isa.cc (12109:f29e9c5418aa) isa.cc (12392:e0dbdf30a2a5)
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42
43#include "arch/arm/pmu.hh"
44#include "arch/arm/system.hh"
45#include "cpu/base.hh"
46#include "cpu/checker/cpu.hh"
47#include "debug/Arm.hh"
48#include "debug/MiscRegs.hh"
49#include "dev/arm/generic_timer.hh"
50#include "params/ArmISA.hh"
51#include "sim/faults.hh"
52#include "sim/stat_control.hh"
53#include "sim/system.hh"
54
55namespace ArmISA
56{
57
58
59/**
60 * Some registers alias with others, and therefore need to be translated.
61 * For each entry:
62 * The first value is the misc register that is to be looked up
63 * the second value is the lower part of the translation
64 * the third the upper part
65 * aligned with reference documentation ARM DDI 0487A.i pp 1540-1543
66 */
67const struct ISA::MiscRegInitializerEntry
68 ISA::MiscRegSwitch[] = {
69 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR_NS, 0}},
70 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR_NS, 0}},
71 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR_NS, 0}},
72 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0_NS, MISCREG_AMAIR1_NS}},
73 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR_NS, 0}},
74 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
75 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR_NS, 0}},
76 {MISCREG_DACR32_EL2, {MISCREG_DACR_NS, 0}},
77 {MISCREG_FAR_EL1, {MISCREG_DFAR_NS, MISCREG_IFAR_NS}},
78 // ESR_EL1 -> DFSR
79 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
80 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
81 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
82 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
83 {MISCREG_AMAIR_EL2, {MISCREG_HAMAIR0, MISCREG_HAMAIR1}},
84 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
85 {MISCREG_HCR_EL2, {MISCREG_HCR, 0 /*MISCREG_HCR2*/}},
86 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
87 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
88 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
89 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
90 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
91 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
92 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
93 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
94 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
95 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
96 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
97 {MISCREG_IFSR32_EL2, {MISCREG_IFSR_NS, 0}},
98 {MISCREG_MAIR_EL1, {MISCREG_PRRR_NS, MISCREG_NMRR_NS}},
99 {MISCREG_PAR_EL1, {MISCREG_PAR_NS, 0}},
100 // RMR_EL1 -> RMR
101 // RMR_EL2 -> HRMR
102 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR_NS, 0}},
103 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}},
104 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW_NS, 0}},
105 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO_NS, 0}},
106 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW_NS, 0}},
107 {MISCREG_TCR_EL1, {MISCREG_TTBCR_NS, 0}},
108 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0_NS, 0}},
109 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1_NS, 0}},
110 {MISCREG_VBAR_EL1, {MISCREG_VBAR_NS, 0}},
111 {MISCREG_VMPIDR_EL2, {MISCREG_VMPIDR, 0}},
112 {MISCREG_VPIDR_EL2, {MISCREG_VPIDR, 0}},
113 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
114 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
115 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
116 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
117 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
118 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}}, /* 64b */
119 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
120 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
121 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL_NS, 0}},
122 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL_NS, 0}}, /* 64b */
123 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL_NS, 0}},
124 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}}, /* 64b */
125 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
126 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}}, /* 64b */
127 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
128 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}}, /* 64b */
129 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}}, /* 64b */
130 {MISCREG_DBGAUTHSTATUS_EL1, {MISCREG_DBGAUTHSTATUS, 0}},
131 {MISCREG_DBGBCR0_EL1, {MISCREG_DBGBCR0, 0}},
132 {MISCREG_DBGBCR1_EL1, {MISCREG_DBGBCR1, 0}},
133 {MISCREG_DBGBCR2_EL1, {MISCREG_DBGBCR2, 0}},
134 {MISCREG_DBGBCR3_EL1, {MISCREG_DBGBCR3, 0}},
135 {MISCREG_DBGBCR4_EL1, {MISCREG_DBGBCR4, 0}},
136 {MISCREG_DBGBCR5_EL1, {MISCREG_DBGBCR5, 0}},
137 {MISCREG_DBGBVR0_EL1, {MISCREG_DBGBVR0, 0 /* MISCREG_DBGBXVR0 */}},
138 {MISCREG_DBGBVR1_EL1, {MISCREG_DBGBVR1, 0 /* MISCREG_DBGBXVR1 */}},
139 {MISCREG_DBGBVR2_EL1, {MISCREG_DBGBVR2, 0 /* MISCREG_DBGBXVR2 */}},
140 {MISCREG_DBGBVR3_EL1, {MISCREG_DBGBVR3, 0 /* MISCREG_DBGBXVR3 */}},
141 {MISCREG_DBGBVR4_EL1, {MISCREG_DBGBVR4, MISCREG_DBGBXVR4}},
142 {MISCREG_DBGBVR5_EL1, {MISCREG_DBGBVR5, MISCREG_DBGBXVR5}},
143 {MISCREG_DBGCLAIMSET_EL1, {MISCREG_DBGCLAIMSET, 0}},
144 {MISCREG_DBGCLAIMCLR_EL1, {MISCREG_DBGCLAIMCLR, 0}},
145 // DBGDTR_EL0 -> DBGDTR{R or T}Xint
146 // DBGDTRRX_EL0 -> DBGDTRRXint
147 // DBGDTRTX_EL0 -> DBGDTRRXint
148 {MISCREG_DBGPRCR_EL1, {MISCREG_DBGPRCR, 0}},
149 {MISCREG_DBGVCR32_EL2, {MISCREG_DBGVCR, 0}},
150 {MISCREG_DBGWCR0_EL1, {MISCREG_DBGWCR0, 0}},
151 {MISCREG_DBGWCR1_EL1, {MISCREG_DBGWCR1, 0}},
152 {MISCREG_DBGWCR2_EL1, {MISCREG_DBGWCR2, 0}},
153 {MISCREG_DBGWCR3_EL1, {MISCREG_DBGWCR3, 0}},
154 {MISCREG_DBGWVR0_EL1, {MISCREG_DBGWVR0, 0}},
155 {MISCREG_DBGWVR1_EL1, {MISCREG_DBGWVR1, 0}},
156 {MISCREG_DBGWVR2_EL1, {MISCREG_DBGWVR2, 0}},
157 {MISCREG_DBGWVR3_EL1, {MISCREG_DBGWVR3, 0}},
158 {MISCREG_ID_DFR0_EL1, {MISCREG_ID_DFR0, 0}},
159 {MISCREG_MDCCSR_EL0, {MISCREG_DBGDSCRint, 0}},
160 {MISCREG_MDRAR_EL1, {MISCREG_DBGDRAR, 0}},
161 {MISCREG_MDSCR_EL1, {MISCREG_DBGDSCRext, 0}},
162 {MISCREG_OSDLR_EL1, {MISCREG_DBGOSDLR, 0}},
163 {MISCREG_OSDTRRX_EL1, {MISCREG_DBGDTRRXext, 0}},
164 {MISCREG_OSDTRTX_EL1, {MISCREG_DBGDTRTXext, 0}},
165 {MISCREG_OSECCR_EL1, {MISCREG_DBGOSECCR, 0}},
166 {MISCREG_OSLAR_EL1, {MISCREG_DBGOSLAR, 0}},
167 {MISCREG_OSLSR_EL1, {MISCREG_DBGOSLSR, 0}},
168 {MISCREG_PMCCNTR_EL0, {MISCREG_PMCCNTR, 0}},
169 {MISCREG_PMCEID0_EL0, {MISCREG_PMCEID0, 0}},
170 {MISCREG_PMCEID1_EL0, {MISCREG_PMCEID1, 0}},
171 {MISCREG_PMCNTENSET_EL0, {MISCREG_PMCNTENSET, 0}},
172 {MISCREG_PMCNTENCLR_EL0, {MISCREG_PMCNTENCLR, 0}},
173 {MISCREG_PMCR_EL0, {MISCREG_PMCR, 0}},
174/* {MISCREG_PMEVCNTR0_EL0, {MISCREG_PMEVCNTR0, 0}},
175 {MISCREG_PMEVCNTR1_EL0, {MISCREG_PMEVCNTR1, 0}},
176 {MISCREG_PMEVCNTR2_EL0, {MISCREG_PMEVCNTR2, 0}},
177 {MISCREG_PMEVCNTR3_EL0, {MISCREG_PMEVCNTR3, 0}},
178 {MISCREG_PMEVCNTR4_EL0, {MISCREG_PMEVCNTR4, 0}},
179 {MISCREG_PMEVCNTR5_EL0, {MISCREG_PMEVCNTR5, 0}},
180 {MISCREG_PMEVTYPER0_EL0, {MISCREG_PMEVTYPER0, 0}},
181 {MISCREG_PMEVTYPER1_EL0, {MISCREG_PMEVTYPER1, 0}},
182 {MISCREG_PMEVTYPER2_EL0, {MISCREG_PMEVTYPER2, 0}},
183 {MISCREG_PMEVTYPER3_EL0, {MISCREG_PMEVTYPER3, 0}},
184 {MISCREG_PMEVTYPER4_EL0, {MISCREG_PMEVTYPER4, 0}},
185 {MISCREG_PMEVTYPER5_EL0, {MISCREG_PMEVTYPER5, 0}}, */
186 {MISCREG_PMINTENCLR_EL1, {MISCREG_PMINTENCLR, 0}},
187 {MISCREG_PMINTENSET_EL1, {MISCREG_PMINTENSET, 0}},
188// {MISCREG_PMOVSCLR_EL0, {MISCREG_PMOVSCLR, 0}},
189 {MISCREG_PMOVSSET_EL0, {MISCREG_PMOVSSET, 0}},
190 {MISCREG_PMSELR_EL0, {MISCREG_PMSELR, 0}},
191 {MISCREG_PMSWINC_EL0, {MISCREG_PMSWINC, 0}},
192 {MISCREG_PMUSERENR_EL0, {MISCREG_PMUSERENR, 0}},
193 {MISCREG_PMXEVCNTR_EL0, {MISCREG_PMXEVCNTR, 0}},
194 {MISCREG_PMXEVTYPER_EL0, {MISCREG_PMXEVTYPER, 0}},
195
196 // from ARM DDI 0487A.i, template text
197 // "AArch64 System register ___ can be mapped to
198 // AArch32 System register ___, but this is not
199 // architecturally mandated."
200 {MISCREG_SCR_EL3, {MISCREG_SCR, 0}}, // D7-2005
201 // MDCR_EL3 -> SDCR, D7-2108 (the latter is unimpl. in gem5)
202 {MISCREG_SPSR_EL1, {MISCREG_SPSR_SVC, 0}}, // C5.2.17 SPSR_EL1
203 {MISCREG_SPSR_EL2, {MISCREG_SPSR_HYP, 0}}, // C5.2.18 SPSR_EL2
204 {MISCREG_SPSR_EL3, {MISCREG_SPSR_MON, 0}}, // C5.2.19 SPSR_EL3
205};
206
207
208ISA::ISA(Params *p)
209 : SimObject(p),
210 system(NULL),
211 _decoderFlavour(p->decoderFlavour),
212 _vecRegRenameMode(p->vecRegRenameMode),
213 pmu(p->pmu),
214 lookUpMiscReg(NUM_MISCREGS, {0,0})
215{
216 miscRegs[MISCREG_SCTLR_RST] = 0;
217
218 // Hook up a dummy device if we haven't been configured with a
219 // real PMU. By using a dummy device, we don't need to check that
220 // the PMU exist every time we try to access a PMU register.
221 if (!pmu)
222 pmu = &dummyDevice;
223
224 // Give all ISA devices a pointer to this ISA
225 pmu->setISA(this);
226
227 system = dynamic_cast<ArmSystem *>(p->system);
228
229 // Cache system-level properties
230 if (FullSystem && system) {
231 highestELIs64 = system->highestELIs64();
232 haveSecurity = system->haveSecurity();
233 haveLPAE = system->haveLPAE();
234 haveVirtualization = system->haveVirtualization();
235 haveLargeAsid64 = system->haveLargeAsid64();
236 physAddrRange64 = system->physAddrRange64();
237 } else {
238 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
239 haveSecurity = haveLPAE = haveVirtualization = false;
240 haveLargeAsid64 = false;
241 physAddrRange64 = 32; // dummy value
242 }
243
244 /** Fill in the miscReg translation table */
245 for (auto sw : MiscRegSwitch) {
246 lookUpMiscReg[sw.index] = sw.entry;
247 }
248
249 preUnflattenMiscReg();
250
251 clear();
252}
253
254const ArmISAParams *
255ISA::params() const
256{
257 return dynamic_cast<const Params *>(_params);
258}
259
260void
261ISA::clear()
262{
263 const Params *p(params());
264
265 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
266 memset(miscRegs, 0, sizeof(miscRegs));
267
268 // Initialize configurable default values
269 miscRegs[MISCREG_MIDR] = p->midr;
270 miscRegs[MISCREG_MIDR_EL1] = p->midr;
271 miscRegs[MISCREG_VPIDR] = p->midr;
272
273 if (FullSystem && system->highestELIs64()) {
274 // Initialize AArch64 state
275 clear64(p);
276 return;
277 }
278
279 // Initialize AArch32 state...
280
281 CPSR cpsr = 0;
282 cpsr.mode = MODE_USER;
283 miscRegs[MISCREG_CPSR] = cpsr;
284 updateRegMap(cpsr);
285
286 SCTLR sctlr = 0;
287 sctlr.te = (bool) sctlr_rst.te;
288 sctlr.nmfi = (bool) sctlr_rst.nmfi;
289 sctlr.v = (bool) sctlr_rst.v;
290 sctlr.u = 1;
291 sctlr.xp = 1;
292 sctlr.rao2 = 1;
293 sctlr.rao3 = 1;
294 sctlr.rao4 = 0xf; // SCTLR[6:3]
295 sctlr.uci = 1;
296 sctlr.dze = 1;
297 miscRegs[MISCREG_SCTLR_NS] = sctlr;
298 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
299 miscRegs[MISCREG_HCPTR] = 0;
300
301 // Start with an event in the mailbox
302 miscRegs[MISCREG_SEV_MAILBOX] = 1;
303
304 // Separate Instruction and Data TLBs
305 miscRegs[MISCREG_TLBTR] = 1;
306
307 MVFR0 mvfr0 = 0;
308 mvfr0.advSimdRegisters = 2;
309 mvfr0.singlePrecision = 2;
310 mvfr0.doublePrecision = 2;
311 mvfr0.vfpExceptionTrapping = 0;
312 mvfr0.divide = 1;
313 mvfr0.squareRoot = 1;
314 mvfr0.shortVectors = 1;
315 mvfr0.roundingModes = 1;
316 miscRegs[MISCREG_MVFR0] = mvfr0;
317
318 MVFR1 mvfr1 = 0;
319 mvfr1.flushToZero = 1;
320 mvfr1.defaultNaN = 1;
321 mvfr1.advSimdLoadStore = 1;
322 mvfr1.advSimdInteger = 1;
323 mvfr1.advSimdSinglePrecision = 1;
324 mvfr1.advSimdHalfPrecision = 1;
325 mvfr1.vfpHalfPrecision = 1;
326 miscRegs[MISCREG_MVFR1] = mvfr1;
327
328 // Reset values of PRRR and NMRR are implementation dependent
329
330 // @todo: PRRR and NMRR in secure state?
331 miscRegs[MISCREG_PRRR_NS] =
332 (1 << 19) | // 19
333 (0 << 18) | // 18
334 (0 << 17) | // 17
335 (1 << 16) | // 16
336 (2 << 14) | // 15:14
337 (0 << 12) | // 13:12
338 (2 << 10) | // 11:10
339 (2 << 8) | // 9:8
340 (2 << 6) | // 7:6
341 (2 << 4) | // 5:4
342 (1 << 2) | // 3:2
343 0; // 1:0
344 miscRegs[MISCREG_NMRR_NS] =
345 (1 << 30) | // 31:30
346 (0 << 26) | // 27:26
347 (0 << 24) | // 25:24
348 (3 << 22) | // 23:22
349 (2 << 20) | // 21:20
350 (0 << 18) | // 19:18
351 (0 << 16) | // 17:16
352 (1 << 14) | // 15:14
353 (0 << 12) | // 13:12
354 (2 << 10) | // 11:10
355 (0 << 8) | // 9:8
356 (3 << 6) | // 7:6
357 (2 << 4) | // 5:4
358 (0 << 2) | // 3:2
359 0; // 1:0
360
361 miscRegs[MISCREG_CPACR] = 0;
362
363 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
364 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
365 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
366 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
367
368 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
369 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
370 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
371 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
372 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
373 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
374
375 miscRegs[MISCREG_FPSID] = p->fpsid;
376
377 if (haveLPAE) {
378 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
379 ttbcr.eae = 0;
380 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
381 // Enforce consistency with system-level settings
382 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
383 }
384
385 if (haveSecurity) {
386 miscRegs[MISCREG_SCTLR_S] = sctlr;
387 miscRegs[MISCREG_SCR] = 0;
388 miscRegs[MISCREG_VBAR_S] = 0;
389 } else {
390 // we're always non-secure
391 miscRegs[MISCREG_SCR] = 1;
392 }
393
394 //XXX We need to initialize the rest of the state.
395}
396
397void
398ISA::clear64(const ArmISAParams *p)
399{
400 CPSR cpsr = 0;
401 Addr rvbar = system->resetAddr64();
402 switch (system->highestEL()) {
403 // Set initial EL to highest implemented EL using associated stack
404 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
405 // value
406 case EL3:
407 cpsr.mode = MODE_EL3H;
408 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
409 break;
410 case EL2:
411 cpsr.mode = MODE_EL2H;
412 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
413 break;
414 case EL1:
415 cpsr.mode = MODE_EL1H;
416 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
417 break;
418 default:
419 panic("Invalid highest implemented exception level");
420 break;
421 }
422
423 // Initialize rest of CPSR
424 cpsr.daif = 0xf; // Mask all interrupts
425 cpsr.ss = 0;
426 cpsr.il = 0;
427 miscRegs[MISCREG_CPSR] = cpsr;
428 updateRegMap(cpsr);
429
430 // Initialize other control registers
431 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
432 if (haveSecurity) {
433 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
434 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
435 } else if (haveVirtualization) {
436 // also MISCREG_SCTLR_EL2 (by mapping)
437 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
438 } else {
439 // also MISCREG_SCTLR_EL1 (by mapping)
440 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
441 // Always non-secure
442 miscRegs[MISCREG_SCR_EL3] = 1;
443 }
444
445 // Initialize configurable id registers
446 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
447 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
448 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
449 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
450 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
451
452 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
453 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
454 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
455 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
456 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
457
458 miscRegs[MISCREG_ID_DFR0_EL1] =
459 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
460
461 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
462
463 // Enforce consistency with system-level settings...
