate All, Hyp mode, Inner Shareable
1375 case MISCREG_TLBIALLHIS:
1376 {
1377 assert32(tc);
1378
1379 TLBIALLN tlbiOp(EL2);
1380 tlbiOp.broadcast(tc);
1381 return;
1382 }
1383 // AArch64 TLB Invalidate All, EL3
1384 case MISCREG_TLBI_ALLE3:
1385 {
1386 assert64(tc);
1387
1388 TLBIALL tlbiOp(EL3, true);
1389 tlbiOp(tc);
1390 return;
1391 }
1392 // AArch64 TLB Invalidate All, EL3, Inner Shareable
1393 case MISCREG_TLBI_ALLE3IS:
1394 {
1395 assert64(tc);
1396
1397 TLBIALL tlbiOp(EL3, true);
1398 tlbiOp.broadcast(tc);
1399 return;
1400 }
1401 // AArch64 TLB Invalidate All, EL2, Inner Shareable
1402 case MISCREG_TLBI_ALLE2:
1403 case MISCREG_TLBI_ALLE2IS:
1404 {
1405 assert64(tc);
1406 scr = readMiscReg(MISCREG_SCR, tc);
1407
1408 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1409 tlbiOp(tc);
1410 return;
1411 }
1412 // AArch64 TLB Invalidate All, EL1
1413 case MISCREG_TLBI_ALLE1:
1414 case MISCREG_TLBI_VMALLE1:
1415 case MISCREG_TLBI_VMALLS12E1:
1416 // @todo: handle VMID and stage 2 to enable Virtualization
1417 {
1418 assert64(tc);
1419 scr = readMiscReg(MISCREG_SCR, tc);
1420
1421 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1422 tlbiOp(tc);
1423 return;
1424 }
1425 // AArch64 TLB Invalidate All, EL1, Inner Shareable
1426 case MISCREG_TLBI_ALLE1IS:
1427 case MISCREG_TLBI_VMALLE1IS:
1428 case MISCREG_TLBI_VMALLS12E1IS:
1429 // @todo: handle VMID and stage 2 to enable Virtualization
1430 {
1431 assert64(tc);
1432 scr = readMiscReg(MISCREG_SCR, tc);
1433
1434 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1435 tlbiOp.broadcast(tc);
1436 return;
1437 }
1438 // VAEx(IS) and VALEx(IS) are the same because TLBs
1439 // only store entries
1440 // from the last level of translation table walks
1441 // @todo: handle VMID to enable Virtualization
1442 // AArch64 TLB Invalidate by VA, EL3
1443 case MISCREG_TLBI_VAE3_Xt:
1444 case MISCREG_TLBI_VALE3_Xt:
1445 {
1446 assert64(tc);
1447
1448 TLBIMVA tlbiOp(EL3, true,
1449 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1450 0xbeef);
1451 tlbiOp(tc);
1452 return;
1453 }
1454 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1455 case MISCREG_TLBI_VAE3IS_Xt:
1456 case MISCREG_TLBI_VALE3IS_Xt:
1457 {
1458 assert64(tc);
1459
1460 TLBIMVA tlbiOp(EL3, true,
1461 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1462 0xbeef);
1463
1464 tlbiOp.broadcast(tc);
1465 return;
1466 }
1467 // AArch64 TLB Invalidate by VA, EL2
1468 case MISCREG_TLBI_VAE2_Xt:
1469 case MISCREG_TLBI_VALE2_Xt:
1470 {
1471 assert64(tc);
1472 scr = readMiscReg(MISCREG_SCR, tc);
1473
1474 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1475 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1476 0xbeef);
1477 tlbiOp(tc);
1478 return;
1479 }
1480 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1481 case MISCREG_TLBI_VAE2IS_Xt:
1482 case MISCREG_TLBI_VALE2IS_Xt:
1483 {
1484 assert64(tc);
1485 scr = readMiscReg(MISCREG_SCR, tc);
1486
1487 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1488 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1489 0xbeef);
1490
1491 tlbiOp.broadcast(tc);
1492 return;
1493 }
1494 // AArch64 TLB Invalidate by VA, EL1
1495 case MISCREG_TLBI_VAE1_Xt:
1496 case MISCREG_TLBI_VALE1_Xt:
1497 {
1498 assert64(tc);
1499 scr = readMiscReg(MISCREG_SCR, tc);
1500 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1501 bits(newVal, 55, 48);
1502
1503 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1504 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1505 asid);
1506
1507 tlbiOp(tc);
1508 return;
1509 }
1510 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1511 case MISCREG_TLBI_VAE1IS_Xt:
1512 case MISCREG_TLBI_VALE1IS_Xt:
1513 {
1514 assert64(tc);
1515 scr = readMiscReg(MISCREG_SCR, tc);
1516 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1517 bits(newVal, 55, 48);
1518
1519 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1520 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1521 asid);
1522
1523 tlbiOp.broadcast(tc);
1524 return;
1525 }
1526 // AArch64 TLB Invalidate by ASID, EL1
1527 // @todo: handle VMID to enable Virtualization
1528 case MISCREG_TLBI_ASIDE1_Xt:
1529 {
1530 assert64(tc);
1531 scr = readMiscReg(MISCREG_SCR, tc);
1532 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1533 bits(newVal, 55, 48);
1534
1535 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1536 tlbiOp(tc);
1537 return;
1538 }
1539 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1540 case MISCREG_TLBI_ASIDE1IS_Xt:
1541 {
1542 assert64(tc);
1543 scr = readMiscReg(MISCREG_SCR, tc);
1544 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1545 bits(newVal, 55, 48);
1546
1547 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1548 tlbiOp.broadcast(tc);
1549 return;
1550 }
1551 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1552 // entries from the last level of translation table walks
1553 // AArch64 TLB Invalidate by VA, All ASID, EL1
1554 case MISCREG_TLBI_VAAE1_Xt:
1555 case MISCREG_TLBI_VAALE1_Xt:
1556 {
1557 assert64(tc);
1558 scr = readMiscReg(MISCREG_SCR, tc);
1559
1560 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1561 static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1562
1563 tlbiOp(tc);
1564 return;
1565 }
1566 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1567 case MISCREG_TLBI_VAAE1IS_Xt:
1568 case MISCREG_TLBI_VAALE1IS_Xt:
1569 {
1570 assert64(tc);
1571 scr = readMiscReg(MISCREG_SCR, tc);
1572
1573 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1574 static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1575
1576 tlbiOp.broadcast(tc);
1577 return;
1578 }
1579 // AArch64 TLB Invalidate by Intermediate Physical Address,
1580 // Stage 2, EL1
1581 case MISCREG_TLBI_IPAS2E1_Xt:
1582 case MISCREG_TLBI_IPAS2LE1_Xt:
1583 {
1584 assert64(tc);
1585 scr = readMiscReg(MISCREG_SCR, tc);
1586
1587 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1588 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1589
1590 tlbiOp(tc);
1591 return;
1592 }
1593 // AArch64 TLB Invalidate by Intermediate Physical Address,
1594 // Stage 2, EL1, Inner Shareable
1595 case MISCREG_TLBI_IPAS2E1IS_Xt:
1596 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1597 {
1598 assert64(tc);
1599 scr = readMiscReg(MISCREG_SCR, tc);
1600
1601 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1602 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1603
1604 tlbiOp.broadcast(tc);
1605 return;
1606 }
1607 case MISCREG_ACTLR:
1608 warn("Not doing anything for write of miscreg ACTLR\n");
1609 break;
1610
1611 case MISCREG_PMXEVTYPER_PMCCFILTR:
1612 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1613 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1614 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1615 pmu->setMiscReg(misc_reg, newVal);
1616 break;
1617
1618
1619 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1620 {
1621 HSTR hstrMask = 0;
1622 hstrMask.tjdbx = 1;
1623 newVal &= ~((uint32_t) hstrMask);
1624 break;
1625 }
1626 case MISCREG_HCPTR:
1627 {
1628 // If a CP bit in NSACR is 0 then the corresponding bit in
1629 // HCPTR is RAO/WI. Same applies to NSASEDIS
1630 secure_lookup = haveSecurity &&
1631 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1632 readMiscRegNoEffect(MISCREG_CPSR));
1633 if (!secure_lookup) {
1634 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1635 RegVal mask =
1636 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1637 newVal = (newVal & ~mask) | (oldValue & mask);
1638 }
1639 break;
1640 }
1641 case MISCREG_HDFAR: // alias for secure DFAR
1642 misc_reg = MISCREG_DFAR_S;
1643 break;
1644 case MISCREG_HIFAR: // alias for secure IFAR
1645 misc_reg = MISCREG_IFAR_S;
1646 break;
1647 case MISCREG_ATS1CPR:
1648 case MISCREG_ATS1CPW:
1649 case MISCREG_ATS1CUR:
1650 case MISCREG_ATS1CUW:
1651 case MISCREG_ATS12NSOPR:
1652 case MISCREG_ATS12NSOPW:
1653 case MISCREG_ATS12NSOUR:
1654 case MISCREG_ATS12NSOUW:
1655 case MISCREG_ATS1HR:
1656 case MISCREG_ATS1HW:
1657 {
1658 Request::Flags flags = 0;
1659 BaseTLB::Mode mode = BaseTLB::Read;
1660 TLB::ArmTranslationType tranType = TLB::NormalTran;
1661 Fault fault;
1662 switch(misc_reg) {
1663 case MISCREG_ATS1CPR:
1664 flags = TLB::MustBeOne;
1665 tranType = TLB::S1CTran;
1666 mode = BaseTLB::Read;
1667 break;
1668 case MISCREG_ATS1CPW:
1669 flags = TLB::MustBeOne;
1670 tranType = TLB::S1CTran;
1671 mode = BaseTLB::Write;
1672 break;
1673 case MISCREG_ATS1CUR:
1674 flags = TLB::MustBeOne | TLB::UserMode;
1675 tranType = TLB::S1CTran;
1676 mode = BaseTLB::Read;
1677 break;
1678 case MISCREG_ATS1CUW:
1679 flags = TLB::MustBeOne | TLB::UserMode;
1680 tranType = TLB::S1CTran;
1681 mode = BaseTLB::Write;
1682 break;
1683 case MISCREG_ATS12NSOPR:
1684 if (!haveSecurity)
1685 panic("Security Extensions required for ATS12NSOPR");
1686 flags = TLB::MustBeOne;
1687 tranType = TLB::S1S2NsTran;
1688 mode = BaseTLB::Read;
1689 break;
1690 case MISCREG_ATS12NSOPW:
1691 if (!haveSecurity)
1692 panic("Security Extensions required for ATS12NSOPW");
1693 flags = TLB::MustBeOne;
1694 tranType = TLB::S1S2NsTran;
1695 mode = BaseTLB::Write;
1696 break;
1697 case MISCREG_ATS12NSOUR:
1698 if (!haveSecurity)
1699 panic("Security Extensions required for ATS12NSOUR");
1700 flags = TLB::MustBeOne | TLB::UserMode;
1701 tranType = TLB::S1S2NsTran;
1702 mode = BaseTLB::Read;
1703 break;
1704 case MISCREG_ATS12NSOUW:
1705 if (!haveSecurity)
1706 panic("Security Extensions required for ATS12NSOUW");
1707 flags = TLB::MustBeOne | TLB::UserMode;
1708 tranType = TLB::S1S2NsTran;
1709 mode = BaseTLB::Write;
1710 break;
1711 case MISCREG_ATS1HR: // only really useful from secure mode.
