isa.cc (10609:ae5582819481) isa.cc (10653:e3fc6bc7f97e)
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "cpu/checker/cpu.hh"
45#include "cpu/base.hh"
46#include "debug/Arm.hh"
47#include "debug/MiscRegs.hh"
48#include "params/ArmISA.hh"
49#include "sim/faults.hh"
50#include "sim/stat_control.hh"
51#include "sim/system.hh"
52
53namespace ArmISA
54{
55
56
57/**
58 * Some registers aliase with others, and therefore need to be translated.
59 * For each entry:
60 * The first value is the misc register that is to be looked up
61 * the second value is the lower part of the translation
62 * the third the upper part
63 */
64const struct ISA::MiscRegInitializerEntry
65 ISA::MiscRegSwitch[miscRegTranslateMax] = {
66 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
67 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
68 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
69 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
70 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
71 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
72 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
73 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
74 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
75 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
76 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
77 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
78 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
79 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
80 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
81 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
82 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
83 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
84 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
85 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
86 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
87 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
88 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
89 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
90 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
91 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
92 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
93 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
94 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
95 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
96 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
97 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
98 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
99 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
100 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
101 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
102 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
103 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
104 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
105 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
106 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
107 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
108 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
109 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
110 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
111 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
112 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
113 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
114 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
115 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
116 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
117 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
118 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
119 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
120 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
121 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
122 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
123};
124
125
126ISA::ISA(Params *p)
127 : SimObject(p),
128 system(NULL),
129 pmu(p->pmu),
130 lookUpMiscReg(NUM_MISCREGS, {0,0})
131{
132 SCTLR sctlr;
133 sctlr = 0;
134 miscRegs[MISCREG_SCTLR_RST] = sctlr;
135
136 // Hook up a dummy device if we haven't been configured with a
137 // real PMU. By using a dummy device, we don't need to check that
138 // the PMU exist every time we try to access a PMU register.
139 if (!pmu)
140 pmu = &dummyDevice;
141
142 // Give all ISA devices a pointer to this ISA
143 pmu->setISA(this);
144
145 system = dynamic_cast<ArmSystem *>(p->system);
146 DPRINTFN("ISA system set to: %p %p\n", system, p->system);
147
148 // Cache system-level properties
149 if (FullSystem && system) {
150 haveSecurity = system->haveSecurity();
151 haveLPAE = system->haveLPAE();
152 haveVirtualization = system->haveVirtualization();
153 haveLargeAsid64 = system->haveLargeAsid64();
154 physAddrRange64 = system->physAddrRange64();
155 } else {
156 haveSecurity = haveLPAE = haveVirtualization = false;
157 haveLargeAsid64 = false;
158 physAddrRange64 = 32; // dummy value
159 }
160
161 /** Fill in the miscReg translation table */
162 for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
163 struct MiscRegLUTEntry new_entry;
164
165 uint32_t select = MiscRegSwitch[i].index;
166 new_entry = MiscRegSwitch[i].entry;
167
168 lookUpMiscReg[select] = new_entry;
169 }
170
171 preUnflattenMiscReg();
172
173 clear();
174}
175
176const ArmISAParams *
177ISA::params() const
178{
179 return dynamic_cast<const Params *>(_params);
180}
181
182void
183ISA::clear()
184{
185 const Params *p(params());
186
187 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
188 memset(miscRegs, 0, sizeof(miscRegs));
189
190 // Initialize configurable default values
191 miscRegs[MISCREG_MIDR] = p->midr;
192 miscRegs[MISCREG_MIDR_EL1] = p->midr;
193 miscRegs[MISCREG_VPIDR] = p->midr;
194
195 if (FullSystem && system->highestELIs64()) {
196 // Initialize AArch64 state
197 clear64(p);
198 return;
199 }
200
201 // Initialize AArch32 state...
202
203 CPSR cpsr = 0;
204 cpsr.mode = MODE_USER;
205 miscRegs[MISCREG_CPSR] = cpsr;
206 updateRegMap(cpsr);
207
208 SCTLR sctlr = 0;
209 sctlr.te = (bool) sctlr_rst.te;
210 sctlr.nmfi = (bool) sctlr_rst.nmfi;
211 sctlr.v = (bool) sctlr_rst.v;
212 sctlr.u = 1;
213 sctlr.xp = 1;
214 sctlr.rao2 = 1;
215 sctlr.rao3 = 1;
216 sctlr.rao4 = 0xf; // SCTLR[6:3]
217 sctlr.uci = 1;
218 sctlr.dze = 1;
219 miscRegs[MISCREG_SCTLR_NS] = sctlr;
220 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
221 miscRegs[MISCREG_HCPTR] = 0;
222
223 // Start with an event in the mailbox
224 miscRegs[MISCREG_SEV_MAILBOX] = 1;
225
226 // Separate Instruction and Data TLBs
227 miscRegs[MISCREG_TLBTR] = 1;
228
229 MVFR0 mvfr0 = 0;
230 mvfr0.advSimdRegisters = 2;
231 mvfr0.singlePrecision = 2;
232 mvfr0.doublePrecision = 2;
233 mvfr0.vfpExceptionTrapping = 0;
234 mvfr0.divide = 1;
235 mvfr0.squareRoot = 1;
236 mvfr0.shortVectors = 1;
237 mvfr0.roundingModes = 1;
238 miscRegs[MISCREG_MVFR0] = mvfr0;
239
240 MVFR1 mvfr1 = 0;
241 mvfr1.flushToZero = 1;
242 mvfr1.defaultNaN = 1;
243 mvfr1.advSimdLoadStore = 1;
244 mvfr1.advSimdInteger = 1;
245 mvfr1.advSimdSinglePrecision = 1;
246 mvfr1.advSimdHalfPrecision = 1;
247 mvfr1.vfpHalfPrecision = 1;
248 miscRegs[MISCREG_MVFR1] = mvfr1;
249
250 // Reset values of PRRR and NMRR are implementation dependent
251
252 // @todo: PRRR and NMRR in secure state?
253 miscRegs[MISCREG_PRRR_NS] =
254 (1 << 19) | // 19
255 (0 << 18) | // 18
256 (0 << 17) | // 17
257 (1 << 16) | // 16
258 (2 << 14) | // 15:14
259 (0 << 12) | // 13:12
260 (2 << 10) | // 11:10
261 (2 << 8) | // 9:8
262 (2 << 6) | // 7:6
263 (2 << 4) | // 5:4
264 (1 << 2) | // 3:2
265 0; // 1:0
266 miscRegs[MISCREG_NMRR_NS] =
267 (1 << 30) | // 31:30
268 (0 << 26) | // 27:26
269 (0 << 24) | // 25:24
270 (3 << 22) | // 23:22
271 (2 << 20) | // 21:20
272 (0 << 18) | // 19:18
273 (0 << 16) | // 17:16
274 (1 << 14) | // 15:14
275 (0 << 12) | // 13:12
276 (2 << 10) | // 11:10
277 (0 << 8) | // 9:8
278 (3 << 6) | // 7:6
279 (2 << 4) | // 5:4
280 (0 << 2) | // 3:2
281 0; // 1:0
282
283 miscRegs[MISCREG_CPACR] = 0;
284
285
286 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
287 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
288
289 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
290 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
291 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
292 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
293
294 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
295 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
296 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
297 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
298 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
299 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
300
301 miscRegs[MISCREG_FPSID] = p->fpsid;
302
303 if (haveLPAE) {
304 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
305 ttbcr.eae = 0;
306 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
307 // Enforce consistency with system-level settings
308 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
309 }
310
311 if (haveSecurity) {
312 miscRegs[MISCREG_SCTLR_S] = sctlr;
313 miscRegs[MISCREG_SCR] = 0;
314 miscRegs[MISCREG_VBAR_S] = 0;
315 } else {
316 // we're always non-secure
317 miscRegs[MISCREG_SCR] = 1;
318 }
319
320 //XXX We need to initialize the rest of the state.
321}
322
323void
324ISA::clear64(const ArmISAParams *p)
325{
326 CPSR cpsr = 0;
327 Addr rvbar = system->resetAddr64();
328 switch (system->highestEL()) {
329 // Set initial EL to highest implemented EL using associated stack
330 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
331 // value
332 case EL3:
333 cpsr.mode = MODE_EL3H;
334 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
335 break;
336 case EL2:
337 cpsr.mode = MODE_EL2H;
338 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
339 break;
340 case EL1:
341 cpsr.mode = MODE_EL1H;
342 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
343 break;
344 default:
345 panic("Invalid highest implemented exception level");
346 break;
347 }
348
349 // Initialize rest of CPSR
350 cpsr.daif = 0xf; // Mask all interrupts
351 cpsr.ss = 0;
352 cpsr.il = 0;
353 miscRegs[MISCREG_CPSR] = cpsr;
354 updateRegMap(cpsr);
355
356 // Initialize other control registers
357 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
358 if (haveSecurity) {
359 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
360 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
361 // @todo: uncomment this to enable Virtualization
362 // } else if (haveVirtualization) {
363 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
364 } else {
365 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
366 // Always non-secure
367 miscRegs[MISCREG_SCR_EL3] = 1;
368 }
369
370 // Initialize configurable id registers
371 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
372 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
373 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
374 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
375 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
376
377 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
378 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
379 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
380 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
381 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
382 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
383 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
384
385 miscRegs[MISCREG_ID_DFR0_EL1] =
386 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
387
388 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
389
390 // Enforce consistency with system-level settings...