464
465 // EL3
466 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
467 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
468 haveSecurity ? 0x2 : 0x0);
469 // EL2
470 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
471 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
472 haveVirtualization ? 0x2 : 0x0);
473 // Large ASID support
474 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
475 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
476 haveLargeAsid64 ? 0x2 : 0x0);
477 // Physical address size
478 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
479 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
480 encodePhysAddrRange64(physAddrRange64));
481}
482
483MiscReg
484ISA::readMiscRegNoEffect(int misc_reg) const
485{
486 assert(misc_reg < NumMiscRegs);
487
488 auto regs = getMiscIndices(misc_reg);
489 int lower = regs.first, upper = regs.second;
490 return !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
491 |(miscRegs[upper] << 32));
492}
493
494
495MiscReg
496ISA::readMiscReg(int misc_reg, ThreadContext *tc)
497{
498 CPSR cpsr = 0;
499 PCState pc = 0;
500 SCR scr = 0;
501
502 if (misc_reg == MISCREG_CPSR) {
503 cpsr = miscRegs[misc_reg];
504 pc = tc->pcState();
505 cpsr.j = pc.jazelle() ? 1 : 0;
506 cpsr.t = pc.thumb() ? 1 : 0;
507 return cpsr;
508 }
509
510#ifndef NDEBUG
511 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
512 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
513 warn("Unimplemented system register %s read.\n",
514 miscRegName[misc_reg]);
515 else
516 panic("Unimplemented system register %s read.\n",
517 miscRegName[misc_reg]);
518 }
519#endif
520
521 switch (unflattenMiscReg(misc_reg)) {
522 case MISCREG_HCR:
523 {
524 if (!haveVirtualization)
525 return 0;
526 else
527 return readMiscRegNoEffect(MISCREG_HCR);
528 }
529 case MISCREG_CPACR:
530 {
531 const uint32_t ones = (uint32_t)(-1);
532 CPACR cpacrMask = 0;
533 // Only cp10, cp11, and ase are implemented, nothing else should
534 // be readable? (straight copy from the write code)
535 cpacrMask.cp10 = ones;
536 cpacrMask.cp11 = ones;
537 cpacrMask.asedis = ones;
538
539 // Security Extensions may limit the readability of CPACR
540 if (haveSecurity) {
541 scr = readMiscRegNoEffect(MISCREG_SCR);
542 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
543 if (scr.ns && (cpsr.mode != MODE_MON)) {
544 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
545 // NB: Skipping the full loop, here
546 if (!nsacr.cp10) cpacrMask.cp10 = 0;
547 if (!nsacr.cp11) cpacrMask.cp11 = 0;
548 }
549 }
550 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
551 val &= cpacrMask;
552 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
553 miscRegName[misc_reg], val);
554 return val;
555 }
556 case MISCREG_MPIDR:
557 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
558 scr = readMiscRegNoEffect(MISCREG_SCR);
559 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
560 return getMPIDR(system, tc);
561 } else {
562 return readMiscReg(MISCREG_VMPIDR, tc);
563 }
564 break;
565 case MISCREG_MPIDR_EL1:
566 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
567 return getMPIDR(system, tc) & 0xffffffff;
568 case MISCREG_VMPIDR:
569 // top bit defined as RES1
570 return readMiscRegNoEffect(misc_reg) | 0x80000000;
571 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
572 case MISCREG_REVIDR: // not implemented, so alias MIDR
573 case MISCREG_MIDR:
574 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
575 scr = readMiscRegNoEffect(MISCREG_SCR);
576 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
577 return readMiscRegNoEffect(misc_reg);
578 } else {
579 return readMiscRegNoEffect(MISCREG_VPIDR);
580 }
581 break;
582 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
583 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
584 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
585 case MISCREG_AIDR: // AUX ID set to 0
586 case MISCREG_TCMTR: // No TCM's
587 return 0;
588
589 case MISCREG_CLIDR:
590 warn_once("The clidr register always reports 0 caches.\n");
591 warn_once("clidr LoUIS field of 0b001 to match current "
592 "ARM implementations.\n");
593 return 0x00200000;
594 case MISCREG_CCSIDR:
595 warn_once("The ccsidr register isn't implemented and "
596 "always reads as 0.\n");
597 break;
598 case MISCREG_CTR: // AArch32, ARMv7, top bit set
599 case MISCREG_CTR_EL0: // AArch64
600 {
601 //all caches have the same line size in gem5
602 //4 byte words in ARM
603 unsigned lineSizeWords =
604 tc->getSystemPtr()->cacheLineSize() / 4;
605 unsigned log2LineSizeWords = 0;
606
607 while (lineSizeWords >>= 1) {
608 ++log2LineSizeWords;
609 }
610
611 CTR ctr = 0;
612 //log2 of minimun i-cache line size (words)
613 ctr.iCacheLineSize = log2LineSizeWords;
614 //b11 - gem5 uses pipt
615 ctr.l1IndexPolicy = 0x3;
616 //log2 of minimum d-cache line size (words)
617 ctr.dCacheLineSize = log2LineSizeWords;
618 //log2 of max reservation size (words)
619 ctr.erg = log2LineSizeWords;
620 //log2 of max writeback size (words)
621 ctr.cwg = log2LineSizeWords;
622 //b100 - gem5 format is ARMv7
623 ctr.format = 0x4;
624
625 return ctr;
626 }
627 case MISCREG_ACTLR:
628 warn("Not doing anything for miscreg ACTLR\n");
629 break;
630
631 case MISCREG_PMXEVTYPER_PMCCFILTR:
632 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
633 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
634 case MISCREG_PMCR ... MISCREG_PMOVSSET:
635 return pmu->readMiscReg(misc_reg);
636
637 case MISCREG_CPSR_Q:
638 panic("shouldn't be reading this register seperately\n");
639 case MISCREG_FPSCR_QC:
640 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
641 case MISCREG_FPSCR_EXC:
642 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
643 case MISCREG_FPSR:
644 {
645 const uint32_t ones = (uint32_t)(-1);
646 FPSCR fpscrMask = 0;
647 fpscrMask.ioc = ones;
648 fpscrMask.dzc = ones;
649 fpscrMask.ofc = ones;
650 fpscrMask.ufc = ones;
651 fpscrMask.ixc = ones;
652 fpscrMask.idc = ones;
653 fpscrMask.qc = ones;
654 fpscrMask.v = ones;
655 fpscrMask.c = ones;
656 fpscrMask.z = ones;
657 fpscrMask.n = ones;
658 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
659 }
660 case MISCREG_FPCR:
661 {
662 const uint32_t ones = (uint32_t)(-1);
663 FPSCR fpscrMask = 0;
664 fpscrMask.ioe = ones;
665 fpscrMask.dze = ones;
666 fpscrMask.ofe = ones;
667 fpscrMask.ufe = ones;
668 fpscrMask.ixe = ones;
669 fpscrMask.ide = ones;
670 fpscrMask.len = ones;
671 fpscrMask.stride = ones;
672 fpscrMask.rMode = ones;
673 fpscrMask.fz = ones;
674 fpscrMask.dn = ones;
675 fpscrMask.ahp = ones;
676 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
677 }
678 case MISCREG_NZCV:
679 {
680 CPSR cpsr = 0;
681 cpsr.nz = tc->readCCReg(CCREG_NZ);
682 cpsr.c = tc->readCCReg(CCREG_C);
683 cpsr.v = tc->readCCReg(CCREG_V);
684 return cpsr;
685 }
686 case MISCREG_DAIF:
687 {
688 CPSR cpsr = 0;
689 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
690 return cpsr;
691 }
692 case MISCREG_SP_EL0:
693 {
694 return tc->readIntReg(INTREG_SP0);
695 }
696 case MISCREG_SP_EL1:
697 {
698 return tc->readIntReg(INTREG_SP1);
699 }
700 case MISCREG_SP_EL2:
701 {
702 return tc->readIntReg(INTREG_SP2);
703 }
704 case MISCREG_SPSEL:
705 {
706 return miscRegs[MISCREG_CPSR] & 0x1;
707 }
708 case MISCREG_CURRENTEL:
709 {
710 return miscRegs[MISCREG_CPSR] & 0xc;
711 }
712 case MISCREG_L2CTLR:
713 {
714 // mostly unimplemented, just set NumCPUs field from sim and return
715 L2CTLR l2ctlr = 0;
716 // b00:1CPU to b11:4CPUs
717 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
718 return l2ctlr;
719 }
720 case MISCREG_DBGDIDR:
721 /* For now just implement the version number.
722 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
723 */
724 return 0x5 << 16;
725 case MISCREG_DBGDSCRint:
726 return 0;
727 case MISCREG_ISR:
728 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
729 readMiscRegNoEffect(MISCREG_HCR),
730 readMiscRegNoEffect(MISCREG_CPSR),
731 readMiscRegNoEffect(MISCREG_SCR));
732 case MISCREG_ISR_EL1:
733 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
734 readMiscRegNoEffect(MISCREG_HCR_EL2),
735 readMiscRegNoEffect(MISCREG_CPSR),
736 readMiscRegNoEffect(MISCREG_SCR_EL3));
737 case MISCREG_DCZID_EL0:
738 return 0x04; // DC ZVA clear 64-byte chunks
739 case MISCREG_HCPTR:
740 {
741 MiscReg val = readMiscRegNoEffect(misc_reg);
742 // The trap bit associated with CP14 is defined as RAZ
743 val &= ~(1 << 14);
744 // If a CP bit in NSACR is 0 then the corresponding bit in
745 // HCPTR is RAO/WI
746 bool secure_lookup = haveSecurity &&
747 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
748 readMiscRegNoEffect(MISCREG_CPSR));
749 if (!secure_lookup) {
750 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
751 val |= (mask ^ 0x7FFF) & 0xBFFF;
752 }
753 // Set the bits for unimplemented coprocessors to RAO/WI
754 val |= 0x33FF;
755 return (val);
756 }
757 case MISCREG_HDFAR: // alias for secure DFAR
758 return readMiscRegNoEffect(MISCREG_DFAR_S);
759 case MISCREG_HIFAR: // alias for secure IFAR
760 return readMiscRegNoEffect(MISCREG_IFAR_S);
761 case MISCREG_HVBAR: // bottom bits reserved
762 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
763 case MISCREG_SCTLR:
764 return (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818;
765 case MISCREG_SCTLR_EL1:
766 return (readMiscRegNoEffect(misc_reg) & 0x37DDDBBF) | 0x30D00800;
767 case MISCREG_SCTLR_EL2:
768 case MISCREG_SCTLR_EL3:
769 case MISCREG_HSCTLR:
770 return (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830;
771
772 case MISCREG_ID_PFR0:
773 // !ThumbEE | !Jazelle | Thumb | ARM
774 return 0x00000031;
775 case MISCREG_ID_PFR1:
776 { // Timer | Virti | !M Profile | TrustZone | ARMv4
777 bool haveTimer = (system->getGenericTimer() != NULL);
778 return 0x00000001
779 | (haveSecurity ? 0x00000010 : 0x0)
780 | (haveVirtualization ? 0x00001000 : 0x0)
781 | (haveTimer ? 0x00010000 : 0x0);
782 }
783 case MISCREG_ID_AA64PFR0_EL1:
784 return 0x0000000000000002 // AArch{64,32} supported at EL0
785 | 0x0000000000000020 // EL1
786 | (haveVirtualization ? 0x0000000000000200 : 0) // EL2
787 | (haveSecurity ? 0x0000000000002000 : 0); // EL3
788 case MISCREG_ID_AA64PFR1_EL1:
789 return 0; // bits [63:0] RES0 (reserved for future use)
790
791 // Generic Timer registers
792 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
793 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
794 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
795 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
796 return getGenericTimer(tc).readMiscReg(misc_reg);
797
798 default:
799 break;
800
801 }
802 return readMiscRegNoEffect(misc_reg);
803}
804
805void
806ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
807{
808 assert(misc_reg < NumMiscRegs);
809
810 auto regs = getMiscIndices(misc_reg);
811 int lower = regs.first, upper = regs.second;
812 if (upper > 0) {
813 miscRegs[lower] = bits(val, 31, 0);
814 miscRegs[upper] = bits(val, 63, 32);
815 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
816 misc_reg, lower, upper, val);
817 } else {
818 miscRegs[lower] = val;
819 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
820 misc_reg, lower, val);
821 }
822}
823
824void
825ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
826{
827
828 MiscReg newVal = val;
829 int x;
830 bool secure_lookup;
831 bool hyp;
832 System *sys;
833 ThreadContext *oc;
834 uint8_t target_el;
835 uint16_t asid;
836 SCR scr;
837
838 if (misc_reg == MISCREG_CPSR) {
839 updateRegMap(val);
840
841
842 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
843 int old_mode = old_cpsr.mode;
844 CPSR cpsr = val;
845 if (old_mode != cpsr.mode) {
846 tc->getITBPtr()->invalidateMiscReg();
847 tc->getDTBPtr()->invalidateMiscReg();
848 }
849
850 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
851 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
852 PCState pc = tc->pcState();
853 pc.nextThumb(cpsr.t);
854 pc.nextJazelle(cpsr.j);
855
856 // Follow slightly different semantics if a CheckerCPU object
857 // is connected
858 CheckerCPU *checker = tc->getCheckerCpuPtr();
859 if (checker) {
860 tc->pcStateNoRecord(pc);
861 } else {
862 tc->pcState(pc);
863 }
864 } else {
865#ifndef NDEBUG
866 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
867 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
868 warn("Unimplemented system register %s write with %#x.\n",
869 miscRegName[misc_reg], val);
870 else
871 panic("Unimplemented system register %s write with %#x.\n",
872 miscRegName[misc_reg], val);
873 }
874#endif
875 switch (unflattenMiscReg(misc_reg)) {
876 case MISCREG_CPACR:
877 {
878
879 const uint32_t ones = (uint32_t)(-1);
880 CPACR cpacrMask = 0;
881 // Only cp10, cp11, and ase are implemented, nothing else should
882 // be writable
883 cpacrMask.cp10 = ones;
884 cpacrMask.cp11 = ones;
885 cpacrMask.asedis = ones;
886
887 // Security Extensions may limit the writability of CPACR
888 if (haveSecurity) {
889 scr = readMiscRegNoEffect(MISCREG_SCR);
890 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
891 if (scr.ns && (cpsr.mode != MODE_MON)) {
892 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
893 // NB: Skipping the full loop, here
894 if (!nsacr.cp10) cpacrMask.cp10 = 0;
895 if (!nsacr.cp11) cpacrMask.cp11 = 0;
896 }
897 }
898
899 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
900 newVal &= cpacrMask;
901 newVal |= old_val & ~cpacrMask;
902 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
903 miscRegName[misc_reg], newVal);
904 }
905 break;
906 case MISCREG_CPACR_EL1:
907 {
908 const uint32_t ones = (uint32_t)(-1);
909 CPACR cpacrMask = 0;
910 cpacrMask.tta = ones;
911 cpacrMask.fpen = ones;
912 newVal &= cpacrMask;
913 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
914 miscRegName[misc_reg], newVal);
915 }
916 break;
917 case MISCREG_CPTR_EL2:
918 {
919 const uint32_t ones = (uint32_t)(-1);
920 CPTR cptrMask = 0;
921 cptrMask.tcpac = ones;
922 cptrMask.tta = ones;
923 cptrMask.tfp = ones;
924 newVal &= cptrMask;
925 cptrMask = 0;
926 cptrMask.res1_13_12_el2 = ones;
927 cptrMask.res1_9_0_el2 = ones;
928 newVal |= cptrMask;
929 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
930 miscRegName[misc_reg], newVal);
931 }
932 break;
933 case MISCREG_CPTR_EL3:
934 {
935 const uint32_t ones = (uint32_t)(-1);
936 CPTR cptrMask = 0;
937 cptrMask.tcpac = ones;
938 cptrMask.tta = ones;
939 cptrMask.tfp = ones;
940 newVal &= cptrMask;
941 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
942 miscRegName[misc_reg], newVal);
943 }
944 break;
945 case MISCREG_CSSELR:
946 warn_once("The csselr register isn't implemented.\n");
947 return;
948
949 case MISCREG_DC_ZVA_Xt:
950 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
951 return;
952
953 case MISCREG_FPSCR:
954 {
955 const uint32_t ones = (uint32_t)(-1);
956 FPSCR fpscrMask = 0;
957 fpscrMask.ioc = ones;
958 fpscrMask.dzc = ones;
959 fpscrMask.ofc = ones;
960 fpscrMask.ufc = ones;
961 fpscrMask.ixc = ones;
962 fpscrMask.idc = ones;
963 fpscrMask.ioe = ones;
964 fpscrMask.dze = ones;
965 fpscrMask.ofe = ones;
966 fpscrMask.ufe = ones;
967 fpscrMask.ixe = ones;
968 fpscrMask.ide = ones;
969 fpscrMask.len = ones;
970 fpscrMask.stride = ones;
971 fpscrMask.rMode = ones;
972 fpscrMask.fz = ones;
973 fpscrMask.dn = ones;
974 fpscrMask.ahp = ones;
975 fpscrMask.qc = ones;
976 fpscrMask.v = ones;
977 fpscrMask.c = ones;
978 fpscrMask.z = ones;
979 fpscrMask.n = ones;
980 newVal = (newVal & (uint32_t)fpscrMask) |
981 (readMiscRegNoEffect(MISCREG_FPSCR) &
982 ~(uint32_t)fpscrMask);
983 tc->getDecoderPtr()->setContext(newVal);
984 }
985 break;
986 case MISCREG_FPSR:
987 {
988 const uint32_t ones = (uint32_t)(-1);
989 FPSCR fpscrMask = 0;
990 fpscrMask.ioc = ones;
991 fpscrMask.dzc = ones;
992 fpscrMask.ofc = ones;
993 fpscrMask.ufc = ones;
994 fpscrMask.ixc = ones;
995 fpscrMask.idc = ones;
996 fpscrMask.qc = ones;
997 fpscrMask.v = ones;
998 fpscrMask.c = ones;
999 fpscrMask.z = ones;
1000 fpscrMask.n = ones;
1001 newVal = (newVal & (uint32_t)fpscrMask) |
1002 (readMiscRegNoEffect(MISCREG_FPSCR) &
1003 ~(uint32_t)fpscrMask);
1004 misc_reg = MISCREG_FPSCR;
1005 }
1006 break;
1007 case MISCREG_FPCR:
1008 {
1009 const uint32_t ones = (uint32_t)(-1);
1010 FPSCR fpscrMask = 0;
1011 fpscrMask.ioe = ones;
1012 fpscrMask.dze = ones;
1013 fpscrMask.ofe = ones;
1014 fpscrMask.ufe = ones;
1015 fpscrMask.ixe = ones;
1016 fpscrMask.ide = ones;
1017 fpscrMask.len = ones;
1018 fpscrMask.stride = ones;
1019 fpscrMask.rMode = ones;
1020 fpscrMask.fz = ones;
1021 fpscrMask.dn = ones;
1022 fpscrMask.ahp = ones;
1023 newVal = (newVal & (uint32_t)fpscrMask) |
1024 (readMiscRegNoEffect(MISCREG_FPSCR) &
1025 ~(uint32_t)fpscrMask);
1026 misc_reg = MISCREG_FPSCR;
1027 }
1028 break;
1029 case MISCREG_CPSR_Q:
1030 {
1031 assert(!(newVal & ~CpsrMaskQ));
1032 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1033 misc_reg = MISCREG_CPSR;
1034 }
1035 break;
1036 case MISCREG_FPSCR_QC:
1037 {
1038 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1039 (newVal & FpscrQcMask);
1040 misc_reg = MISCREG_FPSCR;
1041 }
1042 break;
1043 case MISCREG_FPSCR_EXC:
1044 {
1045 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1046 (newVal & FpscrExcMask);
1047 misc_reg = MISCREG_FPSCR;
1048 }
1049 break;
1050 case MISCREG_FPEXC:
1051 {
1052 // vfpv3 architecture, section B.6.1 of DDI04068
1053 // bit 29 - valid only if fpexc[31] is 0
1054 const uint32_t fpexcMask = 0x60000000;
1055 newVal = (newVal & fpexcMask) |
1056 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1057 }
1058 break;
1059 case MISCREG_HCR:
1060 {
1061 if (!haveVirtualization)
1062 return;
1063 }
1064 break;
1065 case MISCREG_IFSR:
1066 {
1067 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1068 const uint32_t ifsrMask =
1069 mask(31, 13) | mask(11, 11) | mask(8, 6);
1070 newVal = newVal & ~ifsrMask;
1071 }
1072 break;
1073 case MISCREG_DFSR:
1074 {
1075 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1076 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1077 newVal = newVal & ~dfsrMask;
1078 }
1079 break;
1080 case MISCREG_AMAIR0:
1081 case MISCREG_AMAIR1:
1082 {
1083 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1084 // Valid only with LPAE
1085 if (!haveLPAE)
1086 return;
1087 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1088 }
1089 break;
1090 case MISCREG_SCR:
1091 tc->getITBPtr()->invalidateMiscReg();
1092 tc->getDTBPtr()->invalidateMiscReg();
1093 break;
1094 case MISCREG_SCTLR:
1095 {
1096 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1097 scr = readMiscRegNoEffect(MISCREG_SCR);
1098 MiscRegIndex sctlr_idx = (haveSecurity && !scr.ns)
1099 ? MISCREG_SCTLR_S : MISCREG_SCTLR_NS;
1100 SCTLR sctlr = miscRegs[sctlr_idx];
1101 SCTLR new_sctlr = newVal;
1102 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1103 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1104 tc->getITBPtr()->invalidateMiscReg();
1105 tc->getDTBPtr()->invalidateMiscReg();
1106 }
1107 case MISCREG_MIDR:
1108 case MISCREG_ID_PFR0:
1109 case MISCREG_ID_PFR1:
1110 case MISCREG_ID_DFR0:
1111 case MISCREG_ID_MMFR0:
1112 case MISCREG_ID_MMFR1:
1113 case MISCREG_ID_MMFR2:
1114 case MISCREG_ID_MMFR3:
1115 case MISCREG_ID_ISAR0:
1116 case MISCREG_ID_ISAR1:
1117 case MISCREG_ID_ISAR2:
1118 case MISCREG_ID_ISAR3:
1119 case MISCREG_ID_ISAR4:
1120 case MISCREG_ID_ISAR5:
1121
1122 case MISCREG_MPIDR:
1123 case MISCREG_FPSID:
1124 case MISCREG_TLBTR:
1125 case MISCREG_MVFR0:
1126 case MISCREG_MVFR1:
1127
1128 case MISCREG_ID_AA64AFR0_EL1:
1129 case MISCREG_ID_AA64AFR1_EL1:
1130 case MISCREG_ID_AA64DFR0_EL1:
1131 case MISCREG_ID_AA64DFR1_EL1:
1132 case MISCREG_ID_AA64ISAR0_EL1:
1133 case MISCREG_ID_AA64ISAR1_EL1:
1134 case MISCREG_ID_AA64MMFR0_EL1:
1135 case MISCREG_ID_AA64MMFR1_EL1:
1136 case MISCREG_ID_AA64PFR0_EL1:
1137 case MISCREG_ID_AA64PFR1_EL1:
1138 // ID registers are constants.