1712 flags = TLB::MustBeOne;
1713 tranType = TLB::HypMode;
1714 mode = BaseTLB::Read;
1715 break;
1716 case MISCREG_ATS1HW:
1717 flags = TLB::MustBeOne;
1718 tranType = TLB::HypMode;
1719 mode = BaseTLB::Write;
1720 break;
1721 }
1722 // If we're in timing mode then doing the translation in
1723 // functional mode then we're slightly distorting performance
1724 // results obtained from simulations. The translation should be
1725 // done in the same mode the core is running in. NOTE: This
1726 // can't be an atomic translation because that causes problems
1727 // with unexpected atomic snoop requests.
1728 warn("Translating via %s in functional mode! Fix Me!\n",
1729 miscRegName[misc_reg]);
1730
1731 auto req = std::make_shared<Request>(
1732 0, val, 0, flags, Request::funcMasterId,
1733 tc->pcState().pc(), tc->contextId());
1734
1735 fault = getDTBPtr(tc)->translateFunctional(
1736 req, tc, mode, tranType);
1737
1738 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1739 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1740
1741 RegVal newVal;
1742 if (fault == NoFault) {
1743 Addr paddr = req->getPaddr();
1744 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1745 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1746 newVal = (paddr & mask(39, 12)) |
1747 (getDTBPtr(tc)->getAttr());
1748 } else {
1749 newVal = (paddr & 0xfffff000) |
1750 (getDTBPtr(tc)->getAttr());
1751 }
1752 DPRINTF(MiscRegs,
1753 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1754 val, newVal);
1755 } else {
1756 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1757 armFault->update(tc);
1758 // Set fault bit and FSR
1759 FSR fsr = armFault->getFsr(tc);
1760
1761 newVal = ((fsr >> 9) & 1) << 11;
1762 if (newVal) {
1763 // LPAE - rearange fault status
1764 newVal |= ((fsr >> 0) & 0x3f) << 1;
1765 } else {
1766 // VMSA - rearange fault status
1767 newVal |= ((fsr >> 0) & 0xf) << 1;
1768 newVal |= ((fsr >> 10) & 0x1) << 5;
1769 newVal |= ((fsr >> 12) & 0x1) << 6;
1770 }
1771 newVal |= 0x1; // F bit
1772 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1773 newVal |= armFault->isStage2() ? 0x200 : 0;
1774 DPRINTF(MiscRegs,
1775 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1776 val, fsr, newVal);
1777 }
1778 setMiscRegNoEffect(MISCREG_PAR, newVal);
1779 return;
1780 }
1781 case MISCREG_TTBCR:
1782 {
1783 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1784 const uint32_t ones = (uint32_t)(-1);
1785 TTBCR ttbcrMask = 0;
1786 TTBCR ttbcrNew = newVal;
1787
1788 // ARM DDI 0406C.b, ARMv7-32
1789 ttbcrMask.n = ones; // T0SZ
1790 if (haveSecurity) {
1791 ttbcrMask.pd0 = ones;
1792 ttbcrMask.pd1 = ones;
1793 }
1794 ttbcrMask.epd0 = ones;
1795 ttbcrMask.irgn0 = ones;
1796 ttbcrMask.orgn0 = ones;
1797 ttbcrMask.sh0 = ones;
1798 ttbcrMask.ps = ones; // T1SZ
1799 ttbcrMask.a1 = ones;
1800 ttbcrMask.epd1 = ones;
1801 ttbcrMask.irgn1 = ones;
1802 ttbcrMask.orgn1 = ones;
1803 ttbcrMask.sh1 = ones;
1804 if (haveLPAE)
1805 ttbcrMask.eae = ones;
1806
1807 if (haveLPAE && ttbcrNew.eae) {
1808 newVal = newVal & ttbcrMask;
1809 } else {
1810 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1811 }
1812 // Invalidate TLB MiscReg
1813 getITBPtr(tc)->invalidateMiscReg();
1814 getDTBPtr(tc)->invalidateMiscReg();
1815 break;
1816 }
1817 case MISCREG_TTBR0:
1818 case MISCREG_TTBR1:
1819 {
1820 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1821 if (haveLPAE) {
1822 if (ttbcr.eae) {
1823 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1824 // ARMv8 AArch32 bit 63-56 only
1825 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1826 newVal = (newVal & (~ttbrMask));
1827 }
1828 }
1829 // Invalidate TLB MiscReg
1830 getITBPtr(tc)->invalidateMiscReg();
1831 getDTBPtr(tc)->invalidateMiscReg();
1832 break;
1833 }
1834 case MISCREG_SCTLR_EL1:
1835 case MISCREG_CONTEXTIDR:
1836 case MISCREG_PRRR:
1837 case MISCREG_NMRR:
1838 case MISCREG_MAIR0:
1839 case MISCREG_MAIR1:
1840 case MISCREG_DACR:
1841 case MISCREG_VTTBR:
1842 case MISCREG_SCR_EL3:
1843 case MISCREG_HCR_EL2:
1844 case MISCREG_TCR_EL1:
1845 case MISCREG_TCR_EL2:
1846 case MISCREG_TCR_EL3:
1847 case MISCREG_SCTLR_EL2:
1848 case MISCREG_SCTLR_EL3:
1849 case MISCREG_HSCTLR:
1850 case MISCREG_TTBR0_EL1:
1851 case MISCREG_TTBR1_EL1:
1852 case MISCREG_TTBR0_EL2:
1853 case MISCREG_TTBR1_EL2:
1854 case MISCREG_TTBR0_EL3:
1855 getITBPtr(tc)->invalidateMiscReg();
1856 getDTBPtr(tc)->invalidateMiscReg();
1857 break;
1858 case MISCREG_NZCV:
1859 {
1860 CPSR cpsr = val;
1861
1862 tc->setCCReg(CCREG_NZ, cpsr.nz);
1863 tc->setCCReg(CCREG_C, cpsr.c);
1864 tc->setCCReg(CCREG_V, cpsr.v);
1865 }
1866 break;
1867 case MISCREG_DAIF:
1868 {
1869 CPSR cpsr = miscRegs[MISCREG_CPSR];
1870 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1871 newVal = cpsr;
1872 misc_reg = MISCREG_CPSR;
1873 }
1874 break;
1875 case MISCREG_SP_EL0:
1876 tc->setIntReg(INTREG_SP0, newVal);
1877 break;
1878 case MISCREG_SP_EL1:
1879 tc->setIntReg(INTREG_SP1, newVal);
1880 break;
1881 case MISCREG_SP_EL2:
1882 tc->setIntReg(INTREG_SP2, newVal);
1883 break;
1884 case MISCREG_SPSEL:
1885 {
1886 CPSR cpsr = miscRegs[MISCREG_CPSR];
1887 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1888 newVal = cpsr;
1889 misc_reg = MISCREG_CPSR;
1890 }
1891 break;
1892 case MISCREG_CURRENTEL:
1893 {
1894 CPSR cpsr = miscRegs[MISCREG_CPSR];
1895 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1896 newVal = cpsr;
1897 misc_reg = MISCREG_CPSR;
1898 }
1899 break;
1900 case MISCREG_PAN:
1901 {
1902 // PAN is affecting data accesses
1903 getDTBPtr(tc)->invalidateMiscReg();
1904
1905 CPSR cpsr = miscRegs[MISCREG_CPSR];
1906 cpsr.pan = (uint8_t) ((CPSR) newVal).pan;
1907 newVal = cpsr;
1908 misc_reg = MISCREG_CPSR;
1909 }
1910 break;
1911 case MISCREG_AT_S1E1R_Xt:
1912 case MISCREG_AT_S1E1W_Xt:
1913 case MISCREG_AT_S1E0R_Xt:
1914 case MISCREG_AT_S1E0W_Xt:
1915 case MISCREG_AT_S1E2R_Xt:
1916 case MISCREG_AT_S1E2W_Xt:
1917 case MISCREG_AT_S12E1R_Xt:
1918 case MISCREG_AT_S12E1W_Xt:
1919 case MISCREG_AT_S12E0R_Xt:
1920 case MISCREG_AT_S12E0W_Xt:
1921 case MISCREG_AT_S1E3R_Xt:
1922 case MISCREG_AT_S1E3W_Xt:
1923 {
1924 RequestPtr req = std::make_shared<Request>();
1925 Request::Flags flags = 0;
1926 BaseTLB::Mode mode = BaseTLB::Read;
1927 TLB::ArmTranslationType tranType = TLB::NormalTran;
1928 Fault fault;
1929 switch(misc_reg) {
1930 case MISCREG_AT_S1E1R_Xt:
1931 flags = TLB::MustBeOne;
1932 tranType = TLB::S1E1Tran;
1933 mode = BaseTLB::Read;
1934 break;
1935 case MISCREG_AT_S1E1W_Xt:
1936 flags = TLB::MustBeOne;
1937 tranType = TLB::S1E1Tran;
1938 mode = BaseTLB::Write;
1939 break;
1940 case MISCREG_AT_S1E0R_Xt:
1941 flags = TLB::MustBeOne | TLB::UserMode;
1942 tranType = TLB::S1E0Tran;
1943 mode = BaseTLB::Read;
1944 break;
1945 case MISCREG_AT_S1E0W_Xt:
1946 flags = TLB::MustBeOne | TLB::UserMode;
1947 tranType = TLB::S1E0Tran;
1948 mode = BaseTLB::Write;
1949 break;
1950 case MISCREG_AT_S1E2R_Xt:
1951 flags = TLB::MustBeOne;
1952 tranType = TLB::S1E2Tran;
1953 mode = BaseTLB::Read;
1954 break;
1955 case MISCREG_AT_S1E2W_Xt:
1956 flags = TLB::MustBeOne;
1957 tranType = TLB::S1E2Tran;
1958 mode = BaseTLB::Write;
1959 break;
1960 case MISCREG_AT_S12E0R_Xt:
1961 flags = TLB::MustBeOne | TLB::UserMode;
1962 tranType = TLB::S12E0Tran;
1963 mode = BaseTLB::Read;
1964 break;
1965 case MISCREG_AT_S12E0W_Xt:
1966 flags = TLB::MustBeOne | TLB::UserMode;
1967 tranType = TLB::S12E0Tran;
1968 mode = BaseTLB::Write;
1969 break;
1970 case MISCREG_AT_S12E1R_Xt:
1971 flags = TLB::MustBeOne;
1972 tranType = TLB::S12E1Tran;
1973 mode = BaseTLB::Read;
1974 break;
1975 case MISCREG_AT_S12E1W_Xt:
1976 flags = TLB::MustBeOne;
1977 tranType = TLB::S12E1Tran;
1978 mode = BaseTLB::Write;
1979 break;
1980 case MISCREG_AT_S1E3R_Xt:
1981 flags = TLB::MustBeOne;
1982 tranType = TLB::S1E3Tran;
1983 mode = BaseTLB::Read;
1984 break;
1985 case MISCREG_AT_S1E3W_Xt:
1986 flags = TLB::MustBeOne;
1987 tranType = TLB::S1E3Tran;
1988 mode = BaseTLB::Write;
1989 break;
1990 }
1991 // If we're in timing mode then doing the translation in
1992 // functional mode then we're slightly distorting performance
1993 // results obtained from simulations. The translation should be
1994 // done in the same mode the core is running in. NOTE: This
1995 // can't be an atomic translation because that causes problems
1996 // with unexpected atomic snoop requests.
1997 warn("Translating via %s in functional mode! Fix Me!\n",
1998 miscRegName[misc_reg]);
1999
2000 req->setVirt(0, val, 0, flags, Request::funcMasterId,
2001 tc->pcState().pc());
2002 req->setContext(tc->contextId());
2003 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
2004 tranType);
2005
2006 RegVal newVal;
2007 if (fault == NoFault) {
2008 Addr paddr = req->getPaddr();
2009 uint64_t attr = getDTBPtr(tc)->getAttr();
2010 uint64_t attr1 = attr >> 56;
2011 if (!attr1 || attr1 ==0x44) {
2012 attr |= 0x100;
2013 attr &= ~ uint64_t(0x80);
2014 }
2015 newVal = (paddr & mask(47, 12)) | attr;
2016 DPRINTF(MiscRegs,
2017 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
2018 val, newVal);
2019 } else {
2020 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
2021 armFault->update(tc);
2022 // Set fault bit and FSR
2023 FSR fsr = armFault->getFsr(tc);
2024
2025 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
2026 if (cpsr.width) { // AArch32
2027 newVal = ((fsr >> 9) & 1) << 11;
2028 // rearrange fault status
2029 newVal |= ((fsr >> 0) & 0x3f) << 1;
2030 newVal |= 0x1; // F bit
2031 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2032 newVal |= armFault->isStage2() ? 0x200 : 0;
2033 } else { // AArch64
2034 newVal = 1; // F bit
2035 newVal |= fsr << 1; // FST
2036 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2037 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2038 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2039 newVal |= 1 << 11; // RES1
2040 }
2041 DPRINTF(MiscRegs,
2042 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2043 val, fsr, newVal);
2044 }
2045 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2046 return;
2047 }
2048 case MISCREG_SPSR_EL3:
2049 case MISCREG_SPSR_EL2:
2050 case MISCREG_SPSR_EL1:
2051 {
2052 RegVal spsr_mask = havePAN ?
2053 ~(0x5 << 21) : ~(0x7 << 21);
2054
2055 newVal = val & spsr_mask;
2056 break;
2057 }
2058 case MISCREG_L2CTLR:
2059 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2060 miscRegName[misc_reg], uint32_t(val));
2061 break;
2062
2063 // Generic Timer registers
2064 case MISCREG_CNTHV_CTL_EL2:
2065 case MISCREG_CNTHV_CVAL_EL2:
2066 case MISCREG_CNTHV_TVAL_EL2:
2067 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2068 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2069 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2070 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2071 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2072 break;
2073 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15:
2074 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2075 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2076 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2077 return;
2078 case MISCREG_ZCR_EL3:
2079 case MISCREG_ZCR_EL2:
2080 case MISCREG_ZCR_EL1:
2081 tc->getDecoderPtr()->setSveLen(
2082 (getCurSveVecLenInBits(tc) >> 7) - 1);
2083 break;
2084 }
2085 }
2086 setMiscRegNoEffect(misc_reg, newVal);
2087}
2088
2089BaseISADevice &
2090ISA::getGenericTimer(ThreadContext *tc)
2091{
2092 // We only need to create an ISA interface the first time we try
2093 // to access the timer.