391
392 // EL3
393 // (no AArch32/64 interprocessing support for now)
394 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
395 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
396 haveSecurity ? 0x1 : 0x0);
397 // EL2
398 // (no AArch32/64 interprocessing support for now)
399 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
400 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
401 haveVirtualization ? 0x1 : 0x0);
402 // Large ASID support
403 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
404 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
405 haveLargeAsid64 ? 0x2 : 0x0);
406 // Physical address size
407 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
408 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
409 encodePhysAddrRange64(physAddrRange64));
410}
411
412MiscReg
413ISA::readMiscRegNoEffect(int misc_reg) const
414{
415 assert(misc_reg < NumMiscRegs);
416
417 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
418 // registers are left unchanged
419 MiscReg val;
420
421 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
422 || flat_idx == MISCREG_SCTLR_EL1) {
423 if (flat_idx == MISCREG_SPSR)
424 flat_idx = flattenMiscIndex(MISCREG_SPSR);
425 if (flat_idx == MISCREG_SCTLR_EL1)
426 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
427 val = miscRegs[flat_idx];
428 } else
429 if (lookUpMiscReg[flat_idx].upper > 0)
430 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
431 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
432 else
433 val = miscRegs[lookUpMiscReg[flat_idx].lower];
434
435 return val;
436}
437
438
439MiscReg
440ISA::readMiscReg(int misc_reg, ThreadContext *tc)
441{
442 CPSR cpsr = 0;
443 PCState pc = 0;
444 SCR scr = 0;
445
446 if (misc_reg == MISCREG_CPSR) {
447 cpsr = miscRegs[misc_reg];
448 pc = tc->pcState();
449 cpsr.j = pc.jazelle() ? 1 : 0;
450 cpsr.t = pc.thumb() ? 1 : 0;
451 return cpsr;
452 }
453
454#ifndef NDEBUG
455 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
456 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
457 warn("Unimplemented system register %s read.\n",
458 miscRegName[misc_reg]);
459 else
460 panic("Unimplemented system register %s read.\n",
461 miscRegName[misc_reg]);
462 }
463#endif
464
465 switch (unflattenMiscReg(misc_reg)) {
466 case MISCREG_HCR:
467 {
468 if (!haveVirtualization)
469 return 0;
470 else
471 return readMiscRegNoEffect(MISCREG_HCR);
472 }
473 case MISCREG_CPACR:
474 {
475 const uint32_t ones = (uint32_t)(-1);
476 CPACR cpacrMask = 0;
477 // Only cp10, cp11, and ase are implemented, nothing else should
478 // be readable? (straight copy from the write code)
479 cpacrMask.cp10 = ones;
480 cpacrMask.cp11 = ones;
481 cpacrMask.asedis = ones;
482
483 // Security Extensions may limit the readability of CPACR
484 if (haveSecurity) {
485 scr = readMiscRegNoEffect(MISCREG_SCR);
486 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
487 if (scr.ns && (cpsr.mode != MODE_MON)) {
488 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
489 // NB: Skipping the full loop, here
490 if (!nsacr.cp10) cpacrMask.cp10 = 0;
491 if (!nsacr.cp11) cpacrMask.cp11 = 0;
492 }
493 }
494 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
495 val &= cpacrMask;
496 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
497 miscRegName[misc_reg], val);
498 return val;
499 }
500 case MISCREG_MPIDR:
501 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
502 scr = readMiscRegNoEffect(MISCREG_SCR);
503 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
504 return getMPIDR(system, tc);
505 } else {
506 return readMiscReg(MISCREG_VMPIDR, tc);
507 }
508 break;
509 case MISCREG_MPIDR_EL1:
510 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
511 return getMPIDR(system, tc) & 0xffffffff;
512 case MISCREG_VMPIDR:
513 // top bit defined as RES1
514 return readMiscRegNoEffect(misc_reg) | 0x80000000;
515 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
516 case MISCREG_REVIDR: // not implemented, so alias MIDR
517 case MISCREG_MIDR:
518 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
519 scr = readMiscRegNoEffect(MISCREG_SCR);
520 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
521 return readMiscRegNoEffect(misc_reg);
522 } else {
523 return readMiscRegNoEffect(MISCREG_VPIDR);
524 }
525 break;
526 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
527 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
528 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
529 case MISCREG_AIDR: // AUX ID set to 0
530 case MISCREG_TCMTR: // No TCM's
531 return 0;
532
533 case MISCREG_CLIDR:
534 warn_once("The clidr register always reports 0 caches.\n");
535 warn_once("clidr LoUIS field of 0b001 to match current "
536 "ARM implementations.\n");
537 return 0x00200000;
538 case MISCREG_CCSIDR:
539 warn_once("The ccsidr register isn't implemented and "
540 "always reads as 0.\n");
541 break;
542 case MISCREG_CTR:
543 {
544 //all caches have the same line size in gem5
545 //4 byte words in ARM
546 unsigned lineSizeWords =
547 tc->getSystemPtr()->cacheLineSize() / 4;
548 unsigned log2LineSizeWords = 0;
549
550 while (lineSizeWords >>= 1) {
551 ++log2LineSizeWords;
552 }
553
554 CTR ctr = 0;
555 //log2 of minimun i-cache line size (words)
556 ctr.iCacheLineSize = log2LineSizeWords;
557 //b11 - gem5 uses pipt
558 ctr.l1IndexPolicy = 0x3;
559 //log2 of minimum d-cache line size (words)
560 ctr.dCacheLineSize = log2LineSizeWords;
561 //log2 of max reservation size (words)
562 ctr.erg = log2LineSizeWords;
563 //log2 of max writeback size (words)
564 ctr.cwg = log2LineSizeWords;
565 //b100 - gem5 format is ARMv7
566 ctr.format = 0x4;
567
568 return ctr;
569 }
570 case MISCREG_ACTLR:
571 warn("Not doing anything for miscreg ACTLR\n");
572 break;
573
574 case MISCREG_PMXEVTYPER_PMCCFILTR:
575 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
576 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
577 case MISCREG_PMCR ... MISCREG_PMOVSSET:
578 return pmu->readMiscReg(misc_reg);
579
580 case MISCREG_CPSR_Q:
581 panic("shouldn't be reading this register seperately\n");
582 case MISCREG_FPSCR_QC:
583 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
584 case MISCREG_FPSCR_EXC:
585 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
586 case MISCREG_FPSR:
587 {
588 const uint32_t ones = (uint32_t)(-1);
589 FPSCR fpscrMask = 0;
590 fpscrMask.ioc = ones;
591 fpscrMask.dzc = ones;
592 fpscrMask.ofc = ones;
593 fpscrMask.ufc = ones;
594 fpscrMask.ixc = ones;
595 fpscrMask.idc = ones;
596 fpscrMask.qc = ones;
597 fpscrMask.v = ones;
598 fpscrMask.c = ones;
599 fpscrMask.z = ones;
600 fpscrMask.n = ones;
601 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
602 }
603 case MISCREG_FPCR:
604 {
605 const uint32_t ones = (uint32_t)(-1);
606 FPSCR fpscrMask = 0;
607 fpscrMask.ioe = ones;
608 fpscrMask.dze = ones;
609 fpscrMask.ofe = ones;
610 fpscrMask.ufe = ones;
611 fpscrMask.ixe = ones;
612 fpscrMask.ide = ones;
613 fpscrMask.len = ones;
614 fpscrMask.stride = ones;
615 fpscrMask.rMode = ones;
616 fpscrMask.fz = ones;
617 fpscrMask.dn = ones;
618 fpscrMask.ahp = ones;
619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620 }
621 case MISCREG_NZCV:
622 {
623 CPSR cpsr = 0;
624 cpsr.nz = tc->readCCReg(CCREG_NZ);
625 cpsr.c = tc->readCCReg(CCREG_C);
626 cpsr.v = tc->readCCReg(CCREG_V);
627 return cpsr;
628 }
629 case MISCREG_DAIF:
630 {
631 CPSR cpsr = 0;
632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
633 return cpsr;
634 }
635 case MISCREG_SP_EL0:
636 {
637 return tc->readIntReg(INTREG_SP0);
638 }
639 case MISCREG_SP_EL1:
640 {
641 return tc->readIntReg(INTREG_SP1);
642 }
643 case MISCREG_SP_EL2:
644 {
645 return tc->readIntReg(INTREG_SP2);
646 }
647 case MISCREG_SPSEL:
648 {
649 return miscRegs[MISCREG_CPSR] & 0x1;
650 }
651 case MISCREG_CURRENTEL:
652 {
653 return miscRegs[MISCREG_CPSR] & 0xc;
654 }
655 case MISCREG_L2CTLR:
656 {
657 // mostly unimplemented, just set NumCPUs field from sim and return
658 L2CTLR l2ctlr = 0;
659 // b00:1CPU to b11:4CPUs
660 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
661 return l2ctlr;
662 }
663 case MISCREG_DBGDIDR:
664 /* For now just implement the version number.
665 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
666 */
667 return 0x5 << 16;
668 case MISCREG_DBGDSCRint:
669 return 0;
670 case MISCREG_ISR:
671 return tc->getCpuPtr()->getInterruptController()->getISR(
672 readMiscRegNoEffect(MISCREG_HCR),
673 readMiscRegNoEffect(MISCREG_CPSR),
674 readMiscRegNoEffect(MISCREG_SCR));
675 case MISCREG_ISR_EL1:
676 return tc->getCpuPtr()->getInterruptController()->getISR(
677 readMiscRegNoEffect(MISCREG_HCR_EL2),
678 readMiscRegNoEffect(MISCREG_CPSR),
679 readMiscRegNoEffect(MISCREG_SCR_EL3));
680 case MISCREG_DCZID_EL0:
681 return 0x04; // DC ZVA clear 64-byte chunks
682 case MISCREG_HCPTR:
683 {
684 MiscReg val = readMiscRegNoEffect(misc_reg);
685 // The trap bit associated with CP14 is defined as RAZ
686 val &= ~(1 << 14);
687 // If a CP bit in NSACR is 0 then the corresponding bit in
688 // HCPTR is RAO/WI
689 bool secure_lookup = haveSecurity &&
690 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
691 readMiscRegNoEffect(MISCREG_CPSR));
692 if (!secure_lookup) {
693 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
694 val |= (mask ^ 0x7FFF) & 0xBFFF;
695 }
696 // Set the bits for unimplemented coprocessors to RAO/WI
697 val |= 0x33FF;
698 return (val);
699 }
700 case MISCREG_HDFAR: // alias for secure DFAR
701 return readMiscRegNoEffect(MISCREG_DFAR_S);
702 case MISCREG_HIFAR: // alias for secure IFAR
703 return readMiscRegNoEffect(MISCREG_IFAR_S);
704 case MISCREG_HVBAR: // bottom bits reserved
705 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
706 case MISCREG_SCTLR: // Some bits hardwired
707 // The FI field (bit 21) is common between S/NS versions of the register
708 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
709 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
710 case MISCREG_SCTLR_EL1:
711 // The FI field (bit 21) is common between S/NS versions of the register
712 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
713 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
714 case MISCREG_SCTLR_EL3:
715 // The FI field (bit 21) is common between S/NS versions of the register
716 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
717 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
718 case MISCREG_HSCTLR: // FI comes from SCTLR
719 {
720 uint32_t mask = 1 << 27;
721 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
722 (readMiscRegNoEffect(MISCREG_SCTLR) & mask);
723 }
724 case MISCREG_SCR:
725 {
726 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
727 if (cpsr.width) {
728 return readMiscRegNoEffect(MISCREG_SCR);
729 } else {
730 return readMiscRegNoEffect(MISCREG_SCR_EL3);
731 }
732 }
733 // Generic Timer registers
734 case MISCREG_CNTFRQ:
735 case MISCREG_CNTFRQ_EL0:
736 inform_once("Read CNTFREQ_EL0 frequency\n");
737 return getSystemCounter(tc)->freq();
738 case MISCREG_CNTPCT:
739 case MISCREG_CNTPCT_EL0:
740 return getSystemCounter(tc)->value();
741 case MISCREG_CNTVCT:
742 return getSystemCounter(tc)->value();
743 case MISCREG_CNTVCT_EL0:
744 return getSystemCounter(tc)->value();
745 case MISCREG_CNTP_CVAL:
746 case MISCREG_CNTP_CVAL_EL0:
747 return getArchTimer(tc, tc->cpuId())->compareValue();
748 case MISCREG_CNTP_TVAL:
749 case MISCREG_CNTP_TVAL_EL0:
750 return getArchTimer(tc, tc->cpuId())->timerValue();
751 case MISCREG_CNTP_CTL:
752 case MISCREG_CNTP_CTL_EL0:
753 return getArchTimer(tc, tc->cpuId())->control();
754 // PL1 phys. timer, secure
755 // AArch64
756 // case MISCREG_CNTPS_CVAL_EL1:
757 // case MISCREG_CNTPS_TVAL_EL1:
758 // case MISCREG_CNTPS_CTL_EL1:
759 // PL2 phys. timer, non-secure
760 // AArch32
761 // case MISCREG_CNTHCTL:
762 // case MISCREG_CNTHP_CVAL:
763 // case MISCREG_CNTHP_TVAL:
764 // case MISCREG_CNTHP_CTL:
765 // AArch64
766 // case MISCREG_CNTHCTL_EL2:
767 // case MISCREG_CNTHP_CVAL_EL2:
768 // case MISCREG_CNTHP_TVAL_EL2:
769 // case MISCREG_CNTHP_CTL_EL2:
770 // Virtual timer
771 // AArch32
772 // case MISCREG_CNTV_CVAL:
773 // case MISCREG_CNTV_TVAL:
774 // case MISCREG_CNTV_CTL:
775 // AArch64
776 // case MISCREG_CNTV_CVAL_EL2:
777 // case MISCREG_CNTV_TVAL_EL2:
778 // case MISCREG_CNTV_CTL_EL2:
779 default:
780 break;
781
782 }
783 return readMiscRegNoEffect(misc_reg);
784}
785
786void
787ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
788{
789 assert(misc_reg < NumMiscRegs);
790
791 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
792 // registers are left unchanged
793
794 int flat_idx2 = lookUpMiscReg[flat_idx].upper;
795
796 if (flat_idx2 > 0) {
797 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
798 miscRegs[flat_idx2] = bits(val, 63, 32);
799 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
800 misc_reg, flat_idx, flat_idx2, val);
801 } else {
802 if (flat_idx == MISCREG_SPSR)
803 flat_idx = flattenMiscIndex(MISCREG_SPSR);
804 else if (flat_idx == MISCREG_SCTLR_EL1)
805 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
806 else
807 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
808 lookUpMiscReg[flat_idx].lower : flat_idx;
809 miscRegs[flat_idx] = val;
810 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
811 misc_reg, flat_idx, val);
812 }
813}
814
815void
816ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
817{
818
819 MiscReg newVal = val;
820 int x;
821 bool secure_lookup;
822 bool hyp;
823 System *sys;
824 ThreadContext *oc;
825 uint8_t target_el;
826 uint16_t asid;
827 SCR scr;
828
829 if (misc_reg == MISCREG_CPSR) {
830 updateRegMap(val);
831
832
833 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
834 int old_mode = old_cpsr.mode;
835 CPSR cpsr = val;
836 if (old_mode != cpsr.mode) {
837 tc->getITBPtr()->invalidateMiscReg();
838 tc->getDTBPtr()->invalidateMiscReg();
839 }
840
841 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
842 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
843 PCState pc = tc->pcState();
844 pc.nextThumb(cpsr.t);
845 pc.nextJazelle(cpsr.j);
846
847 // Follow slightly different semantics if a CheckerCPU object
848 // is connected
849 CheckerCPU *checker = tc->getCheckerCpuPtr();
850 if (checker) {
851 tc->pcStateNoRecord(pc);
852 } else {
853 tc->pcState(pc);
854 }
855 } else {
856#ifndef NDEBUG
857 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
858 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
859 warn("Unimplemented system register %s write with %#x.\n",
860 miscRegName[misc_reg], val);
861 else
862 panic("Unimplemented system register %s write with %#x.\n",
863 miscRegName[misc_reg], val);
864 }
865#endif
866 switch (unflattenMiscReg(misc_reg)) {
867 case MISCREG_CPACR:
868 {
869
870 const uint32_t ones = (uint32_t)(-1);
871 CPACR cpacrMask = 0;
872 // Only cp10, cp11, and ase are implemented, nothing else should
873 // be writable
874 cpacrMask.cp10 = ones;
875 cpacrMask.cp11 = ones;
876 cpacrMask.asedis = ones;
877
878 // Security Extensions may limit the writability of CPACR
879 if (haveSecurity) {
880 scr = readMiscRegNoEffect(MISCREG_SCR);
881 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
882 if (scr.ns && (cpsr.mode != MODE_MON)) {
883 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
884 // NB: Skipping the full loop, here
885 if (!nsacr.cp10) cpacrMask.cp10 = 0;
886 if (!nsacr.cp11) cpacrMask.cp11 = 0;
887 }
888 }
889
890 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
891 newVal &= cpacrMask;
892 newVal |= old_val & ~cpacrMask;
893 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
894 miscRegName[misc_reg], newVal);
895 }
896 break;
897 case MISCREG_CPACR_EL1:
898 {
899 const uint32_t ones = (uint32_t)(-1);
900 CPACR cpacrMask = 0;
901 cpacrMask.tta = ones;
902 cpacrMask.fpen = ones;
903 newVal &= cpacrMask;
904 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
905 miscRegName[misc_reg], newVal);
906 }
907 break;
908 case MISCREG_CPTR_EL2:
909 {
910 const uint32_t ones = (uint32_t)(-1);
911 CPTR cptrMask = 0;
912 cptrMask.tcpac = ones;
913 cptrMask.tta = ones;
914 cptrMask.tfp = ones;
915 newVal &= cptrMask;
916 cptrMask = 0;
917 cptrMask.res1_13_12_el2 = ones;
918 cptrMask.res1_9_0_el2 = ones;
919 newVal |= cptrMask;
920 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
921 miscRegName[misc_reg], newVal);
922 }
923 break;
924 case MISCREG_CPTR_EL3:
925 {
926 const uint32_t ones = (uint32_t)(-1);
927 CPTR cptrMask = 0;
928 cptrMask.tcpac = ones;
929 cptrMask.tta = ones;
930 cptrMask.tfp = ones;
931 newVal &= cptrMask;
932 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
933 miscRegName[misc_reg], newVal);
934 }
935 break;
936 case MISCREG_CSSELR:
937 warn_once("The csselr register isn't implemented.\n");
938 return;
939
940 case MISCREG_DC_ZVA_Xt:
941 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
942 return;
943
944 case MISCREG_FPSCR:
945 {
946 const uint32_t ones = (uint32_t)(-1);
947 FPSCR fpscrMask = 0;
948 fpscrMask.ioc = ones;
949 fpscrMask.dzc = ones;
950 fpscrMask.ofc = ones;
951 fpscrMask.ufc = ones;
952 fpscrMask.ixc = ones;
953 fpscrMask.idc = ones;
954 fpscrMask.ioe = ones;
955 fpscrMask.dze = ones;
956 fpscrMask.ofe = ones;
957 fpscrMask.ufe = ones;
958 fpscrMask.ixe = ones;
959 fpscrMask.ide = ones;
960 fpscrMask.len = ones;
961 fpscrMask.stride = ones;
962 fpscrMask.rMode = ones;
963 fpscrMask.fz = ones;
964 fpscrMask.dn = ones;
965 fpscrMask.ahp = ones;
966 fpscrMask.qc = ones;
967 fpscrMask.v = ones;
968 fpscrMask.c = ones;
969 fpscrMask.z = ones;
970 fpscrMask.n = ones;
971 newVal = (newVal & (uint32_t)fpscrMask) |
972 (readMiscRegNoEffect(MISCREG_FPSCR) &
973 ~(uint32_t)fpscrMask);
974 tc->getDecoderPtr()->setContext(newVal);
975 }
976 break;
977 case MISCREG_FPSR:
978 {
979 const uint32_t ones = (uint32_t)(-1);
980 FPSCR fpscrMask = 0;
981 fpscrMask.ioc = ones;
982 fpscrMask.dzc = ones;
983 fpscrMask.ofc = ones;
984 fpscrMask.ufc = ones;
985 fpscrMask.ixc = ones;
986 fpscrMask.idc = ones;
987 fpscrMask.qc = ones;
988 fpscrMask.v = ones;
989 fpscrMask.c = ones;
990 fpscrMask.z = ones;
991 fpscrMask.n = ones;
992 newVal = (newVal & (uint32_t)fpscrMask) |
993 (readMiscRegNoEffect(MISCREG_FPSCR) &
994 ~(uint32_t)fpscrMask);
995 misc_reg = MISCREG_FPSCR;
996 }
997 break;
998 case MISCREG_FPCR:
999 {
1000 const uint32_t ones = (uint32_t)(-1);
1001 FPSCR fpscrMask = 0;
1002 fpscrMask.ioe = ones;
1003 fpscrMask.dze = ones;
1004 fpscrMask.ofe = ones;
1005 fpscrMask.ufe = ones;
1006 fpscrMask.ixe = ones;
1007 fpscrMask.ide = ones;
1008 fpscrMask.len = ones;
1009 fpscrMask.stride = ones;
1010 fpscrMask.rMode = ones;
1011 fpscrMask.fz = ones;
1012 fpscrMask.dn = ones;
1013 fpscrMask.ahp = ones;
1014 newVal = (newVal & (uint32_t)fpscrMask) |
1015 (readMiscRegNoEffect(MISCREG_FPSCR) &
1016 ~(uint32_t)fpscrMask);
1017 misc_reg = MISCREG_FPSCR;
1018 }
1019 break;
1020 case MISCREG_CPSR_Q:
1021 {
1022 assert(!(newVal & ~CpsrMaskQ));
1023 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1024 misc_reg = MISCREG_CPSR;
1025 }
1026 break;
1027 case MISCREG_FPSCR_QC:
1028 {
1029 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1030 (newVal & FpscrQcMask);
1031 misc_reg = MISCREG_FPSCR;
1032 }
1033 break;
1034 case MISCREG_FPSCR_EXC:
1035 {
1036 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1037 (newVal & FpscrExcMask);
1038 misc_reg = MISCREG_FPSCR;
1039 }
1040 break;
1041 case MISCREG_FPEXC:
1042 {
1043 // vfpv3 architecture, section B.6.1 of DDI04068
1044 // bit 29 - valid only if fpexc[31] is 0
1045 const uint32_t fpexcMask = 0x60000000;
1046 newVal = (newVal & fpexcMask) |
1047 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1048 }
1049 break;
1050 case MISCREG_HCR:
1051 {
1052 if (!haveVirtualization)
1053 return;
1054 }
1055 break;
1056 case MISCREG_IFSR:
1057 {
1058 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1059 const uint32_t ifsrMask =
1060 mask(31, 13) | mask(11, 11) | mask(8, 6);
1061 newVal = newVal & ~ifsrMask;
1062 }
1063 break;
1064 case MISCREG_DFSR:
1065 {
1066 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1067 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1068 newVal = newVal & ~dfsrMask;
1069 }
1070 break;
1071 case MISCREG_AMAIR0:
1072 case MISCREG_AMAIR1:
1073 {
1074 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1075 // Valid only with LPAE
1076 if (!haveLPAE)
1077 return;
1078 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1079 }
1080 break;
1081 case MISCREG_SCR:
1082 tc->getITBPtr()->invalidateMiscReg();
1083 tc->getDTBPtr()->invalidateMiscReg();
1084 break;
1085 case MISCREG_SCTLR:
1086 {
1087 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1088 MiscRegIndex sctlr_idx;
1089 scr = readMiscRegNoEffect(MISCREG_SCR);
1090 if (haveSecurity && !scr.ns) {
1091 sctlr_idx = MISCREG_SCTLR_S;
1092 } else {
1093 sctlr_idx = MISCREG_SCTLR_NS;
1094 // The FI field (bit 21) is common between S/NS versions
1095 // of the register, we store this in the secure copy of
1096 // the reg
1097 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21);
1098 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1099 }
1100 SCTLR sctlr = miscRegs[sctlr_idx];
1101 SCTLR new_sctlr = newVal;
1102 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1103 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1104 tc->getITBPtr()->invalidateMiscReg();
1105 tc->getDTBPtr()->invalidateMiscReg();
1106
1107 if (new_sctlr.c)
1108 updateBootUncacheable(sctlr_idx, tc);
1109 return;
1110 }
1111 case MISCREG_MIDR:
1112 case MISCREG_ID_PFR0:
1113 case MISCREG_ID_PFR1:
1114 case MISCREG_ID_DFR0:
1115 case MISCREG_ID_MMFR0:
1116 case MISCREG_ID_MMFR1:
1117 case MISCREG_ID_MMFR2:
1118 case MISCREG_ID_MMFR3:
1119 case MISCREG_ID_ISAR0:
1120 case MISCREG_ID_ISAR1:
1121 case MISCREG_ID_ISAR2:
1122 case MISCREG_ID_ISAR3:
1123 case MISCREG_ID_ISAR4:
1124 case MISCREG_ID_ISAR5:
1125
1126 case MISCREG_MPIDR:
1127 case MISCREG_FPSID:
1128 case MISCREG_TLBTR:
1129 case MISCREG_MVFR0:
1130 case MISCREG_MVFR1:
1131
1132 case MISCREG_ID_AA64AFR0_EL1:
1133 case MISCREG_ID_AA64AFR1_EL1:
1134 case MISCREG_ID_AA64DFR0_EL1:
1135 case MISCREG_ID_AA64DFR1_EL1:
1136 case MISCREG_ID_AA64ISAR0_EL1:
1137 case MISCREG_ID_AA64ISAR1_EL1:
1138 case MISCREG_ID_AA64MMFR0_EL1:
1139 case MISCREG_ID_AA64MMFR1_EL1:
1140 case MISCREG_ID_AA64PFR0_EL1:
1141 case MISCREG_ID_AA64PFR1_EL1:
1142 // ID registers are constants.