1139 return;
1140
1141 // TLBI all entries, EL0&1 inner sharable (ignored)
1142 case MISCREG_TLBIALLIS:
1143 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1144 assert32(tc);
1145 target_el = 1; // el 0 and 1 are handled together
1146 scr = readMiscReg(MISCREG_SCR, tc);
1147 secure_lookup = haveSecurity && !scr.ns;
1148 sys = tc->getSystemPtr();
1149 for (x = 0; x < sys->numContexts(); x++) {
1150 oc = sys->getThreadContext(x);
1151 assert(oc->getITBPtr() && oc->getDTBPtr());
1152 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1153 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1154
1155 // If CheckerCPU is connected, need to notify it of a flush
1156 CheckerCPU *checker = oc->getCheckerCpuPtr();
1157 if (checker) {
1158 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1159 target_el);
1160 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1161 target_el);
1162 }
1163 }
1164 return;
1165 // TLBI all entries, EL0&1, instruction side
1166 case MISCREG_ITLBIALL:
1167 assert32(tc);
1168 target_el = 1; // el 0 and 1 are handled together
1169 scr = readMiscReg(MISCREG_SCR, tc);
1170 secure_lookup = haveSecurity && !scr.ns;
1171 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1172 return;
1173 // TLBI all entries, EL0&1, data side
1174 case MISCREG_DTLBIALL:
1175 assert32(tc);
1176 target_el = 1; // el 0 and 1 are handled together
1177 scr = readMiscReg(MISCREG_SCR, tc);
1178 secure_lookup = haveSecurity && !scr.ns;
1179 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1180 return;
1181 // TLBI based on VA, EL0&1 inner sharable (ignored)
1182 case MISCREG_TLBIMVAIS:
1183 case MISCREG_TLBIMVA:
1184 assert32(tc);
1185 target_el = 1; // el 0 and 1 are handled together
1186 scr = readMiscReg(MISCREG_SCR, tc);
1187 secure_lookup = haveSecurity && !scr.ns;
1188 sys = tc->getSystemPtr();
1189 for (x = 0; x < sys->numContexts(); x++) {
1190 oc = sys->getThreadContext(x);
1191 assert(oc->getITBPtr() && oc->getDTBPtr());
1192 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1193 bits(newVal, 7,0),
1194 secure_lookup, target_el);
1195 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1196 bits(newVal, 7,0),
1197 secure_lookup, target_el);
1198
1199 CheckerCPU *checker = oc->getCheckerCpuPtr();
1200 if (checker) {
1201 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1202 bits(newVal, 7,0), secure_lookup, target_el);
1203 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1204 bits(newVal, 7,0), secure_lookup, target_el);
1205 }
1206 }
1207 return;
1208 // TLBI by ASID, EL0&1, inner sharable
1209 case MISCREG_TLBIASIDIS:
1210 case MISCREG_TLBIASID:
1211 assert32(tc);
1212 target_el = 1; // el 0 and 1 are handled together
1213 scr = readMiscReg(MISCREG_SCR, tc);
1214 secure_lookup = haveSecurity && !scr.ns;
1215 sys = tc->getSystemPtr();
1216 for (x = 0; x < sys->numContexts(); x++) {
1217 oc = sys->getThreadContext(x);
1218 assert(oc->getITBPtr() && oc->getDTBPtr());
1219 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1220 secure_lookup, target_el);
1221 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1222 secure_lookup, target_el);
1223 CheckerCPU *checker = oc->getCheckerCpuPtr();
1224 if (checker) {
1225 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1226 secure_lookup, target_el);
1227 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1228 secure_lookup, target_el);
1229 }
1230 }
1231 return;
1232 // TLBI by address, EL0&1, inner sharable (ignored)
1233 case MISCREG_TLBIMVAAIS:
1234 case MISCREG_TLBIMVAA:
1235 assert32(tc);
1236 target_el = 1; // el 0 and 1 are handled together
1237 scr = readMiscReg(MISCREG_SCR, tc);
1238 secure_lookup = haveSecurity && !scr.ns;
1239 hyp = 0;
1240 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1241 return;
1242 // TLBI by address, EL2, hypervisor mode
1243 case MISCREG_TLBIMVAH:
1244 case MISCREG_TLBIMVAHIS:
1245 assert32(tc);
1246 target_el = 1; // aarch32, use hyp bit
1247 scr = readMiscReg(MISCREG_SCR, tc);
1248 secure_lookup = haveSecurity && !scr.ns;
1249 hyp = 1;
1250 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1251 return;
1252 // TLBI by address and asid, EL0&1, instruction side only
1253 case MISCREG_ITLBIMVA:
1254 assert32(tc);
1255 target_el = 1; // el 0 and 1 are handled together
1256 scr = readMiscReg(MISCREG_SCR, tc);
1257 secure_lookup = haveSecurity && !scr.ns;
1258 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1259 bits(newVal, 7,0), secure_lookup, target_el);
1260 return;
1261 // TLBI by address and asid, EL0&1, data side only
1262 case MISCREG_DTLBIMVA:
1263 assert32(tc);
1264 target_el = 1; // el 0 and 1 are handled together
1265 scr = readMiscReg(MISCREG_SCR, tc);
1266 secure_lookup = haveSecurity && !scr.ns;
1267 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1268 bits(newVal, 7,0), secure_lookup, target_el);
1269 return;
1270 // TLBI by ASID, EL0&1, instrution side only
1271 case MISCREG_ITLBIASID:
1272 assert32(tc);
1273 target_el = 1; // el 0 and 1 are handled together
1274 scr = readMiscReg(MISCREG_SCR, tc);
1275 secure_lookup = haveSecurity && !scr.ns;
1276 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1277 target_el);
1278 return;
1279 // TLBI by ASID EL0&1 data size only
1280 case MISCREG_DTLBIASID:
1281 assert32(tc);
1282 target_el = 1; // el 0 and 1 are handled together
1283 scr = readMiscReg(MISCREG_SCR, tc);
1284 secure_lookup = haveSecurity && !scr.ns;
1285 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1286 target_el);
1287 return;
1288 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1289 case MISCREG_TLBIALLNSNH:
1290 case MISCREG_TLBIALLNSNHIS:
1291 assert32(tc);
1292 target_el = 1; // el 0 and 1 are handled together
1293 hyp = 0;
1294 tlbiALLN(tc, hyp, target_el);
1295 return;
1296 // TLBI all entries, EL2, hyp,
1297 case MISCREG_TLBIALLH:
1298 case MISCREG_TLBIALLHIS:
1299 assert32(tc);
1300 target_el = 1; // aarch32, use hyp bit
1301 hyp = 1;
1302 tlbiALLN(tc, hyp, target_el);
1303 return;
1304 // AArch64 TLBI: invalidate all entries EL3
1305 case MISCREG_TLBI_ALLE3IS:
1306 case MISCREG_TLBI_ALLE3:
1307 assert64(tc);
1308 target_el = 3;
1309 secure_lookup = true;
1310 tlbiALL(tc, secure_lookup, target_el);
1311 return;
1312 // @todo: uncomment this to enable Virtualization
1313 // case MISCREG_TLBI_ALLE2IS:
1314 // case MISCREG_TLBI_ALLE2:
1315 // TLBI all entries, EL0&1
1316 case MISCREG_TLBI_ALLE1IS:
1317 case MISCREG_TLBI_ALLE1:
1318 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1319 case MISCREG_TLBI_VMALLE1IS:
1320 case MISCREG_TLBI_VMALLE1:
1321 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1322 case MISCREG_TLBI_VMALLS12E1IS:
1323 case MISCREG_TLBI_VMALLS12E1:
1324 // @todo: handle VMID and stage 2 to enable Virtualization
1325 assert64(tc);
1326 target_el = 1; // el 0 and 1 are handled together
1327 scr = readMiscReg(MISCREG_SCR, tc);
1328 secure_lookup = haveSecurity && !scr.ns;
1329 tlbiALL(tc, secure_lookup, target_el);
1330 return;
1331 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1332 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1333 // from the last level of translation table walks
1334 // @todo: handle VMID to enable Virtualization
1335 // TLBI all entries, EL0&1
1336 case MISCREG_TLBI_VAE3IS_Xt:
1337 case MISCREG_TLBI_VAE3_Xt:
1338 // TLBI by VA, EL3 regime stage 1, last level walk
1339 case MISCREG_TLBI_VALE3IS_Xt:
1340 case MISCREG_TLBI_VALE3_Xt:
1341 assert64(tc);
1342 target_el = 3;
1343 asid = 0xbeef; // does not matter, tlbi is global
1344 secure_lookup = true;
1345 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1346 return;
1347 // TLBI by VA, EL2
1348 case MISCREG_TLBI_VAE2IS_Xt:
1349 case MISCREG_TLBI_VAE2_Xt:
1350 // TLBI by VA, EL2, stage1 last level walk
1351 case MISCREG_TLBI_VALE2IS_Xt:
1352 case MISCREG_TLBI_VALE2_Xt:
1353 assert64(tc);
1354 target_el = 2;
1355 asid = 0xbeef; // does not matter, tlbi is global
1356 scr = readMiscReg(MISCREG_SCR, tc);
1357 secure_lookup = haveSecurity && !scr.ns;
1358 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1359 return;
1360 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1361 case MISCREG_TLBI_VAE1IS_Xt:
1362 case MISCREG_TLBI_VAE1_Xt:
1363 case MISCREG_TLBI_VALE1IS_Xt:
1364 case MISCREG_TLBI_VALE1_Xt:
1365 assert64(tc);
1366 asid = bits(newVal, 63, 48);
1367 target_el = 1; // el 0 and 1 are handled together
1368 scr = readMiscReg(MISCREG_SCR, tc);
1369 secure_lookup = haveSecurity && !scr.ns;
1370 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1371 return;
1372 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1373 // @todo: handle VMID to enable Virtualization
1374 case MISCREG_TLBI_ASIDE1IS_Xt:
1375 case MISCREG_TLBI_ASIDE1_Xt:
1376 assert64(tc);
1377 target_el = 1; // el 0 and 1 are handled together
1378 scr = readMiscReg(MISCREG_SCR, tc);
1379 secure_lookup = haveSecurity && !scr.ns;
1380 sys = tc->getSystemPtr();
1381 for (x = 0; x < sys->numContexts(); x++) {
1382 oc = sys->getThreadContext(x);
1383 assert(oc->getITBPtr() && oc->getDTBPtr());
1384 asid = bits(newVal, 63, 48);
1385 if (!haveLargeAsid64)
1386 asid &= mask(8);
1387 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1388 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1389 CheckerCPU *checker = oc->getCheckerCpuPtr();
1390 if (checker) {
1391 checker->getITBPtr()->flushAsid(asid,
1392 secure_lookup, target_el);
1393 checker->getDTBPtr()->flushAsid(asid,
1394 secure_lookup, target_el);
1395 }
1396 }
1397 return;
1398 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1399 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1400 // entries from the last level of translation table walks
1401 // @todo: handle VMID to enable Virtualization
1402 case MISCREG_TLBI_VAAE1IS_Xt:
1403 case MISCREG_TLBI_VAAE1_Xt:
1404 case MISCREG_TLBI_VAALE1IS_Xt:
1405 case MISCREG_TLBI_VAALE1_Xt:
1406 assert64(tc);
1407 target_el = 1; // el 0 and 1 are handled together
1408 scr = readMiscReg(MISCREG_SCR, tc);
1409 secure_lookup = haveSecurity && !scr.ns;
1410 sys = tc->getSystemPtr();
1411 for (x = 0; x < sys->numContexts(); x++) {
1412 // @todo: extra controls on TLBI broadcast?
1413 oc = sys->getThreadContext(x);
1414 assert(oc->getITBPtr() && oc->getDTBPtr());
1415 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1416 oc->getITBPtr()->flushMva(va,
1417 secure_lookup, false, target_el);
1418 oc->getDTBPtr()->flushMva(va,
1419 secure_lookup, false, target_el);
1420
1421 CheckerCPU *checker = oc->getCheckerCpuPtr();
1422 if (checker) {
1423 checker->getITBPtr()->flushMva(va,
1424 secure_lookup, false, target_el);
1425 checker->getDTBPtr()->flushMva(va,
1426 secure_lookup, false, target_el);
1427 }
1428 }
1429 return;
1430 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1431 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1432 case MISCREG_TLBI_IPAS2LE1_Xt:
1433 case MISCREG_TLBI_IPAS2E1IS_Xt:
1434 case MISCREG_TLBI_IPAS2E1_Xt:
1435 assert64(tc);
1436 target_el = 1; // EL 0 and 1 are handled together
1437 scr = readMiscReg(MISCREG_SCR, tc);
1438 secure_lookup = haveSecurity && !scr.ns;
1439 sys = tc->getSystemPtr();
1440 for (x = 0; x < sys->numContexts(); x++) {
1441 oc = sys->getThreadContext(x);
1442 assert(oc->getITBPtr() && oc->getDTBPtr());
1443 Addr ipa = ((Addr) bits(newVal, 35, 0)) << 12;
1444 oc->getITBPtr()->flushIpaVmid(ipa,
1445 secure_lookup, false, target_el);
1446 oc->getDTBPtr()->flushIpaVmid(ipa,
1447 secure_lookup, false, target_el);
1448
1449 CheckerCPU *checker = oc->getCheckerCpuPtr();
1450 if (checker) {
1451 checker->getITBPtr()->flushIpaVmid(ipa,
1452 secure_lookup, false, target_el);
1453 checker->getDTBPtr()->flushIpaVmid(ipa,
1454 secure_lookup, false, target_el);
1455 }
1456 }
1457 return;
1458 case MISCREG_ACTLR:
1459 warn("Not doing anything for write of miscreg ACTLR\n");
1460 break;
1461
1462 case MISCREG_PMXEVTYPER_PMCCFILTR:
1463 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1464 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1465 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1466 pmu->setMiscReg(misc_reg, newVal);
1467 break;
1468
1469
1470 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1471 {
1472 HSTR hstrMask = 0;
1473 hstrMask.tjdbx = 1;
1474 newVal &= ~((uint32_t) hstrMask);
1475 break;
1476 }
1477 case MISCREG_HCPTR:
1478 {
1479 // If a CP bit in NSACR is 0 then the corresponding bit in
1480 // HCPTR is RAO/WI. Same applies to NSASEDIS
1481 secure_lookup = haveSecurity &&
1482 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1483 readMiscRegNoEffect(MISCREG_CPSR));
1484 if (!secure_lookup) {
1485 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1486 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1487 newVal = (newVal & ~mask) | (oldValue & mask);
1488 }
1489 break;
1490 }
1491 case MISCREG_HDFAR: // alias for secure DFAR
1492 misc_reg = MISCREG_DFAR_S;
1493 break;
1494 case MISCREG_HIFAR: // alias for secure IFAR
1495 misc_reg = MISCREG_IFAR_S;
1496 break;
1497 case MISCREG_ATS1CPR:
1498 case MISCREG_ATS1CPW:
1499 case MISCREG_ATS1CUR:
1500 case MISCREG_ATS1CUW:
1501 case MISCREG_ATS12NSOPR:
1502 case MISCREG_ATS12NSOPW:
1503 case MISCREG_ATS12NSOUR:
1504 case MISCREG_ATS12NSOUW:
1505 case MISCREG_ATS1HR:
1506 case MISCREG_ATS1HW:
1507 {
1508 Request::Flags flags = 0;
1509 BaseTLB::Mode mode = BaseTLB::Read;
1510 TLB::ArmTranslationType tranType = TLB::NormalTran;
1511 Fault fault;
1512 switch(misc_reg) {
1513 case MISCREG_ATS1CPR:
1514 flags = TLB::MustBeOne;
1515 tranType = TLB::S1CTran;
1516 mode = BaseTLB::Read;
1517 break;
1518 case MISCREG_ATS1CPW:
1519 flags = TLB::MustBeOne;
1520 tranType = TLB::S1CTran;
1521 mode = BaseTLB::Write;
1522 break;
1523 case MISCREG_ATS1CUR:
1524 flags = TLB::MustBeOne | TLB::UserMode;
1525 tranType = TLB::S1CTran;
1526 mode = BaseTLB::Read;
1527 break;
1528 case MISCREG_ATS1CUW:
1529 flags = TLB::MustBeOne | TLB::UserMode;
1530 tranType = TLB::S1CTran;
1531 mode = BaseTLB::Write;
1532 break;
1533 case MISCREG_ATS12NSOPR:
1534 if (!haveSecurity)
1535 panic("Security Extensions required for ATS12NSOPR");
1536 flags = TLB::MustBeOne;
1537 tranType = TLB::S1S2NsTran;
1538 mode = BaseTLB::Read;
1539 break;
1540 case MISCREG_ATS12NSOPW:
1541 if (!haveSecurity)
1542 panic("Security Extensions required for ATS12NSOPW");
1543 flags = TLB::MustBeOne;
1544 tranType = TLB::S1S2NsTran;
1545 mode = BaseTLB::Write;
1546 break;
1547 case MISCREG_ATS12NSOUR:
1548 if (!haveSecurity)
1549 panic("Security Extensions required for ATS12NSOUR");
1550 flags = TLB::MustBeOne | TLB::UserMode;
1551 tranType = TLB::S1S2NsTran;
1552 mode = BaseTLB::Read;
1553 break;
1554 case MISCREG_ATS12NSOUW:
1555 if (!haveSecurity)
1556 panic("Security Extensions required for ATS12NSOUW");
1557 flags = TLB::MustBeOne | TLB::UserMode;
1558 tranType = TLB::S1S2NsTran;
1559 mode = BaseTLB::Write;
1560 break;
1561 case MISCREG_ATS1HR: // only really useful from secure mode.