2094 if (timer)
2095 return *timer.get();
2096
2097 assert(system);
2098 GenericTimer *generic_timer(system->getGenericTimer());
2099 if (!generic_timer) {
2100 panic("Trying to get a generic timer from a system that hasn't "
2101 "been configured to use a generic timer.\n");
2102 }
2103
2104 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2105 timer->setThreadContext(tc);
2106
2107 return *timer.get();
2108}
2109
2110BaseISADevice &
2111ISA::getGICv3CPUInterface(ThreadContext *tc)
2112{
2113 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2114 return *gicv3CpuInterface.get();
2115}
2116
2117unsigned
2118ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2119{
2120 if (!FullSystem) {
2121 return sveVL * 128;
2122 }
2123
2124 panic_if(!tc,
2125 "A ThreadContext is needed to determine the SVE vector length "
2126 "in full-system mode");
2127
2128 CPSR cpsr = miscRegs[MISCREG_CPSR];
2129 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2130
2131 unsigned len = 0;
2132
2133 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2134 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2135 }
2136
2137 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2138 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2139 } else if (haveVirtualization && !inSecureState(tc) &&
2140 (el == EL0 || el == EL1)) {
2141 len = std::min(
2142 len,
2143 static_cast<unsigned>(
2144 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2145 }
2146
2147 if (el == EL3) {
2148 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2149 } else if (haveSecurity) {
2150 len = std::min(
2151 len,
2152 static_cast<unsigned>(
2153 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2154 }
2155
2156 len = std::min(len, sveVL - 1);
2157
2158 return (len + 1) * 128;
2159}
2160
2161void
2162ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2163{
2164 auto vv = vc.as<uint64_t>();
2165 for (int i = 2; i < eCount; ++i) {
2166 vv[i] = 0;
2167 }
2168}
2169
2170} // namespace ArmISA
2171
2172ArmISA::ISA *
2173ArmISAParams::create()
2174{
2175 return new ArmISA::ISA(this);
2176}
798 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
799 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
800 PCState pc = tc->pcState();
801 pc.nextThumb(cpsr.t);
802 pc.nextJazelle(cpsr.j);
803 pc.illegalExec(cpsr.il == 1);
804
805 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
806
807 // Follow slightly different semantics if a CheckerCPU object
808 // is connected
809 CheckerCPU *checker = tc->getCheckerCpuPtr();
810 if (checker) {
811 tc->pcStateNoRecord(pc);
812 } else {
813 tc->pcState(pc);
814 }
815 } else {
816#ifndef NDEBUG
817 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
818 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
819 warn("Unimplemented system register %s write with %#x.\n",
820 miscRegName[misc_reg], val);
821 else
822 panic("Unimplemented system register %s write with %#x.\n",
823 miscRegName[misc_reg], val);
824 }
825#endif
826 switch (unflattenMiscReg(misc_reg)) {
827 case MISCREG_CPACR:
828 {
829
830 const uint32_t ones = (uint32_t)(-1);
831 CPACR cpacrMask = 0;
832 // Only cp10, cp11, and ase are implemented, nothing else should
833 // be writable
834 cpacrMask.cp10 = ones;
835 cpacrMask.cp11 = ones;
836 cpacrMask.asedis = ones;
837
838 // Security Extensions may limit the writability of CPACR
839 if (haveSecurity) {
840 scr = readMiscRegNoEffect(MISCREG_SCR);
841 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
842 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
843 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
844 // NB: Skipping the full loop, here
845 if (!nsacr.cp10) cpacrMask.cp10 = 0;
846 if (!nsacr.cp11) cpacrMask.cp11 = 0;
847 }
848 }
849
850 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
851 newVal &= cpacrMask;
852 newVal |= old_val & ~cpacrMask;
853 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
854 miscRegName[misc_reg], newVal);
855 }
856 break;
857 case MISCREG_CPACR_EL1:
858 {
859 const uint32_t ones = (uint32_t)(-1);
860 CPACR cpacrMask = 0;
861 cpacrMask.tta = ones;
862 cpacrMask.fpen = ones;
863 if (haveSVE) {
864 cpacrMask.zen = ones;
865 }
866 newVal &= cpacrMask;
867 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
868 miscRegName[misc_reg], newVal);
869 }
870 break;
871 case MISCREG_CPTR_EL2:
872 {
873 const uint32_t ones = (uint32_t)(-1);
874 CPTR cptrMask = 0;
875 cptrMask.tcpac = ones;
876 cptrMask.tta = ones;
877 cptrMask.tfp = ones;
878 if (haveSVE) {
879 cptrMask.tz = ones;
880 }
881 newVal &= cptrMask;
882 cptrMask = 0;
883 cptrMask.res1_13_12_el2 = ones;
884 cptrMask.res1_7_0_el2 = ones;
885 if (!haveSVE) {
886 cptrMask.res1_8_el2 = ones;
887 }
888 cptrMask.res1_9_el2 = ones;
889 newVal |= cptrMask;
890 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
891 miscRegName[misc_reg], newVal);
892 }
893 break;
894 case MISCREG_CPTR_EL3:
895 {
896 const uint32_t ones = (uint32_t)(-1);
897 CPTR cptrMask = 0;
898 cptrMask.tcpac = ones;
899 cptrMask.tta = ones;
900 cptrMask.tfp = ones;
901 if (haveSVE) {
902 cptrMask.ez = ones;
903 }
904 newVal &= cptrMask;
905 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
906 miscRegName[misc_reg], newVal);
907 }
908 break;
909 case MISCREG_CSSELR:
910 warn_once("The csselr register isn't implemented.\n");
911 return;
912
913 case MISCREG_DC_ZVA_Xt:
914 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
915 return;
916
917 case MISCREG_FPSCR:
918 {
919 const uint32_t ones = (uint32_t)(-1);
920 FPSCR fpscrMask = 0;
921 fpscrMask.ioc = ones;
922 fpscrMask.dzc = ones;
923 fpscrMask.ofc = ones;
924 fpscrMask.ufc = ones;
925 fpscrMask.ixc = ones;
926 fpscrMask.idc = ones;
927 fpscrMask.ioe = ones;
928 fpscrMask.dze = ones;
929 fpscrMask.ofe = ones;
930 fpscrMask.ufe = ones;
931 fpscrMask.ixe = ones;
932 fpscrMask.ide = ones;
933 fpscrMask.len = ones;
934 fpscrMask.fz16 = ones;
935 fpscrMask.stride = ones;
936 fpscrMask.rMode = ones;
937 fpscrMask.fz = ones;
938 fpscrMask.dn = ones;
939 fpscrMask.ahp = ones;
940 fpscrMask.qc = ones;
941 fpscrMask.v = ones;
942 fpscrMask.c = ones;
943 fpscrMask.z = ones;
944 fpscrMask.n = ones;
945 newVal = (newVal & (uint32_t)fpscrMask) |
946 (readMiscRegNoEffect(MISCREG_FPSCR) &
947 ~(uint32_t)fpscrMask);
948 tc->getDecoderPtr()->setContext(newVal);
949 }
950 break;
951 case MISCREG_FPSR:
952 {
953 const uint32_t ones = (uint32_t)(-1);
954 FPSCR fpscrMask = 0;
955 fpscrMask.ioc = ones;
956 fpscrMask.dzc = ones;
957 fpscrMask.ofc = ones;
958 fpscrMask.ufc = ones;
959 fpscrMask.ixc = ones;
960 fpscrMask.idc = ones;
961 fpscrMask.qc = ones;
962 fpscrMask.v = ones;
963 fpscrMask.c = ones;
964 fpscrMask.z = ones;
965 fpscrMask.n = ones;
966 newVal = (newVal & (uint32_t)fpscrMask) |
967 (readMiscRegNoEffect(MISCREG_FPSCR) &
968 ~(uint32_t)fpscrMask);
969 misc_reg = MISCREG_FPSCR;
970 }
971 break;
972 case MISCREG_FPCR:
973 {
974 const uint32_t ones = (uint32_t)(-1);
975 FPSCR fpscrMask = 0;
976 fpscrMask.len = ones;
977 fpscrMask.fz16 = ones;
978 fpscrMask.stride = ones;
979 fpscrMask.rMode = ones;
980 fpscrMask.fz = ones;
981 fpscrMask.dn = ones;
982 fpscrMask.ahp = ones;
983 newVal = (newVal & (uint32_t)fpscrMask) |
984 (readMiscRegNoEffect(MISCREG_FPSCR) &
985 ~(uint32_t)fpscrMask);
986 misc_reg = MISCREG_FPSCR;
987 }
988 break;
989 case MISCREG_CPSR_Q:
990 {
991 assert(!(newVal & ~CpsrMaskQ));
992 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
993 misc_reg = MISCREG_CPSR;
994 }
995 break;
996 case MISCREG_FPSCR_QC:
997 {
998 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
999 (newVal & FpscrQcMask);
1000 misc_reg = MISCREG_FPSCR;
1001 }
1002 break;
1003 case MISCREG_FPSCR_EXC:
1004 {
1005 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1006 (newVal & FpscrExcMask);
1007 misc_reg = MISCREG_FPSCR;
1008 }
1009 break;
1010 case MISCREG_FPEXC:
1011 {
1012 // vfpv3 architecture, section B.6.1 of DDI04068
1013 // bit 29 - valid only if fpexc[31] is 0
1014 const uint32_t fpexcMask = 0x60000000;
1015 newVal = (newVal & fpexcMask) |
1016 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1017 }
1018 break;
1019 case MISCREG_HCR:
1020 {
1021 if (!haveVirtualization)
1022 return;
1023 }
1024 break;
1025 case MISCREG_IFSR:
1026 {
1027 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1028 const uint32_t ifsrMask =
1029 mask(31, 13) | mask(11, 11) | mask(8, 6);
1030 newVal = newVal & ~ifsrMask;
1031 }
1032 break;
1033 case MISCREG_DFSR:
1034 {
1035 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1036 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1037 newVal = newVal & ~dfsrMask;
1038 }
1039 break;
1040 case MISCREG_AMAIR0:
1041 case MISCREG_AMAIR1:
1042 {
1043 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1044 // Valid only with LPAE
1045 if (!haveLPAE)
1046 return;
1047 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1048 }
1049 break;
1050 case MISCREG_SCR:
1051 getITBPtr(tc)->invalidateMiscReg();
1052 getDTBPtr(tc)->invalidateMiscReg();
1053 break;
1054 case MISCREG_SCTLR:
1055 {
1056 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1057 scr = readMiscRegNoEffect(MISCREG_SCR);
1058
1059 MiscRegIndex sctlr_idx;
1060 if (haveSecurity && !highestELIs64 && !scr.ns) {
1061 sctlr_idx = MISCREG_SCTLR_S;
1062 } else {
1063 sctlr_idx = MISCREG_SCTLR_NS;
1064 }
1065
1066 SCTLR sctlr = miscRegs[sctlr_idx];
1067 SCTLR new_sctlr = newVal;
1068 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1069 miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1070 getITBPtr(tc)->invalidateMiscReg();
1071 getDTBPtr(tc)->invalidateMiscReg();
1072 }
1073 case MISCREG_MIDR:
1074 case MISCREG_ID_PFR0:
1075 case MISCREG_ID_PFR1:
1076 case MISCREG_ID_DFR0:
1077 case MISCREG_ID_MMFR0:
1078 case MISCREG_ID_MMFR1:
1079 case MISCREG_ID_MMFR2:
1080 case MISCREG_ID_MMFR3:
1081 case MISCREG_ID_ISAR0:
1082 case MISCREG_ID_ISAR1:
1083 case MISCREG_ID_ISAR2:
1084 case MISCREG_ID_ISAR3:
1085 case MISCREG_ID_ISAR4:
1086 case MISCREG_ID_ISAR5:
1087
1088 case MISCREG_MPIDR:
1089 case MISCREG_FPSID:
1090 case MISCREG_TLBTR:
1091 case MISCREG_MVFR0:
1092 case MISCREG_MVFR1:
1093
1094 case MISCREG_ID_AA64AFR0_EL1:
1095 case MISCREG_ID_AA64AFR1_EL1:
1096 case MISCREG_ID_AA64DFR0_EL1:
1097 case MISCREG_ID_AA64DFR1_EL1:
1098 case MISCREG_ID_AA64ISAR0_EL1:
1099 case MISCREG_ID_AA64ISAR1_EL1:
1100 case MISCREG_ID_AA64MMFR0_EL1:
1101 case MISCREG_ID_AA64MMFR1_EL1:
1102 case MISCREG_ID_AA64MMFR2_EL1:
1103 case MISCREG_ID_AA64PFR0_EL1:
1104 case MISCREG_ID_AA64PFR1_EL1:
1105 // ID registers are constants.