1143 return;
1144
1145 // TLBI all entries, EL0&1 inner sharable (ignored)
1146 case MISCREG_TLBIALLIS:
1147 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1148 assert32(tc);
1149 target_el = 1; // el 0 and 1 are handled together
1150 scr = readMiscReg(MISCREG_SCR, tc);
1151 secure_lookup = haveSecurity && !scr.ns;
1152 sys = tc->getSystemPtr();
1153 for (x = 0; x < sys->numContexts(); x++) {
1154 oc = sys->getThreadContext(x);
1155 assert(oc->getITBPtr() && oc->getDTBPtr());
1156 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1157 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1158
1159 // If CheckerCPU is connected, need to notify it of a flush
1160 CheckerCPU *checker = oc->getCheckerCpuPtr();
1161 if (checker) {
1162 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1163 target_el);
1164 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1165 target_el);
1166 }
1167 }
1168 return;
1169 // TLBI all entries, EL0&1, instruction side
1170 case MISCREG_ITLBIALL:
1171 assert32(tc);
1172 target_el = 1; // el 0 and 1 are handled together
1173 scr = readMiscReg(MISCREG_SCR, tc);
1174 secure_lookup = haveSecurity && !scr.ns;
1175 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1176 return;
1177 // TLBI all entries, EL0&1, data side
1178 case MISCREG_DTLBIALL:
1179 assert32(tc);
1180 target_el = 1; // el 0 and 1 are handled together
1181 scr = readMiscReg(MISCREG_SCR, tc);
1182 secure_lookup = haveSecurity && !scr.ns;
1183 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1184 return;
1185 // TLBI based on VA, EL0&1 inner sharable (ignored)
1186 case MISCREG_TLBIMVAIS:
1187 case MISCREG_TLBIMVA:
1188 assert32(tc);
1189 target_el = 1; // el 0 and 1 are handled together
1190 scr = readMiscReg(MISCREG_SCR, tc);
1191 secure_lookup = haveSecurity && !scr.ns;
1192 sys = tc->getSystemPtr();
1193 for (x = 0; x < sys->numContexts(); x++) {
1194 oc = sys->getThreadContext(x);
1195 assert(oc->getITBPtr() && oc->getDTBPtr());
1196 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1197 bits(newVal, 7,0),
1198 secure_lookup, target_el);
1199 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1200 bits(newVal, 7,0),
1201 secure_lookup, target_el);
1202
1203 CheckerCPU *checker = oc->getCheckerCpuPtr();
1204 if (checker) {
1205 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1206 bits(newVal, 7,0), secure_lookup, target_el);
1207 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1208 bits(newVal, 7,0), secure_lookup, target_el);
1209 }
1210 }
1211 return;
1212 // TLBI by ASID, EL0&1, inner sharable
1213 case MISCREG_TLBIASIDIS:
1214 case MISCREG_TLBIASID:
1215 assert32(tc);
1216 target_el = 1; // el 0 and 1 are handled together
1217 scr = readMiscReg(MISCREG_SCR, tc);
1218 secure_lookup = haveSecurity && !scr.ns;
1219 sys = tc->getSystemPtr();
1220 for (x = 0; x < sys->numContexts(); x++) {
1221 oc = sys->getThreadContext(x);
1222 assert(oc->getITBPtr() && oc->getDTBPtr());
1223 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1224 secure_lookup, target_el);
1225 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1226 secure_lookup, target_el);
1227 CheckerCPU *checker = oc->getCheckerCpuPtr();
1228 if (checker) {
1229 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1230 secure_lookup, target_el);
1231 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1232 secure_lookup, target_el);
1233 }
1234 }
1235 return;
1236 // TLBI by address, EL0&1, inner sharable (ignored)
1237 case MISCREG_TLBIMVAAIS:
1238 case MISCREG_TLBIMVAA:
1239 assert32(tc);
1240 target_el = 1; // el 0 and 1 are handled together
1241 scr = readMiscReg(MISCREG_SCR, tc);
1242 secure_lookup = haveSecurity && !scr.ns;
1243 hyp = 0;
1244 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1245 return;
1246 // TLBI by address, EL2, hypervisor mode
1247 case MISCREG_TLBIMVAH:
1248 case MISCREG_TLBIMVAHIS:
1249 assert32(tc);
1250 target_el = 1; // aarch32, use hyp bit
1251 scr = readMiscReg(MISCREG_SCR, tc);
1252 secure_lookup = haveSecurity && !scr.ns;
1253 hyp = 1;
1254 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1255 return;
1256 // TLBI by address and asid, EL0&1, instruction side only
1257 case MISCREG_ITLBIMVA:
1258 assert32(tc);
1259 target_el = 1; // el 0 and 1 are handled together
1260 scr = readMiscReg(MISCREG_SCR, tc);
1261 secure_lookup = haveSecurity && !scr.ns;
1262 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1263 bits(newVal, 7,0), secure_lookup, target_el);
1264 return;
1265 // TLBI by address and asid, EL0&1, data side only
1266 case MISCREG_DTLBIMVA:
1267 assert32(tc);
1268 target_el = 1; // el 0 and 1 are handled together
1269 scr = readMiscReg(MISCREG_SCR, tc);
1270 secure_lookup = haveSecurity && !scr.ns;
1271 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1272 bits(newVal, 7,0), secure_lookup, target_el);
1273 return;
1274 // TLBI by ASID, EL0&1, instrution side only
1275 case MISCREG_ITLBIASID:
1276 assert32(tc);
1277 target_el = 1; // el 0 and 1 are handled together
1278 scr = readMiscReg(MISCREG_SCR, tc);
1279 secure_lookup = haveSecurity && !scr.ns;
1280 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1281 target_el);
1282 return;
1283 // TLBI by ASID EL0&1 data size only
1284 case MISCREG_DTLBIASID:
1285 assert32(tc);
1286 target_el = 1; // el 0 and 1 are handled together
1287 scr = readMiscReg(MISCREG_SCR, tc);
1288 secure_lookup = haveSecurity && !scr.ns;
1289 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1290 target_el);
1291 return;
1292 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1293 case MISCREG_TLBIALLNSNH:
1294 case MISCREG_TLBIALLNSNHIS:
1295 assert32(tc);
1296 target_el = 1; // el 0 and 1 are handled together
1297 hyp = 0;
1298 tlbiALLN(tc, hyp, target_el);
1299 return;
1300 // TLBI all entries, EL2, hyp,
1301 case MISCREG_TLBIALLH:
1302 case MISCREG_TLBIALLHIS:
1303 assert32(tc);
1304 target_el = 1; // aarch32, use hyp bit
1305 hyp = 1;
1306 tlbiALLN(tc, hyp, target_el);
1307 return;
1308 // AArch64 TLBI: invalidate all entries EL3
1309 case MISCREG_TLBI_ALLE3IS:
1310 case MISCREG_TLBI_ALLE3:
1311 assert64(tc);
1312 target_el = 3;
1313 secure_lookup = true;
1314 tlbiALL(tc, secure_lookup, target_el);
1315 return;
1316 // @todo: uncomment this to enable Virtualization
1317 // case MISCREG_TLBI_ALLE2IS:
1318 // case MISCREG_TLBI_ALLE2:
1319 // TLBI all entries, EL0&1
1320 case MISCREG_TLBI_ALLE1IS:
1321 case MISCREG_TLBI_ALLE1:
1322 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1323 case MISCREG_TLBI_VMALLE1IS:
1324 case MISCREG_TLBI_VMALLE1:
1325 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1326 case MISCREG_TLBI_VMALLS12E1IS:
1327 case MISCREG_TLBI_VMALLS12E1:
1328 // @todo: handle VMID and stage 2 to enable Virtualization
1329 assert64(tc);
1330 target_el = 1; // el 0 and 1 are handled together
1331 scr = readMiscReg(MISCREG_SCR, tc);
1332 secure_lookup = haveSecurity && !scr.ns;
1333 tlbiALL(tc, secure_lookup, target_el);
1334 return;
1335 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1336 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1337 // from the last level of translation table walks
1338 // @todo: handle VMID to enable Virtualization
1339 // TLBI all entries, EL0&1
1340 case MISCREG_TLBI_VAE3IS_Xt:
1341 case MISCREG_TLBI_VAE3_Xt:
1342 // TLBI by VA, EL3 regime stage 1, last level walk
1343 case MISCREG_TLBI_VALE3IS_Xt:
1344 case MISCREG_TLBI_VALE3_Xt:
1345 assert64(tc);
1346 target_el = 3;
1347 asid = 0xbeef; // does not matter, tlbi is global
1348 secure_lookup = true;
1349 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1350 return;
1351 // TLBI by VA, EL2
1352 case MISCREG_TLBI_VAE2IS_Xt:
1353 case MISCREG_TLBI_VAE2_Xt:
1354 // TLBI by VA, EL2, stage1 last level walk
1355 case MISCREG_TLBI_VALE2IS_Xt:
1356 case MISCREG_TLBI_VALE2_Xt:
1357 assert64(tc);
1358 target_el = 2;
1359 asid = 0xbeef; // does not matter, tlbi is global
1360 scr = readMiscReg(MISCREG_SCR, tc);
1361 secure_lookup = haveSecurity && !scr.ns;
1362 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1363 return;
1364 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1365 case MISCREG_TLBI_VAE1IS_Xt:
1366 case MISCREG_TLBI_VAE1_Xt:
1367 case MISCREG_TLBI_VALE1IS_Xt:
1368 case MISCREG_TLBI_VALE1_Xt:
1369 assert64(tc);
1370 asid = bits(newVal, 63, 48);
1371 target_el = 1; // el 0 and 1 are handled together
1372 scr = readMiscReg(MISCREG_SCR, tc);
1373 secure_lookup = haveSecurity && !scr.ns;
1374 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1375 return;
1376 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1377 // @todo: handle VMID to enable Virtualization
1378 case MISCREG_TLBI_ASIDE1IS_Xt:
1379 case MISCREG_TLBI_ASIDE1_Xt:
1380 assert64(tc);
1381 target_el = 1; // el 0 and 1 are handled together
1382 scr = readMiscReg(MISCREG_SCR, tc);
1383 secure_lookup = haveSecurity && !scr.ns;
1384 sys = tc->getSystemPtr();
1385 for (x = 0; x < sys->numContexts(); x++) {
1386 oc = sys->getThreadContext(x);
1387 assert(oc->getITBPtr() && oc->getDTBPtr());
1388 asid = bits(newVal, 63, 48);
1389 if (haveLargeAsid64)
1390 asid &= mask(8);
1391 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1392 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1393 CheckerCPU *checker = oc->getCheckerCpuPtr();
1394 if (checker) {
1395 checker->getITBPtr()->flushAsid(asid,
1396 secure_lookup, target_el);
1397 checker->getDTBPtr()->flushAsid(asid,
1398 secure_lookup, target_el);
1399 }
1400 }
1401 return;
1402 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1403 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1404 // entries from the last level of translation table walks
1405 // @todo: handle VMID to enable Virtualization
1406 case MISCREG_TLBI_VAAE1IS_Xt:
1407 case MISCREG_TLBI_VAAE1_Xt:
1408 case MISCREG_TLBI_VAALE1IS_Xt:
1409 case MISCREG_TLBI_VAALE1_Xt:
1410 assert64(tc);
1411 target_el = 1; // el 0 and 1 are handled together
1412 scr = readMiscReg(MISCREG_SCR, tc);
1413 secure_lookup = haveSecurity && !scr.ns;
1414 sys = tc->getSystemPtr();
1415 for (x = 0; x < sys->numContexts(); x++) {
1416 // @todo: extra controls on TLBI broadcast?