1562 flags = TLB::MustBeOne;
1563 tranType = TLB::HypMode;
1564 mode = BaseTLB::Read;
1565 break;
1566 case MISCREG_ATS1HW:
1567 flags = TLB::MustBeOne;
1568 tranType = TLB::HypMode;
1569 mode = BaseTLB::Write;
1570 break;
1571 }
1572 // If we're in timing mode then doing the translation in
1573 // functional mode then we're slightly distorting performance
1574 // results obtained from simulations. The translation should be
1575 // done in the same mode the core is running in. NOTE: This
1576 // can't be an atomic translation because that causes problems
1577 // with unexpected atomic snoop requests.
1578 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1579 Request req(0, val, 0, flags, Request::funcMasterId,
1580 tc->pcState().pc(), tc->contextId());
1581 fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType);
1582 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1583 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1584
1585 MiscReg newVal;
1586 if (fault == NoFault) {
1587 Addr paddr = req.getPaddr();
1588 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1589 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1590 newVal = (paddr & mask(39, 12)) |
1591 (tc->getDTBPtr()->getAttr());
1592 } else {
1593 newVal = (paddr & 0xfffff000) |
1594 (tc->getDTBPtr()->getAttr());
1595 }
1596 DPRINTF(MiscRegs,
1597 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1598 val, newVal);
1599 } else {
1600 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1601 // Set fault bit and FSR
1602 FSR fsr = armFault->getFsr(tc);
1603
1604 newVal = ((fsr >> 9) & 1) << 11;
1605 if (newVal) {
1606 // LPAE - rearange fault status
1607 newVal |= ((fsr >> 0) & 0x3f) << 1;
1608 } else {
1609 // VMSA - rearange fault status
1610 newVal |= ((fsr >> 0) & 0xf) << 1;
1611 newVal |= ((fsr >> 10) & 0x1) << 5;
1612 newVal |= ((fsr >> 12) & 0x1) << 6;
1613 }
1614 newVal |= 0x1; // F bit
1615 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1616 newVal |= armFault->isStage2() ? 0x200 : 0;
1617 DPRINTF(MiscRegs,
1618 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1619 val, fsr, newVal);
1620 }
1621 setMiscRegNoEffect(MISCREG_PAR, newVal);
1622 return;
1623 }
1624 case MISCREG_TTBCR:
1625 {
1626 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1627 const uint32_t ones = (uint32_t)(-1);
1628 TTBCR ttbcrMask = 0;
1629 TTBCR ttbcrNew = newVal;
1630
1631 // ARM DDI 0406C.b, ARMv7-32
1632 ttbcrMask.n = ones; // T0SZ
1633 if (haveSecurity) {
1634 ttbcrMask.pd0 = ones;
1635 ttbcrMask.pd1 = ones;
1636 }
1637 ttbcrMask.epd0 = ones;
1638 ttbcrMask.irgn0 = ones;
1639 ttbcrMask.orgn0 = ones;
1640 ttbcrMask.sh0 = ones;
1641 ttbcrMask.ps = ones; // T1SZ
1642 ttbcrMask.a1 = ones;
1643 ttbcrMask.epd1 = ones;
1644 ttbcrMask.irgn1 = ones;
1645 ttbcrMask.orgn1 = ones;
1646 ttbcrMask.sh1 = ones;
1647 if (haveLPAE)
1648 ttbcrMask.eae = ones;
1649
1650 if (haveLPAE && ttbcrNew.eae) {
1651 newVal = newVal & ttbcrMask;
1652 } else {
1653 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1654 }
1655 }
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42
43#include "arch/arm/pmu.hh"
44#include "arch/arm/system.hh"
45#include "cpu/base.hh"
46#include "cpu/checker/cpu.hh"
47#include "debug/Arm.hh"
48#include "debug/MiscRegs.hh"
49#include "dev/arm/generic_timer.hh"
50#include "params/ArmISA.hh"
51#include "sim/faults.hh"
52#include "sim/stat_control.hh"
53#include "sim/system.hh"
54
55namespace ArmISA
56{
57
58
59/**
60 * Some registers alias with others, and therefore need to be translated.
61 * For each entry:
62 * The first value is the misc register that is to be looked up
63 * the second value is the lower part of the translation
64 * the third the upper part
65 * aligned with reference documentation ARM DDI 0487A.i pp 1540-1543
66 */
67const struct ISA::MiscRegInitializerEntry
68 ISA::MiscRegSwitch[] = {
69 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR_NS, 0}},
70 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR_NS, 0}},
71 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR_NS, 0}},
72 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0_NS, MISCREG_AMAIR1_NS}},
73 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR_NS, 0}},
74 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
75 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR_NS, 0}},
76 {MISCREG_DACR32_EL2, {MISCREG_DACR_NS, 0}},
77 {MISCREG_FAR_EL1, {MISCREG_DFAR_NS, MISCREG_IFAR_NS}},
78 // ESR_EL1 -> DFSR
79 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
80 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
81 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
82 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
83 {MISCREG_AMAIR_EL2, {MISCREG_HAMAIR0, MISCREG_HAMAIR1}},
84 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
85 {MISCREG_HCR_EL2, {MISCREG_HCR, 0 /*MISCREG_HCR2*/}},
86 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
87 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
88 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
89 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
90 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
91 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
92 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
93 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
94 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
95 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
96 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
97 {MISCREG_IFSR32_EL2, {MISCREG_IFSR_NS, 0}},
98 {MISCREG_MAIR_EL1, {MISCREG_PRRR_NS, MISCREG_NMRR_NS}},
99 {MISCREG_PAR_EL1, {MISCREG_PAR_NS, 0}},
100 // RMR_EL1 -> RMR
101 // RMR_EL2 -> HRMR
102 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR_NS, 0}},
103 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}},
104 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW_NS, 0}},
105 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO_NS, 0}},
106 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW_NS, 0}},
107 {MISCREG_TCR_EL1, {MISCREG_TTBCR_NS, 0}},
108 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0_NS, 0}},
109 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1_NS, 0}},
110 {MISCREG_VBAR_EL1, {MISCREG_VBAR_NS, 0}},
111 {MISCREG_VMPIDR_EL2, {MISCREG_VMPIDR, 0}},
112 {MISCREG_VPIDR_EL2, {MISCREG_VPIDR, 0}},
113 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
114 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
115 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
116 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
117 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
118 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}}, /* 64b */
119 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
120 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
121 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL_NS, 0}},
122 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL_NS, 0}}, /* 64b */
123 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL_NS, 0}},
124 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}}, /* 64b */
125 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
126 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}}, /* 64b */
127 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
128 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}}, /* 64b */
129 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}}, /* 64b */
130 {MISCREG_DBGAUTHSTATUS_EL1, {MISCREG_DBGAUTHSTATUS, 0}},
131 {MISCREG_DBGBCR0_EL1, {MISCREG_DBGBCR0, 0}},
132 {MISCREG_DBGBCR1_EL1, {MISCREG_DBGBCR1, 0}},
133 {MISCREG_DBGBCR2_EL1, {MISCREG_DBGBCR2, 0}},
134 {MISCREG_DBGBCR3_EL1, {MISCREG_DBGBCR3, 0}},
135 {MISCREG_DBGBCR4_EL1, {MISCREG_DBGBCR4, 0}},
136 {MISCREG_DBGBCR5_EL1, {MISCREG_DBGBCR5, 0}},
137 {MISCREG_DBGBVR0_EL1, {MISCREG_DBGBVR0, 0 /* MISCREG_DBGBXVR0 */}},
138 {MISCREG_DBGBVR1_EL1, {MISCREG_DBGBVR1, 0 /* MISCREG_DBGBXVR1 */}},
139 {MISCREG_DBGBVR2_EL1, {MISCREG_DBGBVR2, 0 /* MISCREG_DBGBXVR2 */}},
140 {MISCREG_DBGBVR3_EL1, {MISCREG_DBGBVR3, 0 /* MISCREG_DBGBXVR3 */}},
141 {MISCREG_DBGBVR4_EL1, {MISCREG_DBGBVR4, MISCREG_DBGBXVR4}},
142 {MISCREG_DBGBVR5_EL1, {MISCREG_DBGBVR5, MISCREG_DBGBXVR5}},
143 {MISCREG_DBGCLAIMSET_EL1, {MISCREG_DBGCLAIMSET, 0}},
144 {MISCREG_DBGCLAIMCLR_EL1, {MISCREG_DBGCLAIMCLR, 0}},
145 // DBGDTR_EL0 -> DBGDTR{R or T}Xint
146 // DBGDTRRX_EL0 -> DBGDTRRXint
147 // DBGDTRTX_EL0 -> DBGDTRRXint
148 {MISCREG_DBGPRCR_EL1, {MISCREG_DBGPRCR, 0}},
149 {MISCREG_DBGVCR32_EL2, {MISCREG_DBGVCR, 0}},
150 {MISCREG_DBGWCR0_EL1, {MISCREG_DBGWCR0, 0}},
151 {MISCREG_DBGWCR1_EL1, {MISCREG_DBGWCR1, 0}},
152 {MISCREG_DBGWCR2_EL1, {MISCREG_DBGWCR2, 0}},
153 {MISCREG_DBGWCR3_EL1, {MISCREG_DBGWCR3, 0}},
154 {MISCREG_DBGWVR0_EL1, {MISCREG_DBGWVR0, 0}},
155 {MISCREG_DBGWVR1_EL1, {MISCREG_DBGWVR1, 0}},
156 {MISCREG_DBGWVR2_EL1, {MISCREG_DBGWVR2, 0}},
157 {MISCREG_DBGWVR3_EL1, {MISCREG_DBGWVR3, 0}},
158 {MISCREG_ID_DFR0_EL1, {MISCREG_ID_DFR0, 0}},
159 {MISCREG_MDCCSR_EL0, {MISCREG_DBGDSCRint, 0}},
160 {MISCREG_MDRAR_EL1, {MISCREG_DBGDRAR, 0}},
161 {MISCREG_MDSCR_EL1, {MISCREG_DBGDSCRext, 0}},
162 {MISCREG_OSDLR_EL1, {MISCREG_DBGOSDLR, 0}},
163 {MISCREG_OSDTRRX_EL1, {MISCREG_DBGDTRRXext, 0}},
164 {MISCREG_OSDTRTX_EL1, {MISCREG_DBGDTRTXext, 0}},
165 {MISCREG_OSECCR_EL1, {MISCREG_DBGOSECCR, 0}},
166 {MISCREG_OSLAR_EL1, {MISCREG_DBGOSLAR, 0}},
167 {MISCREG_OSLSR_EL1, {MISCREG_DBGOSLSR, 0}},
168 {MISCREG_PMCCNTR_EL0, {MISCREG_PMCCNTR, 0}},
169 {MISCREG_PMCEID0_EL0, {MISCREG_PMCEID0, 0}},
170 {MISCREG_PMCEID1_EL0, {MISCREG_PMCEID1, 0}},
171 {MISCREG_PMCNTENSET_EL0, {MISCREG_PMCNTENSET, 0}},
172 {MISCREG_PMCNTENCLR_EL0, {MISCREG_PMCNTENCLR, 0}},
173 {MISCREG_PMCR_EL0, {MISCREG_PMCR, 0}},
174/* {MISCREG_PMEVCNTR0_EL0, {MISCREG_PMEVCNTR0, 0}},
175 {MISCREG_PMEVCNTR1_EL0, {MISCREG_PMEVCNTR1, 0}},
176 {MISCREG_PMEVCNTR2_EL0, {MISCREG_PMEVCNTR2, 0}},
177 {MISCREG_PMEVCNTR3_EL0, {MISCREG_PMEVCNTR3, 0}},
178 {MISCREG_PMEVCNTR4_EL0, {MISCREG_PMEVCNTR4, 0}},
179 {MISCREG_PMEVCNTR5_EL0, {MISCREG_PMEVCNTR5, 0}},
180 {MISCREG_PMEVTYPER0_EL0, {MISCREG_PMEVTYPER0, 0}},
181 {MISCREG_PMEVTYPER1_EL0, {MISCREG_PMEVTYPER1, 0}},
182 {MISCREG_PMEVTYPER2_EL0, {MISCREG_PMEVTYPER2, 0}},
183 {MISCREG_PMEVTYPER3_EL0, {MISCREG_PMEVTYPER3, 0}},
184 {MISCREG_PMEVTYPER4_EL0, {MISCREG_PMEVTYPER4, 0}},
185 {MISCREG_PMEVTYPER5_EL0, {MISCREG_PMEVTYPER5, 0}}, */
186 {MISCREG_PMINTENCLR_EL1, {MISCREG_PMINTENCLR, 0}},
187 {MISCREG_PMINTENSET_EL1, {MISCREG_PMINTENSET, 0}},
188// {MISCREG_PMOVSCLR_EL0, {MISCREG_PMOVSCLR, 0}},
189 {MISCREG_PMOVSSET_EL0, {MISCREG_PMOVSSET, 0}},
190 {MISCREG_PMSELR_EL0, {MISCREG_PMSELR, 0}},
191 {MISCREG_PMSWINC_EL0, {MISCREG_PMSWINC, 0}},
192 {MISCREG_PMUSERENR_EL0, {MISCREG_PMUSERENR, 0}},
193 {MISCREG_PMXEVCNTR_EL0, {MISCREG_PMXEVCNTR, 0}},
194 {MISCREG_PMXEVTYPER_EL0, {MISCREG_PMXEVTYPER, 0}},
195
196 // from ARM DDI 0487A.i, template text
197 // "AArch64 System register ___ can be mapped to
198 // AArch32 System register ___, but this is not
199 // architecturally mandated."
200 {MISCREG_SCR_EL3, {MISCREG_SCR, 0}}, // D7-2005
201 // MDCR_EL3 -> SDCR, D7-2108 (the latter is unimpl. in gem5)
202 {MISCREG_SPSR_EL1, {MISCREG_SPSR_SVC, 0}}, // C5.2.17 SPSR_EL1
203 {MISCREG_SPSR_EL2, {MISCREG_SPSR_HYP, 0}}, // C5.2.18 SPSR_EL2
204 {MISCREG_SPSR_EL3, {MISCREG_SPSR_MON, 0}}, // C5.2.19 SPSR_EL3
205};
206
207
208ISA::ISA(Params *p)
209 : SimObject(p),
210 system(NULL),
211 _decoderFlavour(p->decoderFlavour),
212 _vecRegRenameMode(p->vecRegRenameMode),
213 pmu(p->pmu),
214 lookUpMiscReg(NUM_MISCREGS, {0,0})
215{
216 miscRegs[MISCREG_SCTLR_RST] = 0;
217
218 // Hook up a dummy device if we haven't been configured with a
219 // real PMU. By using a dummy device, we don't need to check that
220 // the PMU exist every time we try to access a PMU register.
221 if (!pmu)
222 pmu = &dummyDevice;
223
224 // Give all ISA devices a pointer to this ISA
225 pmu->setISA(this);
226
227 system = dynamic_cast<ArmSystem *>(p->system);
228
229 // Cache system-level properties
230 if (FullSystem && system) {
231 highestELIs64 = system->highestELIs64();
232 haveSecurity = system->haveSecurity();
233 haveLPAE = system->haveLPAE();
234 haveVirtualization = system->haveVirtualization();
235 haveLargeAsid64 = system->haveLargeAsid64();
236 physAddrRange64 = system->physAddrRange64();
237 } else {
238 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
239 haveSecurity = haveLPAE = haveVirtualization = false;
240 haveLargeAsid64 = false;
241 physAddrRange64 = 32; // dummy value
242 }
243
244 /** Fill in the miscReg translation table */
245 for (auto sw : MiscRegSwitch) {
246 lookUpMiscReg[sw.index] = sw.entry;
247 }
248
249 preUnflattenMiscReg();
250
251 clear();
252}
253
254const ArmISAParams *
255ISA::params() const
256{
257 return dynamic_cast<const Params *>(_params);
258}
259
260void
261ISA::clear()
262{
263 const Params *p(params());
264
265 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
266 memset(miscRegs, 0, sizeof(miscRegs));
267
268 // Initialize configurable default values
269 miscRegs[MISCREG_MIDR] = p->midr;
270 miscRegs[MISCREG_MIDR_EL1] = p->midr;
271 miscRegs[MISCREG_VPIDR] = p->midr;
272
273 if (FullSystem && system->highestELIs64()) {
274 // Initialize AArch64 state
275 clear64(p);
276 return;
277 }
278
279 // Initialize AArch32 state...