1106 return;
1107
1108 // TLB Invalidate All
1109 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1110 {
1111 assert32(tc);
1112 scr = readMiscReg(MISCREG_SCR, tc);
1113
1114 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1115 tlbiOp(tc);
1116 return;
1117 }
1118 // TLB Invalidate All, Inner Shareable
1119 case MISCREG_TLBIALLIS:
1120 {
1121 assert32(tc);
1122 scr = readMiscReg(MISCREG_SCR, tc);
1123
1124 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1125 tlbiOp.broadcast(tc);
1126 return;
1127 }
1128 // Instruction TLB Invalidate All
1129 case MISCREG_ITLBIALL:
1130 {
1131 assert32(tc);
1132 scr = readMiscReg(MISCREG_SCR, tc);
1133
1134 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1135 tlbiOp(tc);
1136 return;
1137 }
1138 // Data TLB Invalidate All
1139 case MISCREG_DTLBIALL:
1140 {
1141 assert32(tc);
1142 scr = readMiscReg(MISCREG_SCR, tc);
1143
1144 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1145 tlbiOp(tc);
1146 return;
1147 }
1148 // TLB Invalidate by VA
1149 // mcr tlbimval(is) is invalidating all matching entries
1150 // regardless of the level of lookup, since in gem5 we cache
1151 // in the tlb the last level of lookup only.
1152 case MISCREG_TLBIMVA:
1153 case MISCREG_TLBIMVAL:
1154 {
1155 assert32(tc);
1156 scr = readMiscReg(MISCREG_SCR, tc);
1157
1158 TLBIMVA tlbiOp(EL1,
1159 haveSecurity && !scr.ns,
1160 mbits(newVal, 31, 12),
1161 bits(newVal, 7,0));
1162
1163 tlbiOp(tc);
1164 return;
1165 }
1166 // TLB Invalidate by VA, Inner Shareable
1167 case MISCREG_TLBIMVAIS:
1168 case MISCREG_TLBIMVALIS:
1169 {
1170 assert32(tc);
1171 scr = readMiscReg(MISCREG_SCR, tc);
1172
1173 TLBIMVA tlbiOp(EL1,
1174 haveSecurity && !scr.ns,
1175 mbits(newVal, 31, 12),
1176 bits(newVal, 7,0));
1177
1178 tlbiOp.broadcast(tc);
1179 return;
1180 }
1181 // TLB Invalidate by ASID match
1182 case MISCREG_TLBIASID:
1183 {
1184 assert32(tc);
1185 scr = readMiscReg(MISCREG_SCR, tc);
1186
1187 TLBIASID tlbiOp(EL1,
1188 haveSecurity && !scr.ns,
1189 bits(newVal, 7,0));
1190
1191 tlbiOp(tc);
1192 return;
1193 }
1194 // TLB Invalidate by ASID match, Inner Shareable
1195 case MISCREG_TLBIASIDIS:
1196 {
1197 assert32(tc);
1198 scr = readMiscReg(MISCREG_SCR, tc);
1199
1200 TLBIASID tlbiOp(EL1,
1201 haveSecurity && !scr.ns,
1202 bits(newVal, 7,0));
1203
1204 tlbiOp.broadcast(tc);
1205 return;
1206 }
1207 // mcr tlbimvaal(is) is invalidating all matching entries
1208 // regardless of the level of lookup, since in gem5 we cache
1209 // in the tlb the last level of lookup only.
1210 // TLB Invalidate by VA, All ASID
1211 case MISCREG_TLBIMVAA:
1212 case MISCREG_TLBIMVAAL:
1213 {
1214 assert32(tc);
1215 scr = readMiscReg(MISCREG_SCR, tc);
1216
1217 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1218 mbits(newVal, 31,12));
1219
1220 tlbiOp(tc);
1221 return;
1222 }
1223 // TLB Invalidate by VA, All ASID, Inner Shareable
1224 case MISCREG_TLBIMVAAIS:
1225 case MISCREG_TLBIMVAALIS:
1226 {
1227 assert32(tc);
1228 scr = readMiscReg(MISCREG_SCR, tc);
1229
1230 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1231 mbits(newVal, 31,12));
1232
1233 tlbiOp.broadcast(tc);
1234 return;
1235 }
1236 // mcr tlbimvalh(is) is invalidating all matching entries
1237 // regardless of the level of lookup, since in gem5 we cache
1238 // in the tlb the last level of lookup only.
1239 // TLB Invalidate by VA, Hyp mode
1240 case MISCREG_TLBIMVAH:
1241 case MISCREG_TLBIMVALH:
1242 {
1243 assert32(tc);
1244 scr = readMiscReg(MISCREG_SCR, tc);
1245
1246 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1247 mbits(newVal, 31,12));
1248
1249 tlbiOp(tc);
1250 return;
1251 }
1252 // TLB Invalidate by VA, Hyp mode, Inner Shareable
1253 case MISCREG_TLBIMVAHIS:
1254 case MISCREG_TLBIMVALHIS:
1255 {
1256 assert32(tc);
1257 scr = readMiscReg(MISCREG_SCR, tc);
1258
1259 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns,
1260 mbits(newVal, 31,12));
1261
1262 tlbiOp.broadcast(tc);
1263 return;
1264 }
1265 // mcr tlbiipas2l(is) is invalidating all matching entries
1266 // regardless of the level of lookup, since in gem5 we cache
1267 // in the tlb the last level of lookup only.
1268 // TLB Invalidate by Intermediate Physical Address, Stage 2
1269 case MISCREG_TLBIIPAS2:
1270 case MISCREG_TLBIIPAS2L:
1271 {
1272 assert32(tc);
1273 scr = readMiscReg(MISCREG_SCR, tc);
1274
1275 TLBIIPA tlbiOp(EL1,
1276 haveSecurity && !scr.ns,
1277 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1278
1279 tlbiOp(tc);
1280 return;
1281 }
1282 // TLB Invalidate by Intermediate Physical Address, Stage 2,
1283 // Inner Shareable
1284 case MISCREG_TLBIIPAS2IS:
1285 case MISCREG_TLBIIPAS2LIS:
1286 {
1287 assert32(tc);
1288 scr = readMiscReg(MISCREG_SCR, tc);
1289
1290 TLBIIPA tlbiOp(EL1,
1291 haveSecurity && !scr.ns,
1292 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1293
1294 tlbiOp.broadcast(tc);
1295 return;
1296 }
1297 // Instruction TLB Invalidate by VA
1298 case MISCREG_ITLBIMVA:
1299 {
1300 assert32(tc);
1301 scr = readMiscReg(MISCREG_SCR, tc);
1302
1303 ITLBIMVA tlbiOp(EL1,
1304 haveSecurity && !scr.ns,
1305 mbits(newVal, 31, 12),
1306 bits(newVal, 7,0));
1307
1308 tlbiOp(tc);
1309 return;
1310 }
1311 // Data TLB Invalidate by VA
1312 case MISCREG_DTLBIMVA:
1313 {
1314 assert32(tc);
1315 scr = readMiscReg(MISCREG_SCR, tc);
1316
1317 DTLBIMVA tlbiOp(EL1,
1318 haveSecurity && !scr.ns,
1319 mbits(newVal, 31, 12),
1320 bits(newVal, 7,0));
1321
1322 tlbiOp(tc);
1323 return;
1324 }
1325 // Instruction TLB Invalidate by ASID match
1326 case MISCREG_ITLBIASID:
1327 {
1328 assert32(tc);
1329 scr = readMiscReg(MISCREG_SCR, tc);
1330
1331 ITLBIASID tlbiOp(EL1,
1332 haveSecurity && !scr.ns,
1333 bits(newVal, 7,0));
1334
1335 tlbiOp(tc);
1336 return;
1337 }
1338 // Data TLB Invalidate by ASID match
1339 case MISCREG_DTLBIASID:
1340 {
1341 assert32(tc);
1342 scr = readMiscReg(MISCREG_SCR, tc);
1343
1344 DTLBIASID tlbiOp(EL1,
1345 haveSecurity && !scr.ns,
1346 bits(newVal, 7,0));
1347
1348 tlbiOp(tc);
1349 return;
1350 }
1351 // TLB Invalidate All, Non-Secure Non-Hyp
1352 case MISCREG_TLBIALLNSNH:
1353 {
1354 assert32(tc);
1355
1356 TLBIALLN tlbiOp(EL1);
1357 tlbiOp(tc);
1358 return;
1359 }
1360 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1361 case MISCREG_TLBIALLNSNHIS:
1362 {
1363 assert32(tc);
1364
1365 TLBIALLN tlbiOp(EL1);
1366 tlbiOp.broadcast(tc);
1367 return;
1368 }
1369 // TLB Invalidate All, Hyp mode
1370 case MISCREG_TLBIALLH:
1371 {
1372 assert32(tc);
1373
1374 TLBIALLN tlbiOp(EL2);
1375 tlbiOp(tc);
1376 return;
1377 }
1378 // TLB Invalidate All, Hyp mode, Inner Shareable
1379 case MISCREG_TLBIALLHIS:
1380 {
1381 assert32(tc);
1382
1383 TLBIALLN tlbiOp(EL2);
1384 tlbiOp.broadcast(tc);
1385 return;
1386 }
1387 // AArch64 TLB Invalidate All, EL3
1388 case MISCREG_TLBI_ALLE3:
1389 {
1390 assert64(tc);
1391
1392 TLBIALL tlbiOp(EL3, true);
1393 tlbiOp(tc);
1394 return;
1395 }
1396 // AArch64 TLB Invalidate All, EL3, Inner Shareable
1397 case MISCREG_TLBI_ALLE3IS:
1398 {
1399 assert64(tc);
1400
1401 TLBIALL tlbiOp(EL3, true);
1402 tlbiOp.broadcast(tc);
1403 return;
1404 }
1405 // AArch64 TLB Invalidate All, EL2, Inner Shareable
1406 case MISCREG_TLBI_ALLE2:
1407 case MISCREG_TLBI_ALLE2IS:
1408 {
1409 assert64(tc);
1410 scr = readMiscReg(MISCREG_SCR, tc);
1411
1412 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1413 tlbiOp(tc);
1414 return;
1415 }
1416 // AArch64 TLB Invalidate All, EL1
1417 case MISCREG_TLBI_ALLE1:
1418 case MISCREG_TLBI_VMALLE1:
1419 case MISCREG_TLBI_VMALLS12E1:
1420 // @todo: handle VMID and stage 2 to enable Virtualization
1421 {
1422 assert64(tc);
1423 scr = readMiscReg(MISCREG_SCR, tc);
1424
1425 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1426 tlbiOp(tc);
1427 return;
1428 }
1429 // AArch64 TLB Invalidate All, EL1, Inner Shareable
1430 case MISCREG_TLBI_ALLE1IS:
1431 case MISCREG_TLBI_VMALLE1IS:
1432 case MISCREG_TLBI_VMALLS12E1IS:
1433 // @todo: handle VMID and stage 2 to enable Virtualization
1434 {
1435 assert64(tc);
1436 scr = readMiscReg(MISCREG_SCR, tc);
1437
1438 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1439 tlbiOp.broadcast(tc);