1417 oc = sys->getThreadContext(x);
1418 assert(oc->getITBPtr() && oc->getDTBPtr());
1419 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1420 oc->getITBPtr()->flushMva(va,
1421 secure_lookup, false, target_el);
1422 oc->getDTBPtr()->flushMva(va,
1423 secure_lookup, false, target_el);
1424
1425 CheckerCPU *checker = oc->getCheckerCpuPtr();
1426 if (checker) {
1427 checker->getITBPtr()->flushMva(va,
1428 secure_lookup, false, target_el);
1429 checker->getDTBPtr()->flushMva(va,
1430 secure_lookup, false, target_el);
1431 }
1432 }
1433 return;
1434 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1435 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1436 case MISCREG_TLBI_IPAS2LE1_Xt:
1437 case MISCREG_TLBI_IPAS2E1IS_Xt:
1438 case MISCREG_TLBI_IPAS2E1_Xt:
1439 assert64(tc);
1440 // @todo: implement these as part of Virtualization
1441 warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
1442 return;
1443 case MISCREG_ACTLR:
1444 warn("Not doing anything for write of miscreg ACTLR\n");
1445 break;
1446
1447 case MISCREG_PMXEVTYPER_PMCCFILTR:
1448 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1449 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1450 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1451 pmu->setMiscReg(misc_reg, newVal);
1452 break;
1453
1454
1455 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1456 {
1457 HSTR hstrMask = 0;
1458 hstrMask.tjdbx = 1;
1459 newVal &= ~((uint32_t) hstrMask);
1460 break;
1461 }
1462 case MISCREG_HCPTR:
1463 {
1464 // If a CP bit in NSACR is 0 then the corresponding bit in
1465 // HCPTR is RAO/WI. Same applies to NSASEDIS
1466 secure_lookup = haveSecurity &&
1467 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1468 readMiscRegNoEffect(MISCREG_CPSR));
1469 if (!secure_lookup) {
1470 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1471 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1472 newVal = (newVal & ~mask) | (oldValue & mask);
1473 }
1474 break;
1475 }
1476 case MISCREG_HDFAR: // alias for secure DFAR
1477 misc_reg = MISCREG_DFAR_S;
1478 break;
1479 case MISCREG_HIFAR: // alias for secure IFAR
1480 misc_reg = MISCREG_IFAR_S;
1481 break;
1482 case MISCREG_ATS1CPR:
1483 case MISCREG_ATS1CPW:
1484 case MISCREG_ATS1CUR:
1485 case MISCREG_ATS1CUW:
1486 case MISCREG_ATS12NSOPR:
1487 case MISCREG_ATS12NSOPW:
1488 case MISCREG_ATS12NSOUR:
1489 case MISCREG_ATS12NSOUW:
1490 case MISCREG_ATS1HR:
1491 case MISCREG_ATS1HW:
1492 {
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "cpu/checker/cpu.hh"
45#include "cpu/base.hh"
46#include "debug/Arm.hh"
47#include "debug/MiscRegs.hh"
48#include "params/ArmISA.hh"
49#include "sim/faults.hh"
50#include "sim/stat_control.hh"
51#include "sim/system.hh"
52
53namespace ArmISA
54{
55
56
57/**
58 * Some registers aliase with others, and therefore need to be translated.
59 * For each entry:
60 * The first value is the misc register that is to be looked up
61 * the second value is the lower part of the translation
62 * the third the upper part
63 */
64const struct ISA::MiscRegInitializerEntry
65 ISA::MiscRegSwitch[miscRegTranslateMax] = {
66 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
67 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
68 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
69 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
70 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
71 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
72 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
73 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
74 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
75 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
76 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
77 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
78 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
79 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
80 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
81 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
82 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
83 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
84 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
85 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
86 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
87 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
88 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
89 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
90 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
91 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
92 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
93 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
94 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
95 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
96 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
97 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
98 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
99 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
100 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
101 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
102 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
103 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
104 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
105 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
106 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
107 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
108 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
109 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
110 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
111 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
112 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
113 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
114 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
115 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
116 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
117 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
118 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
119 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
120 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
121 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
122 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
123};
124
125
126ISA::ISA(Params *p)
127 : SimObject(p),
128 system(NULL),
129 pmu(p->pmu),
130 lookUpMiscReg(NUM_MISCREGS, {0,0})
131{
132 SCTLR sctlr;
133 sctlr = 0;
134 miscRegs[MISCREG_SCTLR_RST] = sctlr;
135
136 // Hook up a dummy device if we haven't been configured with a
137 // real PMU. By using a dummy device, we don't need to check that
138 // the PMU exist every time we try to access a PMU register.
139 if (!pmu)
140 pmu = &dummyDevice;
141
142 // Give all ISA devices a pointer to this ISA
143 pmu->setISA(this);
144
145 system = dynamic_cast<ArmSystem *>(p->system);
146 DPRINTFN("ISA system set to: %p %p\n", system, p->system);
147
148 // Cache system-level properties
149 if (FullSystem && system) {
150 haveSecurity = system->haveSecurity();
151 haveLPAE = system->haveLPAE();
152 haveVirtualization = system->haveVirtualization();
153 haveLargeAsid64 = system->haveLargeAsid64();
154 physAddrRange64 = system->physAddrRange64();
155 } else {
156 haveSecurity = haveLPAE = haveVirtualization = false;
157 haveLargeAsid64 = false;
158 physAddrRange64 = 32; // dummy value
159 }
160
161 /** Fill in the miscReg translation table */
162 for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
163 struct MiscRegLUTEntry new_entry;
164
165 uint32_t select = MiscRegSwitch[i].index;
166 new_entry = MiscRegSwitch[i].entry;
167
168 lookUpMiscReg[select] = new_entry;
169 }
170
171 preUnflattenMiscReg();
172
173 clear();
174}
175
176const ArmISAParams *
177ISA::params() const
178{
179 return dynamic_cast<const Params *>(_params);
180}
181
182void
183ISA::clear()
184{
185 const Params *p(params());
186
187 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
188 memset(miscRegs, 0, sizeof(miscRegs));
189
190 // Initialize configurable default values
191 miscRegs[MISCREG_MIDR] = p->midr;
192 miscRegs[MISCREG_MIDR_EL1] = p->midr;
193 miscRegs[MISCREG_VPIDR] = p->midr;
194
195 if (FullSystem && system->highestELIs64()) {
196 // Initialize AArch64 state
197 clear64(p);
198 return;
199 }
200
201 // Initialize AArch32 state...
202
203 CPSR cpsr = 0;
204 cpsr.mode = MODE_USER;
205 miscRegs[MISCREG_CPSR] = cpsr;
206 updateRegMap(cpsr);
207
208 SCTLR sctlr = 0;
209 sctlr.te = (bool) sctlr_rst.te;
210 sctlr.nmfi = (bool) sctlr_rst.nmfi;
211 sctlr.v = (bool) sctlr_rst.v;
212 sctlr.u = 1;
213 sctlr.xp = 1;
214 sctlr.rao2 = 1;
215 sctlr.rao3 = 1;
216 sctlr.rao4 = 0xf; // SCTLR[6:3]
217 sctlr.uci = 1;
218 sctlr.dze = 1;
219 miscRegs[MISCREG_SCTLR_NS] = sctlr;
220 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
221 miscRegs[MISCREG_HCPTR] = 0;
222
223 // Start with an event in the mailbox
224 miscRegs[MISCREG_SEV_MAILBOX] = 1;
225
226 // Separate Instruction and Data TLBs
227 miscRegs[MISCREG_TLBTR] = 1;
228
229 MVFR0 mvfr0 = 0;
230 mvfr0.advSimdRegisters = 2;
231 mvfr0.singlePrecision = 2;
232 mvfr0.doublePrecision = 2;
233 mvfr0.vfpExceptionTrapping = 0;
234 mvfr0.divide = 1;
235 mvfr0.squareRoot = 1;
236 mvfr0.shortVectors = 1;
237 mvfr0.roundingModes = 1;
238 miscRegs[MISCREG_MVFR0] = mvfr0;
239
240 MVFR1 mvfr1 = 0;
241 mvfr1.flushToZero = 1;
242 mvfr1.defaultNaN = 1;
243 mvfr1.advSimdLoadStore = 1;
244 mvfr1.advSimdInteger = 1;
245 mvfr1.advSimdSinglePrecision = 1;
246 mvfr1.advSimdHalfPrecision = 1;
247 mvfr1.vfpHalfPrecision = 1;
248 miscRegs[MISCREG_MVFR1] = mvfr1;
249
250 // Reset values of PRRR and NMRR are implementation dependent
251
252 // @todo: PRRR and NMRR in secure state?