280
281 CPSR cpsr = 0;
282 cpsr.mode = MODE_USER;
283 miscRegs[MISCREG_CPSR] = cpsr;
284 updateRegMap(cpsr);
285
286 SCTLR sctlr = 0;
287 sctlr.te = (bool) sctlr_rst.te;
288 sctlr.nmfi = (bool) sctlr_rst.nmfi;
289 sctlr.v = (bool) sctlr_rst.v;
290 sctlr.u = 1;
291 sctlr.xp = 1;
292 sctlr.rao2 = 1;
293 sctlr.rao3 = 1;
294 sctlr.rao4 = 0xf; // SCTLR[6:3]
295 sctlr.uci = 1;
296 sctlr.dze = 1;
297 miscRegs[MISCREG_SCTLR_NS] = sctlr;
298 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
299 miscRegs[MISCREG_HCPTR] = 0;
300
301 // Start with an event in the mailbox
302 miscRegs[MISCREG_SEV_MAILBOX] = 1;
303
304 // Separate Instruction and Data TLBs
305 miscRegs[MISCREG_TLBTR] = 1;
306
307 MVFR0 mvfr0 = 0;
308 mvfr0.advSimdRegisters = 2;
309 mvfr0.singlePrecision = 2;
310 mvfr0.doublePrecision = 2;
311 mvfr0.vfpExceptionTrapping = 0;
312 mvfr0.divide = 1;
313 mvfr0.squareRoot = 1;
314 mvfr0.shortVectors = 1;
315 mvfr0.roundingModes = 1;
316 miscRegs[MISCREG_MVFR0] = mvfr0;
317
318 MVFR1 mvfr1 = 0;
319 mvfr1.flushToZero = 1;
320 mvfr1.defaultNaN = 1;
321 mvfr1.advSimdLoadStore = 1;
322 mvfr1.advSimdInteger = 1;
323 mvfr1.advSimdSinglePrecision = 1;
324 mvfr1.advSimdHalfPrecision = 1;
325 mvfr1.vfpHalfPrecision = 1;
326 miscRegs[MISCREG_MVFR1] = mvfr1;
327
328 // Reset values of PRRR and NMRR are implementation dependent
329
330 // @todo: PRRR and NMRR in secure state?
331 miscRegs[MISCREG_PRRR_NS] =
332 (1 << 19) | // 19
333 (0 << 18) | // 18
334 (0 << 17) | // 17
335 (1 << 16) | // 16
336 (2 << 14) | // 15:14
337 (0 << 12) | // 13:12
338 (2 << 10) | // 11:10
339 (2 << 8) | // 9:8
340 (2 << 6) | // 7:6
341 (2 << 4) | // 5:4
342 (1 << 2) | // 3:2
343 0; // 1:0
344 miscRegs[MISCREG_NMRR_NS] =
345 (1 << 30) | // 31:30
346 (0 << 26) | // 27:26
347 (0 << 24) | // 25:24
348 (3 << 22) | // 23:22
349 (2 << 20) | // 21:20
350 (0 << 18) | // 19:18
351 (0 << 16) | // 17:16
352 (1 << 14) | // 15:14
353 (0 << 12) | // 13:12
354 (2 << 10) | // 11:10
355 (0 << 8) | // 9:8
356 (3 << 6) | // 7:6
357 (2 << 4) | // 5:4
358 (0 << 2) | // 3:2
359 0; // 1:0
360
361 miscRegs[MISCREG_CPACR] = 0;
362
363 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
364 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
365 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
366 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
367
368 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
369 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
370 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
371 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
372 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
373 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
374
375 miscRegs[MISCREG_FPSID] = p->fpsid;
376
377 if (haveLPAE) {
378 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
379 ttbcr.eae = 0;
380 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
381 // Enforce consistency with system-level settings
382 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
383 }
384
385 if (haveSecurity) {
386 miscRegs[MISCREG_SCTLR_S] = sctlr;
387 miscRegs[MISCREG_SCR] = 0;
388 miscRegs[MISCREG_VBAR_S] = 0;
389 } else {
390 // we're always non-secure
391 miscRegs[MISCREG_SCR] = 1;
392 }
393
394 //XXX We need to initialize the rest of the state.
395}
396
397void
398ISA::clear64(const ArmISAParams *p)
399{
400 CPSR cpsr = 0;
401 Addr rvbar = system->resetAddr64();
402 switch (system->highestEL()) {
403 // Set initial EL to highest implemented EL using associated stack
404 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
405 // value
406 case EL3:
407 cpsr.mode = MODE_EL3H;
408 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
409 break;
410 case EL2:
411 cpsr.mode = MODE_EL2H;
412 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
413 break;
414 case EL1:
415 cpsr.mode = MODE_EL1H;
416 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
417 break;
418 default:
419 panic("Invalid highest implemented exception level");
420 break;
421 }
422
423 // Initialize rest of CPSR
424 cpsr.daif = 0xf; // Mask all interrupts
425 cpsr.ss = 0;
426 cpsr.il = 0;
427 miscRegs[MISCREG_CPSR] = cpsr;
428 updateRegMap(cpsr);
429
430 // Initialize other control registers
431 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
432 if (haveSecurity) {
433 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
434 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
435 } else if (haveVirtualization) {
436 // also MISCREG_SCTLR_EL2 (by mapping)
437 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
438 } else {
439 // also MISCREG_SCTLR_EL1 (by mapping)
440 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
441 // Always non-secure
442 miscRegs[MISCREG_SCR_EL3] = 1;
443 }
444
445 // Initialize configurable id registers
446 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
447 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
448 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
449 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
450 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
451
452 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
453 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
454 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
455 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
456 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
457
458 miscRegs[MISCREG_ID_DFR0_EL1] =
459 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
460
461 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
462
463 // Enforce consistency with system-level settings...
464
465 // EL3
466 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
467 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
468 haveSecurity ? 0x2 : 0x0);
469 // EL2
470 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
471 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
472 haveVirtualization ? 0x2 : 0x0);
473 // Large ASID support
474 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
475 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
476 haveLargeAsid64 ? 0x2 : 0x0);
477 // Physical address size
478 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
479 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
480 encodePhysAddrRange64(physAddrRange64));
481}
482
483MiscReg
484ISA::readMiscRegNoEffect(int misc_reg) const
485{
486 assert(misc_reg < NumMiscRegs);
487
488 auto regs = getMiscIndices(misc_reg);
489 int lower = regs.first, upper = regs.second;
490 return !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
491 |(miscRegs[upper] << 32));
492}
493
494
495MiscReg
496ISA::readMiscReg(int misc_reg, ThreadContext *tc)
497{
498 CPSR cpsr = 0;
499 PCState pc = 0;
500 SCR scr = 0;
501
502 if (misc_reg == MISCREG_CPSR) {
503 cpsr = miscRegs[misc_reg];
504 pc = tc->pcState();
505 cpsr.j = pc.jazelle() ? 1 : 0;
506 cpsr.t = pc.thumb() ? 1 : 0;
507 return cpsr;
508 }
509
510#ifndef NDEBUG
511 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
512 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
513 warn("Unimplemented system register %s read.\n",
514 miscRegName[misc_reg]);
515 else
516 panic("Unimplemented system register %s read.\n",
517 miscRegName[misc_reg]);
518 }
519#endif
520
521 switch (unflattenMiscReg(misc_reg)) {
522 case MISCREG_HCR:
523 {
524 if (!haveVirtualization)
525 return 0;
526 else
527 return readMiscRegNoEffect(MISCREG_HCR);
528 }
529 case MISCREG_CPACR:
530 {
531 const uint32_t ones = (uint32_t)(-1);
532 CPACR cpacrMask = 0;
533 // Only cp10, cp11, and ase are implemented, nothing else should
534 // be readable? (straight copy from the write code)
535 cpacrMask.cp10 = ones;
536 cpacrMask.cp11 = ones;
537 cpacrMask.asedis = ones;
538
539 // Security Extensions may limit the readability of CPACR
540 if (haveSecurity) {
541 scr = readMiscRegNoEffect(MISCREG_SCR);
542 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
543 if (scr.ns && (cpsr.mode != MODE_MON)) {
544 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
545 // NB: Skipping the full loop, here
546 if (!nsacr.cp10) cpacrMask.cp10 = 0;
547 if (!nsacr.cp11) cpacrMask.cp11 = 0;
548 }
549 }
550 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
551 val &= cpacrMask;
552 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
553 miscRegName[misc_reg], val);
554 return val;
555 }
556 case MISCREG_MPIDR:
557 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
558 scr = readMiscRegNoEffect(MISCREG_SCR);
559 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
560 return getMPIDR(system, tc);
561 } else {
562 return readMiscReg(MISCREG_VMPIDR, tc);
563 }
564 break;
565 case MISCREG_MPIDR_EL1:
566 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
567 return getMPIDR(system, tc) & 0xffffffff;
568 case MISCREG_VMPIDR:
569 // top bit defined as RES1
570 return readMiscRegNoEffect(misc_reg) | 0x80000000;
571 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
572 case MISCREG_REVIDR: // not implemented, so alias MIDR
573 case MISCREG_MIDR:
574 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
575 scr = readMiscRegNoEffect(MISCREG_SCR);
576 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
577 return readMiscRegNoEffect(misc_reg);
578 } else {
579 return readMiscRegNoEffect(MISCREG_VPIDR);
580 }
581 break;
582 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
583 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
584 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
585 case MISCREG_AIDR: // AUX ID set to 0
586 case MISCREG_TCMTR: // No TCM's
587 return 0;
588
589 case MISCREG_CLIDR:
590 warn_once("The clidr register always reports 0 caches.\n");
591 warn_once("clidr LoUIS field of 0b001 to match current "
592 "ARM implementations.\n");
593 return 0x00200000;
594 case MISCREG_CCSIDR:
595 warn_once("The ccsidr register isn't implemented and "
596 "always reads as 0.\n");
597 break;
598 case MISCREG_CTR: // AArch32, ARMv7, top bit set
599 case MISCREG_CTR_EL0: // AArch64
600 {
601 //all caches have the same line size in gem5
602 //4 byte words in ARM
603 unsigned lineSizeWords =
604 tc->getSystemPtr()->cacheLineSize() / 4;
605 unsigned log2LineSizeWords = 0;
606
607 while (lineSizeWords >>= 1) {
608 ++log2LineSizeWords;
609 }
610
611 CTR ctr = 0;
612 //log2 of minimun i-cache line size (words)
613 ctr.iCacheLineSize = log2LineSizeWords;
614 //b11 - gem5 uses pipt
615 ctr.l1IndexPolicy = 0x3;
616 //log2 of minimum d-cache line size (words)
617 ctr.dCacheLineSize = log2LineSizeWords;
618 //log2 of max reservation size (words)
619 ctr.erg = log2LineSizeWords;
620 //log2 of max writeback size (words)
621 ctr.cwg = log2LineSizeWords;
622 //b100 - gem5 format is ARMv7
623 ctr.format = 0x4;
624
625 return ctr;
626 }
627 case MISCREG_ACTLR:
628 warn("Not doing anything for miscreg ACTLR\n");
629 break;
630
631 case MISCREG_PMXEVTYPER_PMCCFILTR:
632 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
633 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
634 case MISCREG_PMCR ... MISCREG_PMOVSSET:
635 return pmu->readMiscReg(misc_reg);
636
637 case MISCREG_CPSR_Q:
638 panic("shouldn't be reading this register seperately\n");
639 case MISCREG_FPSCR_QC:
640 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
641 case MISCREG_FPSCR_EXC:
642 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
643 case MISCREG_FPSR:
644 {
645 const uint32_t ones = (uint32_t)(-1);
646 FPSCR fpscrMask = 0;
647 fpscrMask.ioc = ones;
648 fpscrMask.dzc = ones;
649 fpscrMask.ofc = ones;
650 fpscrMask.ufc = ones;
651 fpscrMask.ixc = ones;
652 fpscrMask.idc = ones;
653 fpscrMask.qc = ones;
654 fpscrMask.v = ones;
655 fpscrMask.c = ones;
656 fpscrMask.z = ones;
657 fpscrMask.n = ones;
658 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
659 }
660 case MISCREG_FPCR:
661 {
662 const uint32_t ones = (uint32_t)(-1);
663 FPSCR fpscrMask = 0;
664 fpscrMask.ioe = ones;
665 fpscrMask.dze = ones;
666 fpscrMask.ofe = ones;
667 fpscrMask.ufe = ones;
668 fpscrMask.ixe = ones;
669 fpscrMask.ide = ones;
670 fpscrMask.len = ones;
671 fpscrMask.stride = ones;
672 fpscrMask.rMode = ones;
673 fpscrMask.fz = ones;
674 fpscrMask.dn = ones;
675 fpscrMask.ahp = ones;
676 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
677 }
678 case MISCREG_NZCV:
679 {
680 CPSR cpsr = 0;
681 cpsr.nz = tc->readCCReg(CCREG_NZ);
682 cpsr.c = tc->readCCReg(CCREG_C);
683 cpsr.v = tc->readCCReg(CCREG_V);
684 return cpsr;
685 }
686 case MISCREG_DAIF:
687 {
688 CPSR cpsr = 0;
689 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
690 return cpsr;
691 }
692 case MISCREG_SP_EL0:
693 {
694 return tc->readIntReg(INTREG_SP0);
695 }
696 case MISCREG_SP_EL1:
697 {
698 return tc->readIntReg(INTREG_SP1);
699 }
700 case MISCREG_SP_EL2:
701 {
702 return tc->readIntReg(INTREG_SP2);
703 }
704 case MISCREG_SPSEL:
705 {
706 return miscRegs[MISCREG_CPSR] & 0x1;
707 }
708 case MISCREG_CURRENTEL:
709 {
710 return miscRegs[MISCREG_CPSR] & 0xc;
711 }
712 case MISCREG_L2CTLR:
713 {
714 // mostly unimplemented, just set NumCPUs field from sim and return
715 L2CTLR l2ctlr = 0;
716 // b00:1CPU to b11:4CPUs
717 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
718 return l2ctlr;
719 }
720 case MISCREG_DBGDIDR:
721 /* For now just implement the version number.