1440 return;
1441 }
1442 // VAEx(IS) and VALEx(IS) are the same because TLBs
1443 // only store entries
1444 // from the last level of translation table walks
1445 // @todo: handle VMID to enable Virtualization
1446 // AArch64 TLB Invalidate by VA, EL3
1447 case MISCREG_TLBI_VAE3_Xt:
1448 case MISCREG_TLBI_VALE3_Xt:
1449 {
1450 assert64(tc);
1451
1452 TLBIMVA tlbiOp(EL3, true,
1453 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1454 0xbeef);
1455 tlbiOp(tc);
1456 return;
1457 }
1458 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1459 case MISCREG_TLBI_VAE3IS_Xt:
1460 case MISCREG_TLBI_VALE3IS_Xt:
1461 {
1462 assert64(tc);
1463
1464 TLBIMVA tlbiOp(EL3, true,
1465 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1466 0xbeef);
1467
1468 tlbiOp.broadcast(tc);
1469 return;
1470 }
1471 // AArch64 TLB Invalidate by VA, EL2
1472 case MISCREG_TLBI_VAE2_Xt:
1473 case MISCREG_TLBI_VALE2_Xt:
1474 {
1475 assert64(tc);
1476 scr = readMiscReg(MISCREG_SCR, tc);
1477
1478 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1479 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1480 0xbeef);
1481 tlbiOp(tc);
1482 return;
1483 }
1484 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1485 case MISCREG_TLBI_VAE2IS_Xt:
1486 case MISCREG_TLBI_VALE2IS_Xt:
1487 {
1488 assert64(tc);
1489 scr = readMiscReg(MISCREG_SCR, tc);
1490
1491 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1492 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1493 0xbeef);
1494
1495 tlbiOp.broadcast(tc);
1496 return;
1497 }
1498 // AArch64 TLB Invalidate by VA, EL1
1499 case MISCREG_TLBI_VAE1_Xt:
1500 case MISCREG_TLBI_VALE1_Xt:
1501 {
1502 assert64(tc);
1503 scr = readMiscReg(MISCREG_SCR, tc);
1504 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1505 bits(newVal, 55, 48);
1506
1507 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1508 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1509 asid);
1510
1511 tlbiOp(tc);
1512 return;
1513 }
1514 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1515 case MISCREG_TLBI_VAE1IS_Xt:
1516 case MISCREG_TLBI_VALE1IS_Xt:
1517 {
1518 assert64(tc);
1519 scr = readMiscReg(MISCREG_SCR, tc);
1520 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1521 bits(newVal, 55, 48);
1522
1523 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1524 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1525 asid);
1526
1527 tlbiOp.broadcast(tc);
1528 return;
1529 }
1530 // AArch64 TLB Invalidate by ASID, EL1
1531 // @todo: handle VMID to enable Virtualization
1532 case MISCREG_TLBI_ASIDE1_Xt:
1533 {
1534 assert64(tc);
1535 scr = readMiscReg(MISCREG_SCR, tc);
1536 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1537 bits(newVal, 55, 48);
1538
1539 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1540 tlbiOp(tc);
1541 return;
1542 }
1543 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1544 case MISCREG_TLBI_ASIDE1IS_Xt:
1545 {
1546 assert64(tc);
1547 scr = readMiscReg(MISCREG_SCR, tc);
1548 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1549 bits(newVal, 55, 48);
1550
1551 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1552 tlbiOp.broadcast(tc);
1553 return;
1554 }
1555 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1556 // entries from the last level of translation table walks
1557 // AArch64 TLB Invalidate by VA, All ASID, EL1
1558 case MISCREG_TLBI_VAAE1_Xt:
1559 case MISCREG_TLBI_VAALE1_Xt:
1560 {
1561 assert64(tc);
1562 scr = readMiscReg(MISCREG_SCR, tc);
1563
1564 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1565 static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1566
1567 tlbiOp(tc);
1568 return;
1569 }
1570 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1571 case MISCREG_TLBI_VAAE1IS_Xt:
1572 case MISCREG_TLBI_VAALE1IS_Xt:
1573 {
1574 assert64(tc);
1575 scr = readMiscReg(MISCREG_SCR, tc);
1576
1577 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1578 static_cast<Addr>(bits(newVal, 43, 0)) << 12);
1579
1580 tlbiOp.broadcast(tc);
1581 return;
1582 }
1583 // AArch64 TLB Invalidate by Intermediate Physical Address,
1584 // Stage 2, EL1
1585 case MISCREG_TLBI_IPAS2E1_Xt:
1586 case MISCREG_TLBI_IPAS2LE1_Xt:
1587 {
1588 assert64(tc);
1589 scr = readMiscReg(MISCREG_SCR, tc);
1590
1591 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1592 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1593
1594 tlbiOp(tc);
1595 return;
1596 }
1597 // AArch64 TLB Invalidate by Intermediate Physical Address,
1598 // Stage 2, EL1, Inner Shareable
1599 case MISCREG_TLBI_IPAS2E1IS_Xt:
1600 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1601 {
1602 assert64(tc);
1603 scr = readMiscReg(MISCREG_SCR, tc);
1604
1605 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1606 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1607
1608 tlbiOp.broadcast(tc);
1609 return;
1610 }
1611 case MISCREG_ACTLR:
1612 warn("Not doing anything for write of miscreg ACTLR\n");
1613 break;
1614
1615 case MISCREG_PMXEVTYPER_PMCCFILTR:
1616 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1617 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1618 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1619 pmu->setMiscReg(misc_reg, newVal);
1620 break;
1621
1622
1623 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1624 {
1625 HSTR hstrMask = 0;
1626 hstrMask.tjdbx = 1;
1627 newVal &= ~((uint32_t) hstrMask);
1628 break;
1629 }
1630 case MISCREG_HCPTR:
1631 {
1632 // If a CP bit in NSACR is 0 then the corresponding bit in
1633 // HCPTR is RAO/WI. Same applies to NSASEDIS
1634 secure_lookup = haveSecurity &&
1635 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1636 readMiscRegNoEffect(MISCREG_CPSR));
1637 if (!secure_lookup) {
1638 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1639 RegVal mask =
1640 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1641 newVal = (newVal & ~mask) | (oldValue & mask);
1642 }
1643 break;
1644 }
1645 case MISCREG_HDFAR: // alias for secure DFAR
1646 misc_reg = MISCREG_DFAR_S;
1647 break;
1648 case MISCREG_HIFAR: // alias for secure IFAR
1649 misc_reg = MISCREG_IFAR_S;
1650 break;
1651 case MISCREG_ATS1CPR:
1652 case MISCREG_ATS1CPW:
1653 case MISCREG_ATS1CUR:
1654 case MISCREG_ATS1CUW:
1655 case MISCREG_ATS12NSOPR:
1656 case MISCREG_ATS12NSOPW:
1657 case MISCREG_ATS12NSOUR:
1658 case MISCREG_ATS12NSOUW:
1659 case MISCREG_ATS1HR:
1660 case MISCREG_ATS1HW:
1661 {
1662 Request::Flags flags = 0;
1663 BaseTLB::Mode mode = BaseTLB::Read;
1664 TLB::ArmTranslationType tranType = TLB::NormalTran;
1665 Fault fault;
1666 switch(misc_reg) {
1667 case MISCREG_ATS1CPR:
1668 flags = TLB::MustBeOne;
1669 tranType = TLB::S1CTran;
1670 mode = BaseTLB::Read;
1671 break;
1672 case MISCREG_ATS1CPW:
1673 flags = TLB::MustBeOne;
1674 tranType = TLB::S1CTran;
1675 mode = BaseTLB::Write;
1676 break;
1677 case MISCREG_ATS1CUR:
1678 flags = TLB::MustBeOne | TLB::UserMode;
1679 tranType = TLB::S1CTran;
1680 mode = BaseTLB::Read;
1681 break;
1682 case MISCREG_ATS1CUW:
1683 flags = TLB::MustBeOne | TLB::UserMode;
1684 tranType = TLB::S1CTran;
1685 mode = BaseTLB::Write;
1686 break;
1687 case MISCREG_ATS12NSOPR:
1688 if (!haveSecurity)
1689 panic("Security Extensions required for ATS12NSOPR");
1690 flags = TLB::MustBeOne;
1691 tranType = TLB::S1S2NsTran;
1692 mode = BaseTLB::Read;
1693 break;
1694 case MISCREG_ATS12NSOPW:
1695 if (!haveSecurity)
1696 panic("Security Extensions required for ATS12NSOPW");
1697 flags = TLB::MustBeOne;
1698 tranType = TLB::S1S2NsTran;
1699 mode = BaseTLB::Write;
1700 break;
1701 case MISCREG_ATS12NSOUR:
1702 if (!haveSecurity)
1703 panic("Security Extensions required for ATS12NSOUR");
1704 flags = TLB::MustBeOne | TLB::UserMode;
1705 tranType = TLB::S1S2NsTran;
1706 mode = BaseTLB::Read;
1707 break;
1708 case MISCREG_ATS12NSOUW:
1709 if (!haveSecurity)
1710 panic("Security Extensions required for ATS12NSOUW");
1711 flags = TLB::MustBeOne | TLB::UserMode;
1712 tranType = TLB::S1S2NsTran;
1713 mode = BaseTLB::Write;
1714 break;
1715 case MISCREG_ATS1HR: // only really useful from secure mode.