253 miscRegs[MISCREG_PRRR_NS] =
254 (1 << 19) | // 19
255 (0 << 18) | // 18
256 (0 << 17) | // 17
257 (1 << 16) | // 16
258 (2 << 14) | // 15:14
259 (0 << 12) | // 13:12
260 (2 << 10) | // 11:10
261 (2 << 8) | // 9:8
262 (2 << 6) | // 7:6
263 (2 << 4) | // 5:4
264 (1 << 2) | // 3:2
265 0; // 1:0
266 miscRegs[MISCREG_NMRR_NS] =
267 (1 << 30) | // 31:30
268 (0 << 26) | // 27:26
269 (0 << 24) | // 25:24
270 (3 << 22) | // 23:22
271 (2 << 20) | // 21:20
272 (0 << 18) | // 19:18
273 (0 << 16) | // 17:16
274 (1 << 14) | // 15:14
275 (0 << 12) | // 13:12
276 (2 << 10) | // 11:10
277 (0 << 8) | // 9:8
278 (3 << 6) | // 7:6
279 (2 << 4) | // 5:4
280 (0 << 2) | // 3:2
281 0; // 1:0
282
283 miscRegs[MISCREG_CPACR] = 0;
284
285
286 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
287 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
288
289 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
290 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
291 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
292 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
293
294 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
295 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
296 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
297 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
298 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
299 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
300
301 miscRegs[MISCREG_FPSID] = p->fpsid;
302
303 if (haveLPAE) {
304 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
305 ttbcr.eae = 0;
306 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
307 // Enforce consistency with system-level settings
308 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
309 }
310
311 if (haveSecurity) {
312 miscRegs[MISCREG_SCTLR_S] = sctlr;
313 miscRegs[MISCREG_SCR] = 0;
314 miscRegs[MISCREG_VBAR_S] = 0;
315 } else {
316 // we're always non-secure
317 miscRegs[MISCREG_SCR] = 1;
318 }
319
320 //XXX We need to initialize the rest of the state.
321}
322
323void
324ISA::clear64(const ArmISAParams *p)
325{
326 CPSR cpsr = 0;
327 Addr rvbar = system->resetAddr64();
328 switch (system->highestEL()) {
329 // Set initial EL to highest implemented EL using associated stack
330 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
331 // value
332 case EL3:
333 cpsr.mode = MODE_EL3H;
334 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
335 break;
336 case EL2:
337 cpsr.mode = MODE_EL2H;
338 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
339 break;
340 case EL1:
341 cpsr.mode = MODE_EL1H;
342 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
343 break;
344 default:
345 panic("Invalid highest implemented exception level");
346 break;
347 }
348
349 // Initialize rest of CPSR
350 cpsr.daif = 0xf; // Mask all interrupts
351 cpsr.ss = 0;
352 cpsr.il = 0;
353 miscRegs[MISCREG_CPSR] = cpsr;
354 updateRegMap(cpsr);
355
356 // Initialize other control registers
357 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
358 if (haveSecurity) {
359 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
360 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
361 // @todo: uncomment this to enable Virtualization
362 // } else if (haveVirtualization) {
363 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
364 } else {
365 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
366 // Always non-secure
367 miscRegs[MISCREG_SCR_EL3] = 1;
368 }
369
370 // Initialize configurable id registers
371 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
372 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
373 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
374 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
375 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
376
377 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
378 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
379 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
380 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
381 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
382 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
383 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
384
385 miscRegs[MISCREG_ID_DFR0_EL1] =
386 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
387
388 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
389
390 // Enforce consistency with system-level settings...
391
392 // EL3
393 // (no AArch32/64 interprocessing support for now)
394 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
395 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
396 haveSecurity ? 0x1 : 0x0);
397 // EL2
398 // (no AArch32/64 interprocessing support for now)
399 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
400 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
401 haveVirtualization ? 0x1 : 0x0);
402 // Large ASID support
403 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
404 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
405 haveLargeAsid64 ? 0x2 : 0x0);
406 // Physical address size
407 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
408 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
409 encodePhysAddrRange64(physAddrRange64));
410}
411
412MiscReg
413ISA::readMiscRegNoEffect(int misc_reg) const
414{
415 assert(misc_reg < NumMiscRegs);
416
417 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
418 // registers are left unchanged
419 MiscReg val;
420
421 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
422 || flat_idx == MISCREG_SCTLR_EL1) {
423 if (flat_idx == MISCREG_SPSR)
424 flat_idx = flattenMiscIndex(MISCREG_SPSR);
425 if (flat_idx == MISCREG_SCTLR_EL1)
426 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
427 val = miscRegs[flat_idx];
428 } else
429 if (lookUpMiscReg[flat_idx].upper > 0)
430 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
431 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
432 else
433 val = miscRegs[lookUpMiscReg[flat_idx].lower];
434
435 return val;
436}
437
438
439MiscReg
440ISA::readMiscReg(int misc_reg, ThreadContext *tc)
441{
442 CPSR cpsr = 0;
443 PCState pc = 0;
444 SCR scr = 0;
445
446 if (misc_reg == MISCREG_CPSR) {
447 cpsr = miscRegs[misc_reg];
448 pc = tc->pcState();
449 cpsr.j = pc.jazelle() ? 1 : 0;
450 cpsr.t = pc.thumb() ? 1 : 0;
451 return cpsr;
452 }
453
454#ifndef NDEBUG
455 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
456 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
457 warn("Unimplemented system register %s read.\n",
458 miscRegName[misc_reg]);
459 else
460 panic("Unimplemented system register %s read.\n",
461 miscRegName[misc_reg]);
462 }
463#endif
464
465 switch (unflattenMiscReg(misc_reg)) {
466 case MISCREG_HCR:
467 {
468 if (!haveVirtualization)
469 return 0;
470 else
471 return readMiscRegNoEffect(MISCREG_HCR);
472 }
473 case MISCREG_CPACR:
474 {
475 const uint32_t ones = (uint32_t)(-1);
476 CPACR cpacrMask = 0;
477 // Only cp10, cp11, and ase are implemented, nothing else should
478 // be readable? (straight copy from the write code)
479 cpacrMask.cp10 = ones;
480 cpacrMask.cp11 = ones;
481 cpacrMask.asedis = ones;
482
483 // Security Extensions may limit the readability of CPACR
484 if (haveSecurity) {
485 scr = readMiscRegNoEffect(MISCREG_SCR);
486 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
487 if (scr.ns && (cpsr.mode != MODE_MON)) {
488 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
489 // NB: Skipping the full loop, here
490 if (!nsacr.cp10) cpacrMask.cp10 = 0;
491 if (!nsacr.cp11) cpacrMask.cp11 = 0;
492 }
493 }
494 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
495 val &= cpacrMask;
496 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
497 miscRegName[misc_reg], val);
498 return val;
499 }
500 case MISCREG_MPIDR:
501 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
502 scr = readMiscRegNoEffect(MISCREG_SCR);
503 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
504 return getMPIDR(system, tc);
505 } else {
506 return readMiscReg(MISCREG_VMPIDR, tc);
507 }
508 break;
509 case MISCREG_MPIDR_EL1:
510 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
511 return getMPIDR(system, tc) & 0xffffffff;
512 case MISCREG_VMPIDR:
513 // top bit defined as RES1
514 return readMiscRegNoEffect(misc_reg) | 0x80000000;
515 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
516 case MISCREG_REVIDR: // not implemented, so alias MIDR
517 case MISCREG_MIDR:
518 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
519 scr = readMiscRegNoEffect(MISCREG_SCR);
520 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
521 return readMiscRegNoEffect(misc_reg);
522 } else {
523 return readMiscRegNoEffect(MISCREG_VPIDR);
524 }
525 break;
526 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
527 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
528 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
529 case MISCREG_AIDR: // AUX ID set to 0
530 case MISCREG_TCMTR: // No TCM's
531 return 0;
532
533 case MISCREG_CLIDR:
534 warn_once("The clidr register always reports 0 caches.\n");
535 warn_once("clidr LoUIS field of 0b001 to match current "
536 "ARM implementations.\n");
537 return 0x00200000;
538 case MISCREG_CCSIDR:
539 warn_once("The ccsidr register isn't implemented and "
540 "always reads as 0.\n");
541 break;
542 case MISCREG_CTR:
543 {
544 //all caches have the same line size in gem5
545 //4 byte words in ARM
546 unsigned lineSizeWords =
547 tc->getSystemPtr()->cacheLineSize() / 4;
548 unsigned log2LineSizeWords = 0;
549
550 while (lineSizeWords >>= 1) {
551 ++log2LineSizeWords;
552 }
553
554 CTR ctr = 0;
555 //log2 of minimun i-cache line size (words)
556 ctr.iCacheLineSize = log2LineSizeWords;
557 //b11 - gem5 uses pipt
558 ctr.l1IndexPolicy = 0x3;
559 //log2 of minimum d-cache line size (words)
560 ctr.dCacheLineSize = log2LineSizeWords;
561 //log2 of max reservation size (words)
562 ctr.erg = log2LineSizeWords;
563 //log2 of max writeback size (words)
564 ctr.cwg = log2LineSizeWords;
565 //b100 - gem5 format is ARMv7
566 ctr.format = 0x4;
567
568 return ctr;
569 }
570 case MISCREG_ACTLR:
571 warn("Not doing anything for miscreg ACTLR\n");
572 break;
573
574 case MISCREG_PMXEVTYPER_PMCCFILTR:
575 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
576 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
577 case MISCREG_PMCR ... MISCREG_PMOVSSET:
578 return pmu->readMiscReg(misc_reg);
579
580 case MISCREG_CPSR_Q:
581 panic("shouldn't be reading this register seperately\n");
582 case MISCREG_FPSCR_QC:
583 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
584 case MISCREG_FPSCR_EXC:
585 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
586 case MISCREG_FPSR:
587 {
588 const uint32_t ones = (uint32_t)(-1);
589 FPSCR fpscrMask = 0;
590 fpscrMask.ioc = ones;
591 fpscrMask.dzc = ones;
592 fpscrMask.ofc = ones;
593 fpscrMask.ufc = ones;
594 fpscrMask.ixc = ones;
595 fpscrMask.idc = ones;
596 fpscrMask.qc = ones;
597 fpscrMask.v = ones;
598 fpscrMask.c = ones;
599 fpscrMask.z = ones;
600 fpscrMask.n = ones;
601 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
602 }
603 case MISCREG_FPCR:
604 {
605 const uint32_t ones = (uint32_t)(-1);
606 FPSCR fpscrMask = 0;
607 fpscrMask.ioe = ones;
608 fpscrMask.dze = ones;
609 fpscrMask.ofe = ones;
610 fpscrMask.ufe = ones;
611 fpscrMask.ixe = ones;
612 fpscrMask.ide = ones;
613 fpscrMask.len = ones;
614 fpscrMask.stride = ones;
615 fpscrMask.rMode = ones;
616 fpscrMask.fz = ones;
617 fpscrMask.dn = ones;
618 fpscrMask.ahp = ones;
619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
620 }
621 case MISCREG_NZCV:
622 {
623 CPSR cpsr = 0;
624 cpsr.nz = tc->readCCReg(CCREG_NZ);
625 cpsr.c = tc->readCCReg(CCREG_C);
626 cpsr.v = tc->readCCReg(CCREG_V);
627 return cpsr;
628 }
629 case MISCREG_DAIF:
630 {
631 CPSR cpsr = 0;
632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
633 return cpsr;
634 }
635 case MISCREG_SP_EL0:
636 {
637 return tc->readIntReg(INTREG_SP0);
638 }
639 case MISCREG_SP_EL1:
640 {
641 return tc->readIntReg(INTREG_SP1);
642 }
643 case MISCREG_SP_EL2:
644 {
645 return tc->readIntReg(INTREG_SP2);
646 }
647 case MISCREG_SPSEL:
648 {
649 return miscRegs[MISCREG_CPSR] & 0x1;
650 }
651 case MISCREG_CURRENTEL:
652 {
653 return miscRegs[MISCREG_CPSR] & 0xc;
654 }
655 case MISCREG_L2CTLR:
656 {
657 // mostly unimplemented, just set NumCPUs field from sim and return
658 L2CTLR l2ctlr = 0;
659 // b00:1CPU to b11:4CPUs
660 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
661 return l2ctlr;
662 }
663 case MISCREG_DBGDIDR:
664 /* For now just implement the version number.