722 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
723 */
724 return 0x5 << 16;
725 case MISCREG_DBGDSCRint:
726 return 0;
727 case MISCREG_ISR:
728 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
729 readMiscRegNoEffect(MISCREG_HCR),
730 readMiscRegNoEffect(MISCREG_CPSR),
731 readMiscRegNoEffect(MISCREG_SCR));
732 case MISCREG_ISR_EL1:
733 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
734 readMiscRegNoEffect(MISCREG_HCR_EL2),
735 readMiscRegNoEffect(MISCREG_CPSR),
736 readMiscRegNoEffect(MISCREG_SCR_EL3));
737 case MISCREG_DCZID_EL0:
738 return 0x04; // DC ZVA clear 64-byte chunks
739 case MISCREG_HCPTR:
740 {
741 MiscReg val = readMiscRegNoEffect(misc_reg);
742 // The trap bit associated with CP14 is defined as RAZ
743 val &= ~(1 << 14);
744 // If a CP bit in NSACR is 0 then the corresponding bit in
745 // HCPTR is RAO/WI
746 bool secure_lookup = haveSecurity &&
747 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
748 readMiscRegNoEffect(MISCREG_CPSR));
749 if (!secure_lookup) {
750 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
751 val |= (mask ^ 0x7FFF) & 0xBFFF;
752 }
753 // Set the bits for unimplemented coprocessors to RAO/WI
754 val |= 0x33FF;
755 return (val);
756 }
757 case MISCREG_HDFAR: // alias for secure DFAR
758 return readMiscRegNoEffect(MISCREG_DFAR_S);
759 case MISCREG_HIFAR: // alias for secure IFAR
760 return readMiscRegNoEffect(MISCREG_IFAR_S);
761 case MISCREG_HVBAR: // bottom bits reserved
762 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
763 case MISCREG_SCTLR:
764 return (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818;
765 case MISCREG_SCTLR_EL1:
766 return (readMiscRegNoEffect(misc_reg) & 0x37DDDBBF) | 0x30D00800;
767 case MISCREG_SCTLR_EL2:
768 case MISCREG_SCTLR_EL3:
769 case MISCREG_HSCTLR:
770 return (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830;
771
772 case MISCREG_ID_PFR0:
773 // !ThumbEE | !Jazelle | Thumb | ARM
774 return 0x00000031;
775 case MISCREG_ID_PFR1:
776 { // Timer | Virti | !M Profile | TrustZone | ARMv4
777 bool haveTimer = (system->getGenericTimer() != NULL);
778 return 0x00000001
779 | (haveSecurity ? 0x00000010 : 0x0)
780 | (haveVirtualization ? 0x00001000 : 0x0)
781 | (haveTimer ? 0x00010000 : 0x0);
782 }
783 case MISCREG_ID_AA64PFR0_EL1:
784 return 0x0000000000000002 // AArch{64,32} supported at EL0
785 | 0x0000000000000020 // EL1
786 | (haveVirtualization ? 0x0000000000000200 : 0) // EL2
787 | (haveSecurity ? 0x0000000000002000 : 0); // EL3
788 case MISCREG_ID_AA64PFR1_EL1:
789 return 0; // bits [63:0] RES0 (reserved for future use)
790
791 // Generic Timer registers
792 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
793 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
794 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
795 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
796 return getGenericTimer(tc).readMiscReg(misc_reg);
797
798 default:
799 break;
800
801 }
802 return readMiscRegNoEffect(misc_reg);
803}
804
805void
806ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
807{
808 assert(misc_reg < NumMiscRegs);
809
810 auto regs = getMiscIndices(misc_reg);
811 int lower = regs.first, upper = regs.second;
812 if (upper > 0) {
813 miscRegs[lower] = bits(val, 31, 0);
814 miscRegs[upper] = bits(val, 63, 32);
815 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
816 misc_reg, lower, upper, val);
817 } else {
818 miscRegs[lower] = val;
819 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
820 misc_reg, lower, val);
821 }
822}
823
824void
825ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
826{
827
828 MiscReg newVal = val;
829 int x;
830 bool secure_lookup;
831 bool hyp;
832 System *sys;
833 ThreadContext *oc;
834 uint8_t target_el;
835 uint16_t asid;
836 SCR scr;
837
838 if (misc_reg == MISCREG_CPSR) {
839 updateRegMap(val);
840
841
842 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
843 int old_mode = old_cpsr.mode;
844 CPSR cpsr = val;
845 if (old_mode != cpsr.mode) {
846 tc->getITBPtr()->invalidateMiscReg();
847 tc->getDTBPtr()->invalidateMiscReg();
848 }
849
850 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
851 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
852 PCState pc = tc->pcState();
853 pc.nextThumb(cpsr.t);
854 pc.nextJazelle(cpsr.j);
855
856 // Follow slightly different semantics if a CheckerCPU object
857 // is connected
858 CheckerCPU *checker = tc->getCheckerCpuPtr();
859 if (checker) {
860 tc->pcStateNoRecord(pc);
861 } else {
862 tc->pcState(pc);
863 }
864 } else {
865#ifndef NDEBUG
866 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
867 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
868 warn("Unimplemented system register %s write with %#x.\n",
869 miscRegName[misc_reg], val);
870 else
871 panic("Unimplemented system register %s write with %#x.\n",
872 miscRegName[misc_reg], val);
873 }
874#endif
875 switch (unflattenMiscReg(misc_reg)) {
876 case MISCREG_CPACR:
877 {
878
879 const uint32_t ones = (uint32_t)(-1);
880 CPACR cpacrMask = 0;
881 // Only cp10, cp11, and ase are implemented, nothing else should
882 // be writable
883 cpacrMask.cp10 = ones;
884 cpacrMask.cp11 = ones;
885 cpacrMask.asedis = ones;
886
887 // Security Extensions may limit the writability of CPACR
888 if (haveSecurity) {
889 scr = readMiscRegNoEffect(MISCREG_SCR);
890 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
891 if (scr.ns && (cpsr.mode != MODE_MON)) {
892 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
893 // NB: Skipping the full loop, here
894 if (!nsacr.cp10) cpacrMask.cp10 = 0;
895 if (!nsacr.cp11) cpacrMask.cp11 = 0;
896 }
897 }
898
899 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
900 newVal &= cpacrMask;
901 newVal |= old_val & ~cpacrMask;
902 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
903 miscRegName[misc_reg], newVal);
904 }
905 break;
906 case MISCREG_CPACR_EL1:
907 {
908 const uint32_t ones = (uint32_t)(-1);
909 CPACR cpacrMask = 0;
910 cpacrMask.tta = ones;
911 cpacrMask.fpen = ones;
912 newVal &= cpacrMask;
913 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
914 miscRegName[misc_reg], newVal);
915 }
916 break;
917 case MISCREG_CPTR_EL2:
918 {
919 const uint32_t ones = (uint32_t)(-1);
920 CPTR cptrMask = 0;
921 cptrMask.tcpac = ones;
922 cptrMask.tta = ones;
923 cptrMask.tfp = ones;
924 newVal &= cptrMask;
925 cptrMask = 0;
926 cptrMask.res1_13_12_el2 = ones;
927 cptrMask.res1_9_0_el2 = ones;
928 newVal |= cptrMask;
929 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
930 miscRegName[misc_reg], newVal);
931 }
932 break;
933 case MISCREG_CPTR_EL3:
934 {
935 const uint32_t ones = (uint32_t)(-1);
936 CPTR cptrMask = 0;
937 cptrMask.tcpac = ones;
938 cptrMask.tta = ones;
939 cptrMask.tfp = ones;
940 newVal &= cptrMask;
941 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
942 miscRegName[misc_reg], newVal);
943 }
944 break;
945 case MISCREG_CSSELR:
946 warn_once("The csselr register isn't implemented.\n");
947 return;
948
949 case MISCREG_DC_ZVA_Xt:
950 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
951 return;
952
953 case MISCREG_FPSCR:
954 {
955 const uint32_t ones = (uint32_t)(-1);
956 FPSCR fpscrMask = 0;
957 fpscrMask.ioc = ones;
958 fpscrMask.dzc = ones;
959 fpscrMask.ofc = ones;
960 fpscrMask.ufc = ones;
961 fpscrMask.ixc = ones;
962 fpscrMask.idc = ones;
963 fpscrMask.ioe = ones;
964 fpscrMask.dze = ones;
965 fpscrMask.ofe = ones;
966 fpscrMask.ufe = ones;
967 fpscrMask.ixe = ones;
968 fpscrMask.ide = ones;
969 fpscrMask.len = ones;
970 fpscrMask.stride = ones;
971 fpscrMask.rMode = ones;
972 fpscrMask.fz = ones;
973 fpscrMask.dn = ones;
974 fpscrMask.ahp = ones;
975 fpscrMask.qc = ones;
976 fpscrMask.v = ones;
977 fpscrMask.c = ones;
978 fpscrMask.z = ones;
979 fpscrMask.n = ones;
980 newVal = (newVal & (uint32_t)fpscrMask) |
981 (readMiscRegNoEffect(MISCREG_FPSCR) &
982 ~(uint32_t)fpscrMask);
983 tc->getDecoderPtr()->setContext(newVal);
984 }
985 break;
986 case MISCREG_FPSR:
987 {
988 const uint32_t ones = (uint32_t)(-1);
989 FPSCR fpscrMask = 0;
990 fpscrMask.ioc = ones;
991 fpscrMask.dzc = ones;
992 fpscrMask.ofc = ones;
993 fpscrMask.ufc = ones;
994 fpscrMask.ixc = ones;
995 fpscrMask.idc = ones;
996 fpscrMask.qc = ones;
997 fpscrMask.v = ones;
998 fpscrMask.c = ones;
999 fpscrMask.z = ones;
1000 fpscrMask.n = ones;
1001 newVal = (newVal & (uint32_t)fpscrMask) |
1002 (readMiscRegNoEffect(MISCREG_FPSCR) &
1003 ~(uint32_t)fpscrMask);
1004 misc_reg = MISCREG_FPSCR;
1005 }
1006 break;
1007 case MISCREG_FPCR:
1008 {
1009 const uint32_t ones = (uint32_t)(-1);
1010 FPSCR fpscrMask = 0;
1011 fpscrMask.ioe = ones;
1012 fpscrMask.dze = ones;
1013 fpscrMask.ofe = ones;
1014 fpscrMask.ufe = ones;
1015 fpscrMask.ixe = ones;
1016 fpscrMask.ide = ones;
1017 fpscrMask.len = ones;
1018 fpscrMask.stride = ones;
1019 fpscrMask.rMode = ones;
1020 fpscrMask.fz = ones;
1021 fpscrMask.dn = ones;
1022 fpscrMask.ahp = ones;
1023 newVal = (newVal & (uint32_t)fpscrMask) |
1024 (readMiscRegNoEffect(MISCREG_FPSCR) &
1025 ~(uint32_t)fpscrMask);
1026 misc_reg = MISCREG_FPSCR;
1027 }
1028 break;
1029 case MISCREG_CPSR_Q:
1030 {
1031 assert(!(newVal & ~CpsrMaskQ));
1032 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1033 misc_reg = MISCREG_CPSR;
1034 }
1035 break;
1036 case MISCREG_FPSCR_QC:
1037 {
1038 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1039 (newVal & FpscrQcMask);
1040 misc_reg = MISCREG_FPSCR;
1041 }
1042 break;
1043 case MISCREG_FPSCR_EXC:
1044 {
1045 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1046 (newVal & FpscrExcMask);
1047 misc_reg = MISCREG_FPSCR;
1048 }
1049 break;
1050 case MISCREG_FPEXC:
1051 {
1052 // vfpv3 architecture, section B.6.1 of DDI04068
1053 // bit 29 - valid only if fpexc[31] is 0
1054 const uint32_t fpexcMask = 0x60000000;
1055 newVal = (newVal & fpexcMask) |
1056 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1057 }
1058 break;
1059 case MISCREG_HCR:
1060 {
1061 if (!haveVirtualization)
1062 return;
1063 }
1064 break;
1065 case MISCREG_IFSR:
1066 {
1067 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1068 const uint32_t ifsrMask =
1069 mask(31, 13) | mask(11, 11) | mask(8, 6);
1070 newVal = newVal & ~ifsrMask;
1071 }
1072 break;
1073 case MISCREG_DFSR:
1074 {
1075 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1076 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1077 newVal = newVal & ~dfsrMask;
1078 }
1079 break;
1080 case MISCREG_AMAIR0:
1081 case MISCREG_AMAIR1:
1082 {
1083 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1084 // Valid only with LPAE
1085 if (!haveLPAE)
1086 return;
1087 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1088 }
1089 break;
1090 case MISCREG_SCR:
1091 tc->getITBPtr()->invalidateMiscReg();
1092 tc->getDTBPtr()->invalidateMiscReg();
1093 break;
1094 case MISCREG_SCTLR:
1095 {
1096 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1097 scr = readMiscRegNoEffect(MISCREG_SCR);
1098 MiscRegIndex sctlr_idx = (haveSecurity && !scr.ns)
1099 ? MISCREG_SCTLR_S : MISCREG_SCTLR_NS;
1100 SCTLR sctlr = miscRegs[sctlr_idx];
1101 SCTLR new_sctlr = newVal;
1102 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1103 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1104 tc->getITBPtr()->invalidateMiscReg();
1105 tc->getDTBPtr()->invalidateMiscReg();
1106 }
1107 case MISCREG_MIDR:
1108 case MISCREG_ID_PFR0:
1109 case MISCREG_ID_PFR1:
1110 case MISCREG_ID_DFR0:
1111 case MISCREG_ID_MMFR0:
1112 case MISCREG_ID_MMFR1:
1113 case MISCREG_ID_MMFR2:
1114 case MISCREG_ID_MMFR3:
1115 case MISCREG_ID_ISAR0:
1116 case MISCREG_ID_ISAR1:
1117 case MISCREG_ID_ISAR2:
1118 case MISCREG_ID_ISAR3:
1119 case MISCREG_ID_ISAR4:
1120 case MISCREG_ID_ISAR5:
1121
1122 case MISCREG_MPIDR:
1123 case MISCREG_FPSID:
1124 case MISCREG_TLBTR:
1125 case MISCREG_MVFR0:
1126 case MISCREG_MVFR1:
1127
1128 case MISCREG_ID_AA64AFR0_EL1:
1129 case MISCREG_ID_AA64AFR1_EL1:
1130 case MISCREG_ID_AA64DFR0_EL1:
1131 case MISCREG_ID_AA64DFR1_EL1:
1132 case MISCREG_ID_AA64ISAR0_EL1:
1133 case MISCREG_ID_AA64ISAR1_EL1:
1134 case MISCREG_ID_AA64MMFR0_EL1:
1135 case MISCREG_ID_AA64MMFR1_EL1:
1136 case MISCREG_ID_AA64PFR0_EL1:
1137 case MISCREG_ID_AA64PFR1_EL1:
1138 // ID registers are constants.
1139 return;
1140
1141 // TLBI all entries, EL0&1 inner sharable (ignored)
1142 case MISCREG_TLBIALLIS:
1143 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1144 assert32(tc);
1145 target_el = 1; // el 0 and 1 are handled together
1146 scr = readMiscReg(MISCREG_SCR, tc);
1147 secure_lookup = haveSecurity && !scr.ns;
1148 sys = tc->getSystemPtr();
1149 for (x = 0; x < sys->numContexts(); x++) {
1150 oc = sys->getThreadContext(x);
1151 assert(oc->getITBPtr() && oc->getDTBPtr());
1152 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1153 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1154
1155 // If CheckerCPU is connected, need to notify it of a flush
1156 CheckerCPU *checker = oc->getCheckerCpuPtr();
1157 if (checker) {
1158 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1159 target_el);
1160 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1161 target_el);
1162 }
1163 }
1164 return;
1165 // TLBI all entries, EL0&1, instruction side
1166 case MISCREG_ITLBIALL:
1167 assert32(tc);
1168 target_el = 1; // el 0 and 1 are handled together
1169 scr = readMiscReg(MISCREG_SCR, tc);
1170 secure_lookup = haveSecurity && !scr.ns;
1171 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1172 return;
1173 // TLBI all entries, EL0&1, data side
1174 case MISCREG_DTLBIALL:
1175 assert32(tc);
1176 target_el = 1; // el 0 and 1 are handled together
1177 scr = readMiscReg(MISCREG_SCR, tc);
1178 secure_lookup = haveSecurity && !scr.ns;
1179 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1180 return;
1181 // TLBI based on VA, EL0&1 inner sharable (ignored)
1182 case MISCREG_TLBIMVAIS:
1183 case MISCREG_TLBIMVA:
1184 assert32(tc);
1185 target_el = 1; // el 0 and 1 are handled together
1186 scr = readMiscReg(MISCREG_SCR, tc);
1187 secure_lookup = haveSecurity && !scr.ns;
1188 sys = tc->getSystemPtr();
1189 for (x = 0; x < sys->numContexts(); x++) {
1190 oc = sys->getThreadContext(x);
1191 assert(oc->getITBPtr() && oc->getDTBPtr());
1192 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1193 bits(newVal, 7,0),
1194 secure_lookup, target_el);
1195 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1196 bits(newVal, 7,0),
1197 secure_lookup, target_el);
1198
1199 CheckerCPU *checker = oc->getCheckerCpuPtr();
1200 if (checker) {
1201 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1202 bits(newVal, 7,0), secure_lookup, target_el);
1203 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1204 bits(newVal, 7,0), secure_lookup, target_el);
1205 }
1206 }
1207 return;
1208 // TLBI by ASID, EL0&1, inner sharable
1209 case MISCREG_TLBIASIDIS:
1210 case MISCREG_TLBIASID:
1211 assert32(tc);
1212 target_el = 1; // el 0 and 1 are handled together
1213 scr = readMiscReg(MISCREG_SCR, tc);
1214 secure_lookup = haveSecurity && !scr.ns;
1215 sys = tc->getSystemPtr();
1216 for (x = 0; x < sys->numContexts(); x++) {
1217 oc = sys->getThreadContext(x);
1218 assert(oc->getITBPtr() && oc->getDTBPtr());
1219 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1220 secure_lookup, target_el);
1221 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1222 secure_lookup, target_el);
1223 CheckerCPU *checker = oc->getCheckerCpuPtr();
1224 if (checker) {
1225 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1226 secure_lookup, target_el);
1227 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1228 secure_lookup, target_el);
1229 }
1230 }
1231 return;
1232 // TLBI by address, EL0&1, inner sharable (ignored)
1233 case MISCREG_TLBIMVAAIS:
1234 case MISCREG_TLBIMVAA:
1235 assert32(tc);
1236 target_el = 1; // el 0 and 1 are handled together
1237 scr = readMiscReg(MISCREG_SCR, tc);
1238 secure_lookup = haveSecurity && !scr.ns;
1239 hyp = 0;
1240 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1241 return;
1242 // TLBI by address, EL2, hypervisor mode
1243 case MISCREG_TLBIMVAH:
1244 case MISCREG_TLBIMVAHIS:
1245 assert32(tc);
1246 target_el = 1; // aarch32, use hyp bit
1247 scr = readMiscReg(MISCREG_SCR, tc);
1248 secure_lookup = haveSecurity && !scr.ns;
1249 hyp = 1;
1250 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1251 return;
1252 // TLBI by address and asid, EL0&1, instruction side only
1253 case MISCREG_ITLBIMVA:
1254 assert32(tc);
1255 target_el = 1; // el 0 and 1 are handled together
1256 scr = readMiscReg(MISCREG_SCR, tc);
1257 secure_lookup = haveSecurity && !scr.ns;
1258 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1259 bits(newVal, 7,0), secure_lookup, target_el);
1260 return;
1261 // TLBI by address and asid, EL0&1, data side only
1262 case MISCREG_DTLBIMVA:
1263 assert32(tc);
1264 target_el = 1; // el 0 and 1 are handled together
1265 scr = readMiscReg(MISCREG_SCR, tc);
1266 secure_lookup = haveSecurity && !scr.ns;
1267 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1268 bits(newVal, 7,0), secure_lookup, target_el);
1269 return;
1270 // TLBI by ASID, EL0&1, instrution side only
1271 case MISCREG_ITLBIASID:
1272 assert32(tc);
1273 target_el = 1; // el 0 and 1 are handled together
1274 scr = readMiscReg(MISCREG_SCR, tc);
1275 secure_lookup = haveSecurity && !scr.ns;
1276 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1277 target_el);
1278 return;
1279 // TLBI by ASID EL0&1 data size only
1280 case MISCREG_DTLBIASID:
1281 assert32(tc);
1282 target_el = 1; // el 0 and 1 are handled together
1283 scr = readMiscReg(MISCREG_SCR, tc);
1284 secure_lookup = haveSecurity && !scr.ns;
1285 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1286 target_el);
1287 return;
1288 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1289 case MISCREG_TLBIALLNSNH:
1290 case MISCREG_TLBIALLNSNHIS:
1291 assert32(tc);
1292 target_el = 1; // el 0 and 1 are handled together
1293 hyp = 0;
1294 tlbiALLN(tc, hyp, target_el);
1295 return;
1296 // TLBI all entries, EL2, hyp,
1297 case MISCREG_TLBIALLH:
1298 case MISCREG_TLBIALLHIS:
1299 assert32(tc);
1300 target_el = 1; // aarch32, use hyp bit
1301 hyp = 1;
1302 tlbiALLN(tc, hyp, target_el);
1303 return;
1304 // AArch64 TLBI: invalidate all entries EL3
1305 case MISCREG_TLBI_ALLE3IS:
1306 case MISCREG_TLBI_ALLE3:
1307 assert64(tc);
1308 target_el = 3;
1309 secure_lookup = true;
1310 tlbiALL(tc, secure_lookup, target_el);
1311 return;
1312 // @todo: uncomment this to enable Virtualization
1313 // case MISCREG_TLBI_ALLE2IS:
1314 // case MISCREG_TLBI_ALLE2:
1315 // TLBI all entries, EL0&1
1316 case MISCREG_TLBI_ALLE1IS:
1317 case MISCREG_TLBI_ALLE1:
1318 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1319 case MISCREG_TLBI_VMALLE1IS:
1320 case MISCREG_TLBI_VMALLE1:
1321 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1322 case MISCREG_TLBI_VMALLS12E1IS:
1323 case MISCREG_TLBI_VMALLS12E1:
1324 // @todo: handle VMID and stage 2 to enable Virtualization
1325 assert64(tc);
1326 target_el = 1; // el 0 and 1 are handled together
1327 scr = readMiscReg(MISCREG_SCR, tc);
1328 secure_lookup = haveSecurity && !scr.ns;
1329 tlbiALL(tc, secure_lookup, target_el);
1330 return;
1331 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1332 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1333 // from the last level of translation table walks
1334 // @todo: handle VMID to enable Virtualization
1335 // TLBI all entries, EL0&1
1336 case MISCREG_TLBI_VAE3IS_Xt:
1337 case MISCREG_TLBI_VAE3_Xt:
1338 // TLBI by VA, EL3 regime stage 1, last level walk
1339 case MISCREG_TLBI_VALE3IS_Xt:
1340 case MISCREG_TLBI_VALE3_Xt:
1341 assert64(tc);
1342 target_el = 3;
1343 asid = 0xbeef; // does not matter, tlbi is global
1344 secure_lookup = true;
1345 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1346 return;
1347 // TLBI by VA, EL2
1348 case MISCREG_TLBI_VAE2IS_Xt:
1349 case MISCREG_TLBI_VAE2_Xt:
1350 // TLBI by VA, EL2, stage1 last level walk
1351 case MISCREG_TLBI_VALE2IS_Xt:
1352 case MISCREG_TLBI_VALE2_Xt:
1353 assert64(tc);
1354 target_el = 2;
1355 asid = 0xbeef; // does not matter, tlbi is global
1356 scr = readMiscReg(MISCREG_SCR, tc);
1357 secure_lookup = haveSecurity && !scr.ns;
1358 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1359 return;
1360 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1361 case MISCREG_TLBI_VAE1IS_Xt:
1362 case MISCREG_TLBI_VAE1_Xt:
1363 case MISCREG_TLBI_VALE1IS_Xt:
1364 case MISCREG_TLBI_VALE1_Xt:
1365 assert64(tc);
1366 asid = bits(newVal, 63, 48);
1367 target_el = 1; // el 0 and 1 are handled together
1368 scr = readMiscReg(MISCREG_SCR, tc);
1369 secure_lookup = haveSecurity && !scr.ns;
1370 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1371 return;
1372 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1373 // @todo: handle VMID to enable Virtualization
1374 case MISCREG_TLBI_ASIDE1IS_Xt:
1375 case MISCREG_TLBI_ASIDE1_Xt:
1376 assert64(tc);
1377 target_el = 1; // el 0 and 1 are handled together
1378 scr = readMiscReg(MISCREG_SCR, tc);
1379 secure_lookup = haveSecurity && !scr.ns;
1380 sys = tc->getSystemPtr();
1381 for (x = 0; x < sys->numContexts(); x++) {
1382 oc = sys->getThreadContext(x);
1383 assert(oc->getITBPtr() && oc->getDTBPtr());
1384 asid = bits(newVal, 63, 48);
1385 if (!haveLargeAsid64)
1386 asid &= mask(8);
1387 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1388 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1389 CheckerCPU *checker = oc->getCheckerCpuPtr();
1390 if (checker) {
1391 checker->getITBPtr()->flushAsid(asid,
1392 secure_lookup, target_el);
1393 checker->getDTBPtr()->flushAsid(asid,
1394 secure_lookup, target_el);
1395 }
1396 }
1397 return;
1398 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1399 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1400 // entries from the last level of translation table walks
1401 // @todo: handle VMID to enable Virtualization
1402 case MISCREG_TLBI_VAAE1IS_Xt:
1403 case MISCREG_TLBI_VAAE1_Xt:
1404 case MISCREG_TLBI_VAALE1IS_Xt:
1405 case MISCREG_TLBI_VAALE1_Xt:
1406 assert64(tc);
1407 target_el = 1; // el 0 and 1 are handled together
1408 scr = readMiscReg(MISCREG_SCR, tc);
1409 secure_lookup = haveSecurity && !scr.ns;
1410 sys = tc->getSystemPtr();
1411 for (x = 0; x < sys->numContexts(); x++) {
1412 // @todo: extra controls on TLBI broadcast?