1716 flags = TLB::MustBeOne;
1717 tranType = TLB::HypMode;
1718 mode = BaseTLB::Read;
1719 break;
1720 case MISCREG_ATS1HW:
1721 flags = TLB::MustBeOne;
1722 tranType = TLB::HypMode;
1723 mode = BaseTLB::Write;
1724 break;
1725 }
1726 // If we're in timing mode then doing the translation in
1727 // functional mode then we're slightly distorting performance
1728 // results obtained from simulations. The translation should be
1729 // done in the same mode the core is running in. NOTE: This
1730 // can't be an atomic translation because that causes problems
1731 // with unexpected atomic snoop requests.
1732 warn("Translating via %s in functional mode! Fix Me!\n",
1733 miscRegName[misc_reg]);
1734
1735 auto req = std::make_shared<Request>(
1736 0, val, 0, flags, Request::funcMasterId,
1737 tc->pcState().pc(), tc->contextId());
1738
1739 fault = getDTBPtr(tc)->translateFunctional(
1740 req, tc, mode, tranType);
1741
1742 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1743 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1744
1745 RegVal newVal;
1746 if (fault == NoFault) {
1747 Addr paddr = req->getPaddr();
1748 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1749 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1750 newVal = (paddr & mask(39, 12)) |
1751 (getDTBPtr(tc)->getAttr());
1752 } else {
1753 newVal = (paddr & 0xfffff000) |
1754 (getDTBPtr(tc)->getAttr());
1755 }
1756 DPRINTF(MiscRegs,
1757 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1758 val, newVal);
1759 } else {
1760 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1761 armFault->update(tc);
1762 // Set fault bit and FSR
1763 FSR fsr = armFault->getFsr(tc);
1764
1765 newVal = ((fsr >> 9) & 1) << 11;
1766 if (newVal) {
1767 // LPAE - rearange fault status
1768 newVal |= ((fsr >> 0) & 0x3f) << 1;
1769 } else {
1770 // VMSA - rearange fault status
1771 newVal |= ((fsr >> 0) & 0xf) << 1;
1772 newVal |= ((fsr >> 10) & 0x1) << 5;
1773 newVal |= ((fsr >> 12) & 0x1) << 6;
1774 }
1775 newVal |= 0x1; // F bit
1776 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1777 newVal |= armFault->isStage2() ? 0x200 : 0;
1778 DPRINTF(MiscRegs,
1779 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1780 val, fsr, newVal);
1781 }
1782 setMiscRegNoEffect(MISCREG_PAR, newVal);
1783 return;
1784 }
1785 case MISCREG_TTBCR:
1786 {
1787 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1788 const uint32_t ones = (uint32_t)(-1);
1789 TTBCR ttbcrMask = 0;
1790 TTBCR ttbcrNew = newVal;
1791
1792 // ARM DDI 0406C.b, ARMv7-32
1793 ttbcrMask.n = ones; // T0SZ
1794 if (haveSecurity) {
1795 ttbcrMask.pd0 = ones;
1796 ttbcrMask.pd1 = ones;
1797 }
1798 ttbcrMask.epd0 = ones;
1799 ttbcrMask.irgn0 = ones;
1800 ttbcrMask.orgn0 = ones;
1801 ttbcrMask.sh0 = ones;
1802 ttbcrMask.ps = ones; // T1SZ
1803 ttbcrMask.a1 = ones;
1804 ttbcrMask.epd1 = ones;
1805 ttbcrMask.irgn1 = ones;
1806 ttbcrMask.orgn1 = ones;
1807 ttbcrMask.sh1 = ones;
1808 if (haveLPAE)
1809 ttbcrMask.eae = ones;
1810
1811 if (haveLPAE && ttbcrNew.eae) {
1812 newVal = newVal & ttbcrMask;
1813 } else {
1814 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1815 }
1816 // Invalidate TLB MiscReg
1817 getITBPtr(tc)->invalidateMiscReg();
1818 getDTBPtr(tc)->invalidateMiscReg();
1819 break;
1820 }
1821 case MISCREG_TTBR0:
1822 case MISCREG_TTBR1:
1823 {
1824 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1825 if (haveLPAE) {
1826 if (ttbcr.eae) {
1827 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1828 // ARMv8 AArch32 bit 63-56 only
1829 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1830 newVal = (newVal & (~ttbrMask));
1831 }
1832 }
1833 // Invalidate TLB MiscReg
1834 getITBPtr(tc)->invalidateMiscReg();
1835 getDTBPtr(tc)->invalidateMiscReg();
1836 break;
1837 }
1838 case MISCREG_SCTLR_EL1:
1839 case MISCREG_CONTEXTIDR:
1840 case MISCREG_PRRR:
1841 case MISCREG_NMRR:
1842 case MISCREG_MAIR0:
1843 case MISCREG_MAIR1:
1844 case MISCREG_DACR:
1845 case MISCREG_VTTBR:
1846 case MISCREG_SCR_EL3:
1847 case MISCREG_HCR_EL2:
1848 case MISCREG_TCR_EL1:
1849 case MISCREG_TCR_EL2:
1850 case MISCREG_TCR_EL3:
1851 case MISCREG_SCTLR_EL2:
1852 case MISCREG_SCTLR_EL3:
1853 case MISCREG_HSCTLR:
1854 case MISCREG_TTBR0_EL1:
1855 case MISCREG_TTBR1_EL1:
1856 case MISCREG_TTBR0_EL2:
1857 case MISCREG_TTBR1_EL2:
1858 case MISCREG_TTBR0_EL3:
1859 getITBPtr(tc)->invalidateMiscReg();
1860 getDTBPtr(tc)->invalidateMiscReg();
1861 break;
1862 case MISCREG_NZCV:
1863 {
1864 CPSR cpsr = val;
1865
1866 tc->setCCReg(CCREG_NZ, cpsr.nz);
1867 tc->setCCReg(CCREG_C, cpsr.c);
1868 tc->setCCReg(CCREG_V, cpsr.v);
1869 }
1870 break;
1871 case MISCREG_DAIF:
1872 {
1873 CPSR cpsr = miscRegs[MISCREG_CPSR];
1874 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1875 newVal = cpsr;
1876 misc_reg = MISCREG_CPSR;
1877 }
1878 break;
1879 case MISCREG_SP_EL0:
1880 tc->setIntReg(INTREG_SP0, newVal);
1881 break;
1882 case MISCREG_SP_EL1:
1883 tc->setIntReg(INTREG_SP1, newVal);
1884 break;
1885 case MISCREG_SP_EL2:
1886 tc->setIntReg(INTREG_SP2, newVal);
1887 break;
1888 case MISCREG_SPSEL:
1889 {
1890 CPSR cpsr = miscRegs[MISCREG_CPSR];
1891 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1892 newVal = cpsr;
1893 misc_reg = MISCREG_CPSR;
1894 }
1895 break;
1896 case MISCREG_CURRENTEL:
1897 {
1898 CPSR cpsr = miscRegs[MISCREG_CPSR];
1899 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1900 newVal = cpsr;
1901 misc_reg = MISCREG_CPSR;
1902 }
1903 break;
1904 case MISCREG_PAN:
1905 {
1906 // PAN is affecting data accesses
1907 getDTBPtr(tc)->invalidateMiscReg();
1908
1909 CPSR cpsr = miscRegs[MISCREG_CPSR];
1910 cpsr.pan = (uint8_t) ((CPSR) newVal).pan;
1911 newVal = cpsr;
1912 misc_reg = MISCREG_CPSR;
1913 }
1914 break;
1915 case MISCREG_AT_S1E1R_Xt:
1916 case MISCREG_AT_S1E1W_Xt:
1917 case MISCREG_AT_S1E0R_Xt:
1918 case MISCREG_AT_S1E0W_Xt:
1919 case MISCREG_AT_S1E2R_Xt:
1920 case MISCREG_AT_S1E2W_Xt:
1921 case MISCREG_AT_S12E1R_Xt:
1922 case MISCREG_AT_S12E1W_Xt:
1923 case MISCREG_AT_S12E0R_Xt:
1924 case MISCREG_AT_S12E0W_Xt:
1925 case MISCREG_AT_S1E3R_Xt:
1926 case MISCREG_AT_S1E3W_Xt:
1927 {
1928 RequestPtr req = std::make_shared<Request>();
1929 Request::Flags flags = 0;
1930 BaseTLB::Mode mode = BaseTLB::Read;
1931 TLB::ArmTranslationType tranType = TLB::NormalTran;
1932 Fault fault;
1933 switch(misc_reg) {
1934 case MISCREG_AT_S1E1R_Xt:
1935 flags = TLB::MustBeOne;
1936 tranType = TLB::S1E1Tran;
1937 mode = BaseTLB::Read;
1938 break;
1939 case MISCREG_AT_S1E1W_Xt:
1940 flags = TLB::MustBeOne;
1941 tranType = TLB::S1E1Tran;
1942 mode = BaseTLB::Write;
1943 break;
1944 case MISCREG_AT_S1E0R_Xt:
1945 flags = TLB::MustBeOne | TLB::UserMode;
1946 tranType = TLB::S1E0Tran;
1947 mode = BaseTLB::Read;
1948 break;
1949 case MISCREG_AT_S1E0W_Xt:
1950 flags = TLB::MustBeOne | TLB::UserMode;