665 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
666 */
667 return 0x5 << 16;
668 case MISCREG_DBGDSCRint:
669 return 0;
670 case MISCREG_ISR:
671 return tc->getCpuPtr()->getInterruptController()->getISR(
672 readMiscRegNoEffect(MISCREG_HCR),
673 readMiscRegNoEffect(MISCREG_CPSR),
674 readMiscRegNoEffect(MISCREG_SCR));
675 case MISCREG_ISR_EL1:
676 return tc->getCpuPtr()->getInterruptController()->getISR(
677 readMiscRegNoEffect(MISCREG_HCR_EL2),
678 readMiscRegNoEffect(MISCREG_CPSR),
679 readMiscRegNoEffect(MISCREG_SCR_EL3));
680 case MISCREG_DCZID_EL0:
681 return 0x04; // DC ZVA clear 64-byte chunks
682 case MISCREG_HCPTR:
683 {
684 MiscReg val = readMiscRegNoEffect(misc_reg);
685 // The trap bit associated with CP14 is defined as RAZ
686 val &= ~(1 << 14);
687 // If a CP bit in NSACR is 0 then the corresponding bit in
688 // HCPTR is RAO/WI
689 bool secure_lookup = haveSecurity &&
690 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
691 readMiscRegNoEffect(MISCREG_CPSR));
692 if (!secure_lookup) {
693 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
694 val |= (mask ^ 0x7FFF) & 0xBFFF;
695 }
696 // Set the bits for unimplemented coprocessors to RAO/WI
697 val |= 0x33FF;
698 return (val);
699 }
700 case MISCREG_HDFAR: // alias for secure DFAR
701 return readMiscRegNoEffect(MISCREG_DFAR_S);
702 case MISCREG_HIFAR: // alias for secure IFAR
703 return readMiscRegNoEffect(MISCREG_IFAR_S);
704 case MISCREG_HVBAR: // bottom bits reserved
705 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
706 case MISCREG_SCTLR: // Some bits hardwired
707 // The FI field (bit 21) is common between S/NS versions of the register
708 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
709 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
710 case MISCREG_SCTLR_EL1:
711 // The FI field (bit 21) is common between S/NS versions of the register
712 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
713 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
714 case MISCREG_SCTLR_EL3:
715 // The FI field (bit 21) is common between S/NS versions of the register
716 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
717 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
718 case MISCREG_HSCTLR: // FI comes from SCTLR
719 {
720 uint32_t mask = 1 << 27;
721 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
722 (readMiscRegNoEffect(MISCREG_SCTLR) & mask);
723 }
724 case MISCREG_SCR:
725 {
726 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
727 if (cpsr.width) {
728 return readMiscRegNoEffect(MISCREG_SCR);
729 } else {
730 return readMiscRegNoEffect(MISCREG_SCR_EL3);
731 }
732 }
733 // Generic Timer registers
734 case MISCREG_CNTFRQ:
735 case MISCREG_CNTFRQ_EL0:
736 inform_once("Read CNTFREQ_EL0 frequency\n");
737 return getSystemCounter(tc)->freq();
738 case MISCREG_CNTPCT:
739 case MISCREG_CNTPCT_EL0:
740 return getSystemCounter(tc)->value();
741 case MISCREG_CNTVCT:
742 return getSystemCounter(tc)->value();
743 case MISCREG_CNTVCT_EL0:
744 return getSystemCounter(tc)->value();
745 case MISCREG_CNTP_CVAL:
746 case MISCREG_CNTP_CVAL_EL0:
747 return getArchTimer(tc, tc->cpuId())->compareValue();
748 case MISCREG_CNTP_TVAL:
749 case MISCREG_CNTP_TVAL_EL0:
750 return getArchTimer(tc, tc->cpuId())->timerValue();
751 case MISCREG_CNTP_CTL:
752 case MISCREG_CNTP_CTL_EL0:
753 return getArchTimer(tc, tc->cpuId())->control();
754 // PL1 phys. timer, secure
755 // AArch64
756 // case MISCREG_CNTPS_CVAL_EL1:
757 // case MISCREG_CNTPS_TVAL_EL1:
758 // case MISCREG_CNTPS_CTL_EL1:
759 // PL2 phys. timer, non-secure
760 // AArch32
761 // case MISCREG_CNTHCTL:
762 // case MISCREG_CNTHP_CVAL:
763 // case MISCREG_CNTHP_TVAL:
764 // case MISCREG_CNTHP_CTL:
765 // AArch64
766 // case MISCREG_CNTHCTL_EL2:
767 // case MISCREG_CNTHP_CVAL_EL2:
768 // case MISCREG_CNTHP_TVAL_EL2:
769 // case MISCREG_CNTHP_CTL_EL2:
770 // Virtual timer
771 // AArch32
772 // case MISCREG_CNTV_CVAL:
773 // case MISCREG_CNTV_TVAL:
774 // case MISCREG_CNTV_CTL:
775 // AArch64
776 // case MISCREG_CNTV_CVAL_EL2:
777 // case MISCREG_CNTV_TVAL_EL2:
778 // case MISCREG_CNTV_CTL_EL2:
779 default:
780 break;
781
782 }
783 return readMiscRegNoEffect(misc_reg);
784}
785
786void
787ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
788{
789 assert(misc_reg < NumMiscRegs);
790
791 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
792 // registers are left unchanged
793
794 int flat_idx2 = lookUpMiscReg[flat_idx].upper;
795
796 if (flat_idx2 > 0) {
797 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
798 miscRegs[flat_idx2] = bits(val, 63, 32);
799 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
800 misc_reg, flat_idx, flat_idx2, val);
801 } else {
802 if (flat_idx == MISCREG_SPSR)
803 flat_idx = flattenMiscIndex(MISCREG_SPSR);
804 else if (flat_idx == MISCREG_SCTLR_EL1)
805 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
806 else
807 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
808 lookUpMiscReg[flat_idx].lower : flat_idx;
809 miscRegs[flat_idx] = val;
810 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
811 misc_reg, flat_idx, val);
812 }
813}
814
815void
816ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
817{
818
819 MiscReg newVal = val;
820 int x;
821 bool secure_lookup;
822 bool hyp;
823 System *sys;
824 ThreadContext *oc;
825 uint8_t target_el;
826 uint16_t asid;
827 SCR scr;
828
829 if (misc_reg == MISCREG_CPSR) {
830 updateRegMap(val);
831
832
833 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
834 int old_mode = old_cpsr.mode;
835 CPSR cpsr = val;
836 if (old_mode != cpsr.mode) {
837 tc->getITBPtr()->invalidateMiscReg();
838 tc->getDTBPtr()->invalidateMiscReg();
839 }
840
841 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
842 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
843 PCState pc = tc->pcState();
844 pc.nextThumb(cpsr.t);
845 pc.nextJazelle(cpsr.j);
846
847 // Follow slightly different semantics if a CheckerCPU object
848 // is connected
849 CheckerCPU *checker = tc->getCheckerCpuPtr();
850 if (checker) {
851 tc->pcStateNoRecord(pc);
852 } else {
853 tc->pcState(pc);
854 }
855 } else {
856#ifndef NDEBUG
857 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
858 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
859 warn("Unimplemented system register %s write with %#x.\n",
860 miscRegName[misc_reg], val);
861 else
862 panic("Unimplemented system register %s write with %#x.\n",
863 miscRegName[misc_reg], val);
864 }
865#endif
866 switch (unflattenMiscReg(misc_reg)) {
867 case MISCREG_CPACR:
868 {
869
870 const uint32_t ones = (uint32_t)(-1);
871 CPACR cpacrMask = 0;
872 // Only cp10, cp11, and ase are implemented, nothing else should
873 // be writable
874 cpacrMask.cp10 = ones;
875 cpacrMask.cp11 = ones;
876 cpacrMask.asedis = ones;
877
878 // Security Extensions may limit the writability of CPACR
879 if (haveSecurity) {
880 scr = readMiscRegNoEffect(MISCREG_SCR);
881 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
882 if (scr.ns && (cpsr.mode != MODE_MON)) {
883 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
884 // NB: Skipping the full loop, here
885 if (!nsacr.cp10) cpacrMask.cp10 = 0;
886 if (!nsacr.cp11) cpacrMask.cp11 = 0;
887 }
888 }
889
890 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
891 newVal &= cpacrMask;
892 newVal |= old_val & ~cpacrMask;
893 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
894 miscRegName[misc_reg], newVal);
895 }
896 break;
897 case MISCREG_CPACR_EL1:
898 {
899 const uint32_t ones = (uint32_t)(-1);
900 CPACR cpacrMask = 0;
901 cpacrMask.tta = ones;
902 cpacrMask.fpen = ones;
903 newVal &= cpacrMask;
904 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
905 miscRegName[misc_reg], newVal);
906 }
907 break;
908 case MISCREG_CPTR_EL2:
909 {
910 const uint32_t ones = (uint32_t)(-1);
911 CPTR cptrMask = 0;
912 cptrMask.tcpac = ones;
913 cptrMask.tta = ones;
914 cptrMask.tfp = ones;
915 newVal &= cptrMask;
916 cptrMask = 0;
917 cptrMask.res1_13_12_el2 = ones;
918 cptrMask.res1_9_0_el2 = ones;
919 newVal |= cptrMask;
920 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
921 miscRegName[misc_reg], newVal);
922 }
923 break;
924 case MISCREG_CPTR_EL3:
925 {
926 const uint32_t ones = (uint32_t)(-1);
927 CPTR cptrMask = 0;
928 cptrMask.tcpac = ones;
929 cptrMask.tta = ones;
930 cptrMask.tfp = ones;
931 newVal &= cptrMask;
932 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