1413 oc = sys->getThreadContext(x);
1414 assert(oc->getITBPtr() && oc->getDTBPtr());
1415 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1416 oc->getITBPtr()->flushMva(va,
1417 secure_lookup, false, target_el);
1418 oc->getDTBPtr()->flushMva(va,
1419 secure_lookup, false, target_el);
1420
1421 CheckerCPU *checker = oc->getCheckerCpuPtr();
1422 if (checker) {
1423 checker->getITBPtr()->flushMva(va,
1424 secure_lookup, false, target_el);
1425 checker->getDTBPtr()->flushMva(va,
1426 secure_lookup, false, target_el);
1427 }
1428 }
1429 return;
1430 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1431 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1432 case MISCREG_TLBI_IPAS2LE1_Xt:
1433 case MISCREG_TLBI_IPAS2E1IS_Xt:
1434 case MISCREG_TLBI_IPAS2E1_Xt:
1435 assert64(tc);
1436 target_el = 1; // EL 0 and 1 are handled together
1437 scr = readMiscReg(MISCREG_SCR, tc);
1438 secure_lookup = haveSecurity && !scr.ns;
1439 sys = tc->getSystemPtr();
1440 for (x = 0; x < sys->numContexts(); x++) {
1441 oc = sys->getThreadContext(x);
1442 assert(oc->getITBPtr() && oc->getDTBPtr());
1443 Addr ipa = ((Addr) bits(newVal, 35, 0)) << 12;
1444 oc->getITBPtr()->flushIpaVmid(ipa,
1445 secure_lookup, false, target_el);
1446 oc->getDTBPtr()->flushIpaVmid(ipa,
1447 secure_lookup, false, target_el);
1448
1449 CheckerCPU *checker = oc->getCheckerCpuPtr();
1450 if (checker) {
1451 checker->getITBPtr()->flushIpaVmid(ipa,
1452 secure_lookup, false, target_el);
1453 checker->getDTBPtr()->flushIpaVmid(ipa,
1454 secure_lookup, false, target_el);
1455 }
1456 }
1457 return;
1458 case MISCREG_ACTLR:
1459 warn("Not doing anything for write of miscreg ACTLR\n");
1460 break;
1461
1462 case MISCREG_PMXEVTYPER_PMCCFILTR:
1463 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1464 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1465 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1466 pmu->setMiscReg(misc_reg, newVal);
1467 break;
1468
1469
1470 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1471 {
1472 HSTR hstrMask = 0;
1473 hstrMask.tjdbx = 1;
1474 newVal &= ~((uint32_t) hstrMask);
1475 break;
1476 }
1477 case MISCREG_HCPTR:
1478 {
1479 // If a CP bit in NSACR is 0 then the corresponding bit in
1480 // HCPTR is RAO/WI. Same applies to NSASEDIS
1481 secure_lookup = haveSecurity &&
1482 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1483 readMiscRegNoEffect(MISCREG_CPSR));
1484 if (!secure_lookup) {
1485 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1486 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1487 newVal = (newVal & ~mask) | (oldValue & mask);
1488 }
1489 break;
1490 }
1491 case MISCREG_HDFAR: // alias for secure DFAR
1492 misc_reg = MISCREG_DFAR_S;
1493 break;
1494 case MISCREG_HIFAR: // alias for secure IFAR
1495 misc_reg = MISCREG_IFAR_S;
1496 break;
1497 case MISCREG_ATS1CPR:
1498 case MISCREG_ATS1CPW:
1499 case MISCREG_ATS1CUR:
1500 case MISCREG_ATS1CUW:
1501 case MISCREG_ATS12NSOPR:
1502 case MISCREG_ATS12NSOPW:
1503 case MISCREG_ATS12NSOUR:
1504 case MISCREG_ATS12NSOUW:
1505 case MISCREG_ATS1HR:
1506 case MISCREG_ATS1HW:
1507 {
1508 Request::Flags flags = 0;
1509 BaseTLB::Mode mode = BaseTLB::Read;
1510 TLB::ArmTranslationType tranType = TLB::NormalTran;
1511 Fault fault;
1512 switch(misc_reg) {
1513 case MISCREG_ATS1CPR:
1514 flags = TLB::MustBeOne;
1515 tranType = TLB::S1CTran;
1516 mode = BaseTLB::Read;
1517 break;
1518 case MISCREG_ATS1CPW:
1519 flags = TLB::MustBeOne;
1520 tranType = TLB::S1CTran;
1521 mode = BaseTLB::Write;
1522 break;
1523 case MISCREG_ATS1CUR:
1524 flags = TLB::MustBeOne | TLB::UserMode;
1525 tranType = TLB::S1CTran;
1526 mode = BaseTLB::Read;
1527 break;
1528 case MISCREG_ATS1CUW:
1529 flags = TLB::MustBeOne | TLB::UserMode;
1530 tranType = TLB::S1CTran;
1531 mode = BaseTLB::Write;
1532 break;
1533 case MISCREG_ATS12NSOPR:
1534 if (!haveSecurity)
1535 panic("Security Extensions required for ATS12NSOPR");
1536 flags = TLB::MustBeOne;
1537 tranType = TLB::S1S2NsTran;
1538 mode = BaseTLB::Read;
1539 break;
1540 case MISCREG_ATS12NSOPW:
1541 if (!haveSecurity)
1542 panic("Security Extensions required for ATS12NSOPW");
1543 flags = TLB::MustBeOne;
1544 tranType = TLB::S1S2NsTran;
1545 mode = BaseTLB::Write;
1546 break;
1547 case MISCREG_ATS12NSOUR:
1548 if (!haveSecurity)
1549 panic("Security Extensions required for ATS12NSOUR");
1550 flags = TLB::MustBeOne | TLB::UserMode;
1551 tranType = TLB::S1S2NsTran;
1552 mode = BaseTLB::Read;
1553 break;
1554 case MISCREG_ATS12NSOUW:
1555 if (!haveSecurity)
1556 panic("Security Extensions required for ATS12NSOUW");
1557 flags = TLB::MustBeOne | TLB::UserMode;
1558 tranType = TLB::S1S2NsTran;
1559 mode = BaseTLB::Write;
1560 break;
1561 case MISCREG_ATS1HR: // only really useful from secure mode.
1562 flags = TLB::MustBeOne;
1563 tranType = TLB::HypMode;
1564 mode = BaseTLB::Read;
1565 break;
1566 case MISCREG_ATS1HW:
1567 flags = TLB::MustBeOne;
1568 tranType = TLB::HypMode;
1569 mode = BaseTLB::Write;
1570 break;
1571 }
1572 // If we're in timing mode then doing the translation in
1573 // functional mode then we're slightly distorting performance
1574 // results obtained from simulations. The translation should be
1575 // done in the same mode the core is running in. NOTE: This
1576 // can't be an atomic translation because that causes problems
1577 // with unexpected atomic snoop requests.
1578 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1579 Request req(0, val, 0, flags, Request::funcMasterId,
1580 tc->pcState().pc(), tc->contextId());
1581 fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType);
1582 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1583 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1584
1585 MiscReg newVal;
1586 if (fault == NoFault) {
1587 Addr paddr = req.getPaddr();
1588 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1589 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1590 newVal = (paddr & mask(39, 12)) |
1591 (tc->getDTBPtr()->getAttr());
1592 } else {
1593 newVal = (paddr & 0xfffff000) |
1594 (tc->getDTBPtr()->getAttr());
1595 }
1596 DPRINTF(MiscRegs,
1597 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1598 val, newVal);
1599 } else {
1600 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1601 // Set fault bit and FSR
1602 FSR fsr = armFault->getFsr(tc);
1603
1604 newVal = ((fsr >> 9) & 1) << 11;
1605 if (newVal) {
1606 // LPAE - rearange fault status
1607 newVal |= ((fsr >> 0) & 0x3f) << 1;
1608 } else {
1609 // VMSA - rearange fault status
1610 newVal |= ((fsr >> 0) & 0xf) << 1;
1611 newVal |= ((fsr >> 10) & 0x1) << 5;
1612 newVal |= ((fsr >> 12) & 0x1) << 6;
1613 }
1614 newVal |= 0x1; // F bit
1615 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1616 newVal |= armFault->isStage2() ? 0x200 : 0;
1617 DPRINTF(MiscRegs,
1618 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1619 val, fsr, newVal);
1620 }
1621 setMiscRegNoEffect(MISCREG_PAR, newVal);
1622 return;
1623 }
1624 case MISCREG_TTBCR:
1625 {
1626 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1627 const uint32_t ones = (uint32_t)(-1);
1628 TTBCR ttbcrMask = 0;
1629 TTBCR ttbcrNew = newVal;
1630
1631 // ARM DDI 0406C.b, ARMv7-32
1632 ttbcrMask.n = ones; // T0SZ
1633 if (haveSecurity) {
1634 ttbcrMask.pd0 = ones;
1635 ttbcrMask.pd1 = ones;
1636 }
1637 ttbcrMask.epd0 = ones;
1638 ttbcrMask.irgn0 = ones;
1639 ttbcrMask.orgn0 = ones;
1640 ttbcrMask.sh0 = ones;
1641 ttbcrMask.ps = ones; // T1SZ
1642 ttbcrMask.a1 = ones;
1643 ttbcrMask.epd1 = ones;
1644 ttbcrMask.irgn1 = ones;
1645 ttbcrMask.orgn1 = ones;
1646 ttbcrMask.sh1 = ones;
1647 if (haveLPAE)
1648 ttbcrMask.eae = ones;
1649
1650 if (haveLPAE && ttbcrNew.eae) {
1651 newVal = newVal & ttbcrMask;
1652 } else {
1653 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1654 }
1655 }
1656 M5_FALLTHROUGH;
1656 case MISCREG_TTBR0:
1657 case MISCREG_TTBR1:
1658 {
1659 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1660 if (haveLPAE) {
1661 if (ttbcr.eae) {
1662 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1663 // ARMv8 AArch32 bit 63-56 only
1664 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1665 newVal = (newVal & (~ttbrMask));
1666 }
1667 }
1668 }
1657 case MISCREG_TTBR0:
1658 case MISCREG_TTBR1:
1659 {
1660 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1661 if (haveLPAE) {
1662 if (ttbcr.eae) {
1663 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1664 // ARMv8 AArch32 bit 63-56 only
1665 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1666 newVal = (newVal & (~ttbrMask));
1667 }
1668 }
1669 }
1670 M5_FALLTHROUGH;
1669 case MISCREG_SCTLR_EL1:
1670 {
1671 tc->getITBPtr()->invalidateMiscReg();
1672 tc->getDTBPtr()->invalidateMiscReg();
1673 setMiscRegNoEffect(misc_reg, newVal);
1674 }
1671 case MISCREG_SCTLR_EL1:
1672 {
1673 tc->getITBPtr()->invalidateMiscReg();
1674 tc->getDTBPtr()->invalidateMiscReg();
1675 setMiscRegNoEffect(misc_reg, newVal);
1676 }
1677 M5_FALLTHROUGH;
1675 case MISCREG_CONTEXTIDR:
1676 case MISCREG_PRRR:
1677 case MISCREG_NMRR:
1678 case MISCREG_MAIR0:
1679 case MISCREG_MAIR1:
1680 case MISCREG_DACR:
1681 case MISCREG_VTTBR:
1682 case MISCREG_SCR_EL3:
1683 case MISCREG_HCR_EL2:
1684 case MISCREG_TCR_EL1:
1685 case MISCREG_TCR_EL2:
1686 case MISCREG_TCR_EL3:
1687 case MISCREG_SCTLR_EL2:
1688 case MISCREG_SCTLR_EL3:
1689 case MISCREG_HSCTLR:
1690 case MISCREG_TTBR0_EL1:
1691 case MISCREG_TTBR1_EL1:
1692 case MISCREG_TTBR0_EL2:
1693 case MISCREG_TTBR0_EL3:
1694 tc->getITBPtr()->invalidateMiscReg();
1695 tc->getDTBPtr()->invalidateMiscReg();
1696 break;
1697 case MISCREG_NZCV:
1698 {
1699 CPSR cpsr = val;
1700
1701 tc->setCCReg(CCREG_NZ, cpsr.nz);
1702 tc->setCCReg(CCREG_C, cpsr.c);
1703 tc->setCCReg(CCREG_V, cpsr.v);
1704 }
1705 break;
1706 case MISCREG_DAIF:
1707 {
1708 CPSR cpsr = miscRegs[MISCREG_CPSR];
1709 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1710 newVal = cpsr;
1711 misc_reg = MISCREG_CPSR;
1712 }
1713 break;
1714 case MISCREG_SP_EL0:
1715 tc->setIntReg(INTREG_SP0, newVal);
1716 break;
1717 case MISCREG_SP_EL1:
1718 tc->setIntReg(INTREG_SP1, newVal);
1719 break;
1720 case MISCREG_SP_EL2:
1721 tc->setIntReg(INTREG_SP2, newVal);
1722 break;
1723 case MISCREG_SPSEL:
1724 {
1725 CPSR cpsr = miscRegs[MISCREG_CPSR];
1726 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1727 newVal = cpsr;
1728 misc_reg = MISCREG_CPSR;
1729 }
1730 break;
1731 case MISCREG_CURRENTEL:
1732 {
1733 CPSR cpsr = miscRegs[MISCREG_CPSR];
1734 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1735 newVal = cpsr;
1736 misc_reg = MISCREG_CPSR;
1737 }
1738 break;
1739 case MISCREG_AT_S1E1R_Xt:
1740 case MISCREG_AT_S1E1W_Xt:
1741 case MISCREG_AT_S1E0R_Xt:
1742 case MISCREG_AT_S1E0W_Xt:
1743 case MISCREG_AT_S1E2R_Xt:
1744 case MISCREG_AT_S1E2W_Xt:
1745 case MISCREG_AT_S12E1R_Xt:
1746 case MISCREG_AT_S12E1W_Xt:
1747 case MISCREG_AT_S12E0R_Xt:
1748 case MISCREG_AT_S12E0W_Xt:
1749 case MISCREG_AT_S1E3R_Xt:
1750 case MISCREG_AT_S1E3W_Xt:
1751 {
1752 RequestPtr req = new Request;
1753 Request::Flags flags = 0;
1754 BaseTLB::Mode mode = BaseTLB::Read;
1755 TLB::ArmTranslationType tranType = TLB::NormalTran;
1756 Fault fault;
1757 switch(misc_reg) {
1758 case MISCREG_AT_S1E1R_Xt:
1759 flags = TLB::MustBeOne;
1760 tranType = TLB::S1E1Tran;
1761 mode = BaseTLB::Read;
1762 break;
1763 case MISCREG_AT_S1E1W_Xt:
1764 flags = TLB::MustBeOne;
1765 tranType = TLB::S1E1Tran;
1766 mode = BaseTLB::Write;
1767 break;
1768 case MISCREG_AT_S1E0R_Xt:
1769 flags = TLB::MustBeOne | TLB::UserMode;
1770 tranType = TLB::S1E0Tran;
1771 mode = BaseTLB::Read;
1772 break;
1773 case MISCREG_AT_S1E0W_Xt:
1774 flags = TLB::MustBeOne | TLB::UserMode;
1775 tranType = TLB::S1E0Tran;
1776 mode = BaseTLB::Write;
1777 break;
1778 case MISCREG_AT_S1E2R_Xt:
1779 flags = TLB::MustBeOne;
1780 tranType = TLB::S1E2Tran;
1781 mode = BaseTLB::Read;
1782 break;
1783 case MISCREG_AT_S1E2W_Xt:
1784 flags = TLB::MustBeOne;
1785 tranType = TLB::S1E2Tran;
1786 mode = BaseTLB::Write;
1787 break;
1788 case MISCREG_AT_S12E0R_Xt:
1789 flags = TLB::MustBeOne | TLB::UserMode;
1790 tranType = TLB::S12E0Tran;
1791 mode = BaseTLB::Read;
1792 break;
1793 case MISCREG_AT_S12E0W_Xt:
1794 flags = TLB::MustBeOne | TLB::UserMode;
1795 tranType = TLB::S12E0Tran;
1796 mode = BaseTLB::Write;
1797 break;
1798 case MISCREG_AT_S12E1R_Xt:
1799 flags = TLB::MustBeOne;
1800 tranType = TLB::S12E1Tran;
1801 mode = BaseTLB::Read;
1802 break;
1803 case MISCREG_AT_S12E1W_Xt:
1804 flags = TLB::MustBeOne;
1805 tranType = TLB::S12E1Tran;
1806 mode = BaseTLB::Write;
1807 break;
1808 case MISCREG_AT_S1E3R_Xt:
1809 flags = TLB::MustBeOne;
1810 tranType = TLB::S1E3Tran;
1811 mode = BaseTLB::Read;
1812 break;
1813 case MISCREG_AT_S1E3W_Xt:
1814 flags = TLB::MustBeOne;
1815 tranType = TLB::S1E3Tran;
1816 mode = BaseTLB::Write;
1817 break;
1818 }
1819 // If we're in timing mode then doing the translation in
1820 // functional mode then we're slightly distorting performance
1821 // results obtained from simulations. The translation should be
1822 // done in the same mode the core is running in. NOTE: This
1823 // can't be an atomic translation because that causes problems
1824 // with unexpected atomic snoop requests.