1951 tranType = TLB::S1E0Tran;
1952 mode = BaseTLB::Write;
1953 break;
1954 case MISCREG_AT_S1E2R_Xt:
1955 flags = TLB::MustBeOne;
1956 tranType = TLB::S1E2Tran;
1957 mode = BaseTLB::Read;
1958 break;
1959 case MISCREG_AT_S1E2W_Xt:
1960 flags = TLB::MustBeOne;
1961 tranType = TLB::S1E2Tran;
1962 mode = BaseTLB::Write;
1963 break;
1964 case MISCREG_AT_S12E0R_Xt:
1965 flags = TLB::MustBeOne | TLB::UserMode;
1966 tranType = TLB::S12E0Tran;
1967 mode = BaseTLB::Read;
1968 break;
1969 case MISCREG_AT_S12E0W_Xt:
1970 flags = TLB::MustBeOne | TLB::UserMode;
1971 tranType = TLB::S12E0Tran;
1972 mode = BaseTLB::Write;
1973 break;
1974 case MISCREG_AT_S12E1R_Xt:
1975 flags = TLB::MustBeOne;
1976 tranType = TLB::S12E1Tran;
1977 mode = BaseTLB::Read;
1978 break;
1979 case MISCREG_AT_S12E1W_Xt:
1980 flags = TLB::MustBeOne;
1981 tranType = TLB::S12E1Tran;
1982 mode = BaseTLB::Write;
1983 break;
1984 case MISCREG_AT_S1E3R_Xt:
1985 flags = TLB::MustBeOne;
1986 tranType = TLB::S1E3Tran;
1987 mode = BaseTLB::Read;
1988 break;
1989 case MISCREG_AT_S1E3W_Xt:
1990 flags = TLB::MustBeOne;
1991 tranType = TLB::S1E3Tran;
1992 mode = BaseTLB::Write;
1993 break;
1994 }
1995 // If we're in timing mode then doing the translation in
1996 // functional mode then we're slightly distorting performance
1997 // results obtained from simulations. The translation should be
1998 // done in the same mode the core is running in. NOTE: This
1999 // can't be an atomic translation because that causes problems
2000 // with unexpected atomic snoop requests.
2001 warn("Translating via %s in functional mode! Fix Me!\n",
2002 miscRegName[misc_reg]);
2003
2004 req->setVirt(0, val, 0, flags, Request::funcMasterId,
2005 tc->pcState().pc());
2006 req->setContext(tc->contextId());
2007 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
2008 tranType);
2009
2010 RegVal newVal;
2011 if (fault == NoFault) {
2012 Addr paddr = req->getPaddr();
2013 uint64_t attr = getDTBPtr(tc)->getAttr();
2014 uint64_t attr1 = attr >> 56;
2015 if (!attr1 || attr1 ==0x44) {
2016 attr |= 0x100;
2017 attr &= ~ uint64_t(0x80);
2018 }
2019 newVal = (paddr & mask(47, 12)) | attr;
2020 DPRINTF(MiscRegs,
2021 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
2022 val, newVal);
2023 } else {
2024 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
2025 armFault->update(tc);
2026 // Set fault bit and FSR
2027 FSR fsr = armFault->getFsr(tc);
2028
2029 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
2030 if (cpsr.width) { // AArch32
2031 newVal = ((fsr >> 9) & 1) << 11;
2032 // rearrange fault status
2033 newVal |= ((fsr >> 0) & 0x3f) << 1;
2034 newVal |= 0x1; // F bit
2035 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2036 newVal |= armFault->isStage2() ? 0x200 : 0;
2037 } else { // AArch64
2038 newVal = 1; // F bit
2039 newVal |= fsr << 1; // FST
2040 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2041 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2042 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2043 newVal |= 1 << 11; // RES1
2044 }
2045 DPRINTF(MiscRegs,
2046 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2047 val, fsr, newVal);
2048 }
2049 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2050 return;
2051 }
2052 case MISCREG_SPSR_EL3:
2053 case MISCREG_SPSR_EL2:
2054 case MISCREG_SPSR_EL1:
2055 {
2056 RegVal spsr_mask = havePAN ?
2057 ~(0x5 << 21) : ~(0x7 << 21);
2058
2059 newVal = val & spsr_mask;
2060 break;
2061 }
2062 case MISCREG_L2CTLR:
2063 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2064 miscRegName[misc_reg], uint32_t(val));
2065 break;
2066
2067 // Generic Timer registers
2068 case MISCREG_CNTHV_CTL_EL2:
2069 case MISCREG_CNTHV_CVAL_EL2:
2070 case MISCREG_CNTHV_TVAL_EL2:
2071 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2072 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2073 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2074 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2075 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2076 break;
2077 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15:
2078 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2079 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2080 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2081 return;
2082 case MISCREG_ZCR_EL3:
2083 case MISCREG_ZCR_EL2:
2084 case MISCREG_ZCR_EL1:
2085 tc->getDecoderPtr()->setSveLen(
2086 (getCurSveVecLenInBits(tc) >> 7) - 1);
2087 break;
2088 }
2089 }
2090 setMiscRegNoEffect(misc_reg, newVal);
2091}
2092
2093BaseISADevice &
2094ISA::getGenericTimer(ThreadContext *tc)
2095{
2096 // We only need to create an ISA interface the first time we try
2097 // to access the timer.
2098 if (timer)
2099 return *timer.get();
2100
2101 assert(system);
2102 GenericTimer *generic_timer(system->getGenericTimer());
2103 if (!generic_timer) {
2104 panic("Trying to get a generic timer from a system that hasn't "
2105 "been configured to use a generic timer.\n");
2106 }
2107
2108 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2109 timer->setThreadContext(tc);
2110
2111 return *timer.get();
2112}
2113
2114BaseISADevice &
2115ISA::getGICv3CPUInterface(ThreadContext *tc)
2116{
2117 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2118 return *gicv3CpuInterface.get();
2119}
2120
2121unsigned
2122ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2123{
2124 if (!FullSystem) {
2125 return sveVL * 128;
2126 }
2127
2128 panic_if(!tc,
2129 "A ThreadContext is needed to determine the SVE vector length "
2130 "in full-system mode");
2131
2132 CPSR cpsr = miscRegs[MISCREG_CPSR];
2133 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2134
2135 unsigned len = 0;
2136
2137 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2138 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2139 }
2140
2141 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2142 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2143 } else if (haveVirtualization && !inSecureState(tc) &&
2144 (el == EL0 || el == EL1)) {
2145 len = std::min(
2146 len,
2147 static_cast<unsigned>(
2148 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2149 }
2150
2151 if (el == EL3) {
2152 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2153 } else if (haveSecurity) {
2154 len = std::min(
2155 len,
2156 static_cast<unsigned>(
2157 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2158 }
2159
2160 len = std::min(len, sveVL - 1);
2161
2162 return (len + 1) * 128;
2163}
2164
2165void
2166ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2167{
2168 auto vv = vc.as<uint64_t>();
2169 for (int i = 2; i < eCount; ++i) {
2170 vv[i] = 0;
2171 }
2172}
2173
2174} // namespace ArmISA
2175
2176ArmISA::ISA *
2177ArmISAParams::create()
2178{
2179 return new ArmISA::ISA(this);
2180}