1825 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1826 req->setVirt(0, val, 0, flags, Request::funcMasterId,
1827 tc->pcState().pc());
1828 req->setContext(tc->contextId());
1829 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1830 tranType);
1831
1832 MiscReg newVal;
1833 if (fault == NoFault) {
1834 Addr paddr = req->getPaddr();
1835 uint64_t attr = tc->getDTBPtr()->getAttr();
1836 uint64_t attr1 = attr >> 56;
1837 if (!attr1 || attr1 ==0x44) {
1838 attr |= 0x100;
1839 attr &= ~ uint64_t(0x80);
1840 }
1841 newVal = (paddr & mask(47, 12)) | attr;
1842 DPRINTF(MiscRegs,
1843 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1844 val, newVal);
1845 } else {
1846 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1847 // Set fault bit and FSR
1848 FSR fsr = armFault->getFsr(tc);
1849
1850 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1851 if (cpsr.width) { // AArch32
1852 newVal = ((fsr >> 9) & 1) << 11;
1853 // rearrange fault status
1854 newVal |= ((fsr >> 0) & 0x3f) << 1;
1855 newVal |= 0x1; // F bit
1856 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1857 newVal |= armFault->isStage2() ? 0x200 : 0;
1858 } else { // AArch64
1859 newVal = 1; // F bit
1860 newVal |= fsr << 1; // FST
1861 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1862 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1863 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1864 newVal |= 1 << 11; // RES1
1865 }
1866 DPRINTF(MiscRegs,
1867 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1868 val, fsr, newVal);
1869 }
1870 delete req;
1871 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1872 return;
1873 }
1874 case MISCREG_SPSR_EL3:
1875 case MISCREG_SPSR_EL2:
1876 case MISCREG_SPSR_EL1:
1877 // Force bits 23:21 to 0
1878 newVal = val & ~(0x7 << 21);
1879 break;
1880 case MISCREG_L2CTLR:
1881 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1882 miscRegName[misc_reg], uint32_t(val));
1883 break;
1884
1885 // Generic Timer registers
1886 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1887 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1888 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1889 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1890 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1891 break;
1892 }
1893 }
1894 setMiscRegNoEffect(misc_reg, newVal);
1895}
1896
1897void
1898ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1899 bool secure_lookup, uint8_t target_el)
1900{
1901 if (!haveLargeAsid64)
1902 asid &= mask(8);
1903 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1904 System *sys = tc->getSystemPtr();
1905 for (int x = 0; x < sys->numContexts(); x++) {
1906 ThreadContext *oc = sys->getThreadContext(x);
1907 assert(oc->getITBPtr() && oc->getDTBPtr());
1908 oc->getITBPtr()->flushMvaAsid(va, asid,
1909 secure_lookup, target_el);
1910 oc->getDTBPtr()->flushMvaAsid(va, asid,
1911 secure_lookup, target_el);
1912
1913 CheckerCPU *checker = oc->getCheckerCpuPtr();
1914 if (checker) {
1915 checker->getITBPtr()->flushMvaAsid(
1916 va, asid, secure_lookup, target_el);
1917 checker->getDTBPtr()->flushMvaAsid(
1918 va, asid, secure_lookup, target_el);
1919 }
1920 }
1921}
1922
1923void
1924ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1925{
1926 System *sys = tc->getSystemPtr();
1927 for (int x = 0; x < sys->numContexts(); x++) {
1928 ThreadContext *oc = sys->getThreadContext(x);
1929 assert(oc->getITBPtr() && oc->getDTBPtr());
1930 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1931 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1932
1933 // If CheckerCPU is connected, need to notify it of a flush
1934 CheckerCPU *checker = oc->getCheckerCpuPtr();
1935 if (checker) {
1936 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1937 target_el);
1938 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1939 target_el);
1940 }
1941 }
1942}
1943
1944void
1945ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1946{
1947 System *sys = tc->getSystemPtr();
1948 for (int x = 0; x < sys->numContexts(); x++) {
1949 ThreadContext *oc = sys->getThreadContext(x);
1950 assert(oc->getITBPtr() && oc->getDTBPtr());
1951 oc->getITBPtr()->flushAllNs(hyp, target_el);
1952 oc->getDTBPtr()->flushAllNs(hyp, target_el);
1953
1954 CheckerCPU *checker = oc->getCheckerCpuPtr();
1955 if (checker) {
1956 checker->getITBPtr()->flushAllNs(hyp, target_el);
1957 checker->getDTBPtr()->flushAllNs(hyp, target_el);
1958 }
1959 }
1960}
1961
1962void
1963ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1964 uint8_t target_el)
1965{
1966 System *sys = tc->getSystemPtr();
1967 for (int x = 0; x < sys->numContexts(); x++) {
1968 ThreadContext *oc = sys->getThreadContext(x);
1969 assert(oc->getITBPtr() && oc->getDTBPtr());
1970 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
1971 secure_lookup, hyp, target_el);
1972 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1973 secure_lookup, hyp, target_el);
1974
1975 CheckerCPU *checker = oc->getCheckerCpuPtr();
1976 if (checker) {
1977 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
1978 secure_lookup, hyp, target_el);
1979 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1980 secure_lookup, hyp, target_el);
1981 }
1982 }
1983}
1984
1985BaseISADevice &
1986ISA::getGenericTimer(ThreadContext *tc)
1987{
1988 // We only need to create an ISA interface the first time we try
1989 // to access the timer.
1990 if (timer)
1991 return *timer.get();
1992
1993 assert(system);
1994 GenericTimer *generic_timer(system->getGenericTimer());
1995 if (!generic_timer) {
1996 panic("Trying to get a generic timer from a system that hasn't "
1997 "been configured to use a generic timer.\n");
1998 }
1999
2000 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2001 return *timer.get();
2002}
2003
2004}
2005
2006ArmISA::ISA *
2007ArmISAParams::create()
2008{
2009 return new ArmISA::ISA(this);
2010}
1678 case MISCREG_CONTEXTIDR:
1679 case MISCREG_PRRR:
1680 case MISCREG_NMRR:
1681 case MISCREG_MAIR0:
1682 case MISCREG_MAIR1:
1683 case MISCREG_DACR:
1684 case MISCREG_VTTBR:
1685 case MISCREG_SCR_EL3:
1686 case MISCREG_HCR_EL2:
1687 case MISCREG_TCR_EL1:
1688 case MISCREG_TCR_EL2:
1689 case MISCREG_TCR_EL3:
1690 case MISCREG_SCTLR_EL2:
1691 case MISCREG_SCTLR_EL3:
1692 case MISCREG_HSCTLR:
1693 case MISCREG_TTBR0_EL1:
1694 case MISCREG_TTBR1_EL1:
1695 case MISCREG_TTBR0_EL2:
1696 case MISCREG_TTBR0_EL3:
1697 tc->getITBPtr()->invalidateMiscReg();
1698 tc->getDTBPtr()->invalidateMiscReg();
1699 break;
1700 case MISCREG_NZCV:
1701 {
1702 CPSR cpsr = val;
1703
1704 tc->setCCReg(CCREG_NZ, cpsr.nz);
1705 tc->setCCReg(CCREG_C, cpsr.c);
1706 tc->setCCReg(CCREG_V, cpsr.v);
1707 }
1708 break;
1709 case MISCREG_DAIF:
1710 {
1711 CPSR cpsr = miscRegs[MISCREG_CPSR];
1712 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1713 newVal = cpsr;
1714 misc_reg = MISCREG_CPSR;
1715 }
1716 break;
1717 case MISCREG_SP_EL0:
1718 tc->setIntReg(INTREG_SP0, newVal);
1719 break;
1720 case MISCREG_SP_EL1:
1721 tc->setIntReg(INTREG_SP1, newVal);
1722 break;
1723 case MISCREG_SP_EL2:
1724 tc->setIntReg(INTREG_SP2, newVal);
1725 break;
1726 case MISCREG_SPSEL:
1727 {
1728 CPSR cpsr = miscRegs[MISCREG_CPSR];
1729 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1730 newVal = cpsr;
1731 misc_reg = MISCREG_CPSR;
1732 }
1733 break;
1734 case MISCREG_CURRENTEL:
1735 {
1736 CPSR cpsr = miscRegs[MISCREG_CPSR];
1737 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1738 newVal = cpsr;
1739 misc_reg = MISCREG_CPSR;
1740 }
1741 break;
1742 case MISCREG_AT_S1E1R_Xt:
1743 case MISCREG_AT_S1E1W_Xt:
1744 case MISCREG_AT_S1E0R_Xt:
1745 case MISCREG_AT_S1E0W_Xt:
1746 case MISCREG_AT_S1E2R_Xt:
1747 case MISCREG_AT_S1E2W_Xt:
1748 case MISCREG_AT_S12E1R_Xt:
1749 case MISCREG_AT_S12E1W_Xt:
1750 case MISCREG_AT_S12E0R_Xt:
1751 case MISCREG_AT_S12E0W_Xt:
1752 case MISCREG_AT_S1E3R_Xt:
1753 case MISCREG_AT_S1E3W_Xt:
1754 {
1755 RequestPtr req = new Request;
1756 Request::Flags flags = 0;
1757 BaseTLB::Mode mode = BaseTLB::Read;
1758 TLB::ArmTranslationType tranType = TLB::NormalTran;
1759 Fault fault;
1760 switch(misc_reg) {
1761 case MISCREG_AT_S1E1R_Xt:
1762 flags = TLB::MustBeOne;
1763 tranType = TLB::S1E1Tran;
1764 mode = BaseTLB::Read;
1765 break;
1766 case MISCREG_AT_S1E1W_Xt:
1767 flags = TLB::MustBeOne;
1768 tranType = TLB::S1E1Tran;
1769 mode = BaseTLB::Write;
1770 break;
1771 case MISCREG_AT_S1E0R_Xt:
1772 flags = TLB::MustBeOne | TLB::UserMode;
1773 tranType = TLB::S1E0Tran;
1774 mode = BaseTLB::Read;
1775 break;
1776 case MISCREG_AT_S1E0W_Xt:
1777 flags = TLB::MustBeOne | TLB::UserMode;
1778 tranType = TLB::S1E0Tran;
1779 mode = BaseTLB::Write;
1780 break;
1781 case MISCREG_AT_S1E2R_Xt:
1782 flags = TLB::MustBeOne;
1783 tranType = TLB::S1E2Tran;
1784 mode = BaseTLB::Read;
1785 break;
1786 case MISCREG_AT_S1E2W_Xt:
1787 flags = TLB::MustBeOne;
1788 tranType = TLB::S1E2Tran;
1789 mode = BaseTLB::Write;
1790 break;
1791 case MISCREG_AT_S12E0R_Xt:
1792 flags = TLB::MustBeOne | TLB::UserMode;
1793 tranType = TLB::S12E0Tran;
1794 mode = BaseTLB::Read;
1795 break;
1796 case MISCREG_AT_S12E0W_Xt:
1797 flags = TLB::MustBeOne | TLB::UserMode;
1798 tranType = TLB::S12E0Tran;
1799 mode = BaseTLB::Write;
1800 break;
1801 case MISCREG_AT_S12E1R_Xt:
1802 flags = TLB::MustBeOne;
1803 tranType = TLB::S12E1Tran;
1804 mode = BaseTLB::Read;
1805 break;
1806 case MISCREG_AT_S12E1W_Xt:
1807 flags = TLB::MustBeOne;
1808 tranType = TLB::S12E1Tran;
1809 mode = BaseTLB::Write;
1810 break;
1811 case MISCREG_AT_S1E3R_Xt:
1812 flags = TLB::MustBeOne;
1813 tranType = TLB::S1E3Tran;
1814 mode = BaseTLB::Read;
1815 break;
1816 case MISCREG_AT_S1E3W_Xt:
1817 flags = TLB::MustBeOne;
1818 tranType = TLB::S1E3Tran;
1819 mode = BaseTLB::Write;
1820 break;
1821 }
1822 // If we're in timing mode then doing the translation in
1823 // functional mode then we're slightly distorting performance
1824 // results obtained from simulations. The translation should be
1825 // done in the same mode the core is running in. NOTE: This
1826 // can't be an atomic translation because that causes problems
1827 // with unexpected atomic snoop requests.
1828 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1829 req->setVirt(0, val, 0, flags, Request::funcMasterId,
1830 tc->pcState().pc());
1831 req->setContext(tc->contextId());
1832 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1833 tranType);
1834
1835 MiscReg newVal;
1836 if (fault == NoFault) {
1837 Addr paddr = req->getPaddr();
1838 uint64_t attr = tc->getDTBPtr()->getAttr();
1839 uint64_t attr1 = attr >> 56;
1840 if (!attr1 || attr1 ==0x44) {
1841 attr |= 0x100;
1842 attr &= ~ uint64_t(0x80);
1843 }
1844 newVal = (paddr & mask(47, 12)) | attr;
1845 DPRINTF(MiscRegs,
1846 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1847 val, newVal);
1848 } else {
1849 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1850 // Set fault bit and FSR
1851 FSR fsr = armFault->getFsr(tc);
1852
1853 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1854 if (cpsr.width) { // AArch32
1855 newVal = ((fsr >> 9) & 1) << 11;
1856 // rearrange fault status
1857 newVal |= ((fsr >> 0) & 0x3f) << 1;
1858 newVal |= 0x1; // F bit
1859 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1860 newVal |= armFault->isStage2() ? 0x200 : 0;
1861 } else { // AArch64
1862 newVal = 1; // F bit
1863 newVal |= fsr << 1; // FST
1864 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1865 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1866 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1867 newVal |= 1 << 11; // RES1
1868 }
1869 DPRINTF(MiscRegs,
1870 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1871 val, fsr, newVal);
1872 }
1873 delete req;
1874 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1875 return;
1876 }
1877 case MISCREG_SPSR_EL3:
1878 case MISCREG_SPSR_EL2:
1879 case MISCREG_SPSR_EL1:
1880 // Force bits 23:21 to 0
1881 newVal = val & ~(0x7 << 21);
1882 break;
1883 case MISCREG_L2CTLR:
1884 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1885 miscRegName[misc_reg], uint32_t(val));
1886 break;
1887
1888 // Generic Timer registers
1889 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1890 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1891 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1892 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1893 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1894 break;
1895 }
1896 }
1897 setMiscRegNoEffect(misc_reg, newVal);
1898}
1899
1900void
1901ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1902 bool secure_lookup, uint8_t target_el)
1903{
1904 if (!haveLargeAsid64)
1905 asid &= mask(8);
1906 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1907 System *sys = tc->getSystemPtr();
1908 for (int x = 0; x < sys->numContexts(); x++) {
1909 ThreadContext *oc = sys->getThreadContext(x);
1910 assert(oc->getITBPtr() && oc->getDTBPtr());
1911 oc->getITBPtr()->flushMvaAsid(va, asid,
1912 secure_lookup, target_el);
1913 oc->getDTBPtr()->flushMvaAsid(va, asid,
1914 secure_lookup, target_el);
1915
1916 CheckerCPU *checker = oc->getCheckerCpuPtr();
1917 if (checker) {
1918 checker->getITBPtr()->flushMvaAsid(
1919 va, asid, secure_lookup, target_el);
1920 checker->getDTBPtr()->flushMvaAsid(
1921 va, asid, secure_lookup, target_el);
1922 }
1923 }
1924}
1925
1926void
1927ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1928{
1929 System *sys = tc->getSystemPtr();
1930 for (int x = 0; x < sys->numContexts(); x++) {
1931 ThreadContext *oc = sys->getThreadContext(x);
1932 assert(oc->getITBPtr() && oc->getDTBPtr());
1933 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1934 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1935
1936 // If CheckerCPU is connected, need to notify it of a flush
1937 CheckerCPU *checker = oc->getCheckerCpuPtr();
1938 if (checker) {
1939 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1940 target_el);
1941 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1942 target_el);
1943 }
1944 }
1945}
1946
1947void
1948ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1949{
1950 System *sys = tc->getSystemPtr();
1951 for (int x = 0; x < sys->numContexts(); x++) {
1952 ThreadContext *oc = sys->getThreadContext(x);
1953 assert(oc->getITBPtr() && oc->getDTBPtr());
1954 oc->getITBPtr()->flushAllNs(hyp, target_el);
1955 oc->getDTBPtr()->flushAllNs(hyp, target_el);
1956
1957 CheckerCPU *checker = oc->getCheckerCpuPtr();
1958 if (checker) {
1959 checker->getITBPtr()->flushAllNs(hyp, target_el);
1960 checker->getDTBPtr()->flushAllNs(hyp, target_el);
1961 }
1962 }
1963}
1964
1965void
1966ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1967 uint8_t target_el)
1968{
1969 System *sys = tc->getSystemPtr();
1970 for (int x = 0; x < sys->numContexts(); x++) {
1971 ThreadContext *oc = sys->getThreadContext(x);
1972 assert(oc->getITBPtr() && oc->getDTBPtr());
1973 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
1974 secure_lookup, hyp, target_el);
1975 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1976 secure_lookup, hyp, target_el);
1977
1978 CheckerCPU *checker = oc->getCheckerCpuPtr();
1979 if (checker) {
1980 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
1981 secure_lookup, hyp, target_el);
1982 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1983 secure_lookup, hyp, target_el);
1984 }
1985 }
1986}
1987
1988BaseISADevice &
1989ISA::getGenericTimer(ThreadContext *tc)
1990{
1991 // We only need to create an ISA interface the first time we try
1992 // to access the timer.
1993 if (timer)
1994 return *timer.get();
1995
1996 assert(system);
1997 GenericTimer *generic_timer(system->getGenericTimer());
1998 if (!generic_timer) {
1999 panic("Trying to get a generic timer from a system that hasn't "
2000 "been configured to use a generic timer.\n");
2001 }
2002
2003 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2004 return *timer.get();
2005}
2006
2007}
2008
2009ArmISA::ISA *
2010ArmISAParams::create()
2011{
2012 return new ArmISA::ISA(this);
2013}