933 miscRegName[misc_reg], newVal);
934 }
935 break;
936 case MISCREG_CSSELR:
937 warn_once("The csselr register isn't implemented.\n");
938 return;
939
940 case MISCREG_DC_ZVA_Xt:
941 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
942 return;
943
944 case MISCREG_FPSCR:
945 {
946 const uint32_t ones = (uint32_t)(-1);
947 FPSCR fpscrMask = 0;
948 fpscrMask.ioc = ones;
949 fpscrMask.dzc = ones;
950 fpscrMask.ofc = ones;
951 fpscrMask.ufc = ones;
952 fpscrMask.ixc = ones;
953 fpscrMask.idc = ones;
954 fpscrMask.ioe = ones;
955 fpscrMask.dze = ones;
956 fpscrMask.ofe = ones;
957 fpscrMask.ufe = ones;
958 fpscrMask.ixe = ones;
959 fpscrMask.ide = ones;
960 fpscrMask.len = ones;
961 fpscrMask.stride = ones;
962 fpscrMask.rMode = ones;
963 fpscrMask.fz = ones;
964 fpscrMask.dn = ones;
965 fpscrMask.ahp = ones;
966 fpscrMask.qc = ones;
967 fpscrMask.v = ones;
968 fpscrMask.c = ones;
969 fpscrMask.z = ones;
970 fpscrMask.n = ones;
971 newVal = (newVal & (uint32_t)fpscrMask) |
972 (readMiscRegNoEffect(MISCREG_FPSCR) &
973 ~(uint32_t)fpscrMask);
974 tc->getDecoderPtr()->setContext(newVal);
975 }
976 break;
977 case MISCREG_FPSR:
978 {
979 const uint32_t ones = (uint32_t)(-1);
980 FPSCR fpscrMask = 0;
981 fpscrMask.ioc = ones;
982 fpscrMask.dzc = ones;
983 fpscrMask.ofc = ones;
984 fpscrMask.ufc = ones;
985 fpscrMask.ixc = ones;
986 fpscrMask.idc = ones;
987 fpscrMask.qc = ones;
988 fpscrMask.v = ones;
989 fpscrMask.c = ones;
990 fpscrMask.z = ones;
991 fpscrMask.n = ones;
992 newVal = (newVal & (uint32_t)fpscrMask) |
993 (readMiscRegNoEffect(MISCREG_FPSCR) &
994 ~(uint32_t)fpscrMask);
995 misc_reg = MISCREG_FPSCR;
996 }
997 break;
998 case MISCREG_FPCR:
999 {
1000 const uint32_t ones = (uint32_t)(-1);
1001 FPSCR fpscrMask = 0;
1002 fpscrMask.ioe = ones;
1003 fpscrMask.dze = ones;
1004 fpscrMask.ofe = ones;
1005 fpscrMask.ufe = ones;
1006 fpscrMask.ixe = ones;
1007 fpscrMask.ide = ones;
1008 fpscrMask.len = ones;
1009 fpscrMask.stride = ones;
1010 fpscrMask.rMode = ones;
1011 fpscrMask.fz = ones;
1012 fpscrMask.dn = ones;
1013 fpscrMask.ahp = ones;
1014 newVal = (newVal & (uint32_t)fpscrMask) |
1015 (readMiscRegNoEffect(MISCREG_FPSCR) &
1016 ~(uint32_t)fpscrMask);
1017 misc_reg = MISCREG_FPSCR;
1018 }
1019 break;
1020 case MISCREG_CPSR_Q:
1021 {
1022 assert(!(newVal & ~CpsrMaskQ));
1023 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1024 misc_reg = MISCREG_CPSR;
1025 }
1026 break;
1027 case MISCREG_FPSCR_QC:
1028 {
1029 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1030 (newVal & FpscrQcMask);
1031 misc_reg = MISCREG_FPSCR;
1032 }
1033 break;
1034 case MISCREG_FPSCR_EXC:
1035 {
1036 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1037 (newVal & FpscrExcMask);
1038 misc_reg = MISCREG_FPSCR;
1039 }
1040 break;
1041 case MISCREG_FPEXC:
1042 {
1043 // vfpv3 architecture, section B.6.1 of DDI04068
1044 // bit 29 - valid only if fpexc[31] is 0
1045 const uint32_t fpexcMask = 0x60000000;
1046 newVal = (newVal & fpexcMask) |
1047 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1048 }
1049 break;
1050 case MISCREG_HCR:
1051 {
1052 if (!haveVirtualization)
1053 return;
1054 }
1055 break;
1056 case MISCREG_IFSR:
1057 {
1058 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1059 const uint32_t ifsrMask =
1060 mask(31, 13) | mask(11, 11) | mask(8, 6);
1061 newVal = newVal & ~ifsrMask;
1062 }
1063 break;
1064 case MISCREG_DFSR:
1065 {
1066 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1067 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1068 newVal = newVal & ~dfsrMask;
1069 }
1070 break;
1071 case MISCREG_AMAIR0:
1072 case MISCREG_AMAIR1:
1073 {
1074 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1075 // Valid only with LPAE
1076 if (!haveLPAE)
1077 return;
1078 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1079 }
1080 break;
1081 case MISCREG_SCR:
1082 tc->getITBPtr()->invalidateMiscReg();
1083 tc->getDTBPtr()->invalidateMiscReg();
1084 break;
1085 case MISCREG_SCTLR:
1086 {
1087 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1088 MiscRegIndex sctlr_idx;
1089 scr = readMiscRegNoEffect(MISCREG_SCR);
1090 if (haveSecurity && !scr.ns) {
1091 sctlr_idx = MISCREG_SCTLR_S;
1092 } else {
1093 sctlr_idx = MISCREG_SCTLR_NS;
1094 // The FI field (bit 21) is common between S/NS versions
1095 // of the register, we store this in the secure copy of
1096 // the reg
1097 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21);
1098 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1099 }
1100 SCTLR sctlr = miscRegs[sctlr_idx];
1101 SCTLR new_sctlr = newVal;
1102 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1103 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1104 tc->getITBPtr()->invalidateMiscReg();
1105 tc->getDTBPtr()->invalidateMiscReg();
1106
1107 if (new_sctlr.c)
1108 updateBootUncacheable(sctlr_idx, tc);
1109 return;
1110 }
1111 case MISCREG_MIDR:
1112 case MISCREG_ID_PFR0:
1113 case MISCREG_ID_PFR1:
1114 case MISCREG_ID_DFR0:
1115 case MISCREG_ID_MMFR0:
1116 case MISCREG_ID_MMFR1:
1117 case MISCREG_ID_MMFR2:
1118 case MISCREG_ID_MMFR3:
1119 case MISCREG_ID_ISAR0:
1120 case MISCREG_ID_ISAR1:
1121 case MISCREG_ID_ISAR2:
1122 case MISCREG_ID_ISAR3:
1123 case MISCREG_ID_ISAR4:
1124 case MISCREG_ID_ISAR5:
1125
1126 case MISCREG_MPIDR:
1127 case MISCREG_FPSID:
1128 case MISCREG_TLBTR:
1129 case MISCREG_MVFR0:
1130 case MISCREG_MVFR1:
1131
1132 case MISCREG_ID_AA64AFR0_EL1:
1133 case MISCREG_ID_AA64AFR1_EL1:
1134 case MISCREG_ID_AA64DFR0_EL1:
1135 case MISCREG_ID_AA64DFR1_EL1:
1136 case MISCREG_ID_AA64ISAR0_EL1:
1137 case MISCREG_ID_AA64ISAR1_EL1:
1138 case MISCREG_ID_AA64MMFR0_EL1:
1139 case MISCREG_ID_AA64MMFR1_EL1:
1140 case MISCREG_ID_AA64PFR0_EL1:
1141 case MISCREG_ID_AA64PFR1_EL1:
1142 // ID registers are constants.
1143 return;
1144
1145 // TLBI all entries, EL0&1 inner sharable (ignored)
1146 case MISCREG_TLBIALLIS:
1147 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1148 assert32(tc);
1149 target_el = 1; // el 0 and 1 are handled together
1150 scr = readMiscReg(MISCREG_SCR, tc);
1151 secure_lookup = haveSecurity && !scr.ns;
1152 sys = tc->getSystemPtr();
1153 for (x = 0; x < sys->numContexts(); x++) {
1154 oc = sys->getThreadContext(x);
1155 assert(oc->getITBPtr() && oc->getDTBPtr());
1156 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1157 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1158
1159 // If CheckerCPU is connected, need to notify it of a flush
1160 CheckerCPU *checker = oc->getCheckerCpuPtr();
1161 if (checker) {
1162 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1163 target_el);
1164 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1165 target_el);
1166 }
1167 }
1168 return;
1169 // TLBI all entries, EL0&1, instruction side
1170 case MISCREG_ITLBIALL:
1171 assert32(tc);
1172 target_el = 1; // el 0 and 1 are handled together
1173 scr = readMiscReg(MISCREG_SCR, tc);
1174 secure_lookup = haveSecurity && !scr.ns;
1175 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1176 return;
1177 // TLBI all entries, EL0&1, data side
1178 case MISCREG_DTLBIALL:
1179 assert32(tc);
1180 target_el = 1; // el 0 and 1 are handled together
1181 scr = readMiscReg(MISCREG_SCR, tc);
1182 secure_lookup = haveSecurity && !scr.ns;
1183 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1184 return;
1185 // TLBI based on VA, EL0&1 inner sharable (ignored)
1186 case MISCREG_TLBIMVAIS:
1187 case MISCREG_TLBIMVA:
1188 assert32(tc);
1189 target_el = 1; // el 0 and 1 are handled together
1190 scr = readMiscReg(MISCREG_SCR, tc);
1191 secure_lookup = haveSecurity && !scr.ns;
1192 sys = tc->getSystemPtr();
1193 for (x = 0; x < sys->numContexts(); x++) {
1194 oc = sys->getThreadContext(x);
1195 assert(oc->getITBPtr() && oc->getDTBPtr());
1196 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1197 bits(newVal, 7,0),
1198 secure_lookup, target_el);
1199 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1200 bits(newVal, 7,0),
1201 secure_lookup, target_el);
1202
1203 CheckerCPU *checker = oc->getCheckerCpuPtr();
1204 if (checker) {
1205 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1206 bits(newVal, 7,0), secure_lookup, target_el);
1207 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1208 bits(newVal, 7,0), secure_lookup, target_el);
1209 }
1210 }
1211 return;
1212 // TLBI by ASID, EL0&1, inner sharable
1213 case MISCREG_TLBIASIDIS:
1214 case MISCREG_TLBIASID:
1215 assert32(tc);
1216 target_el = 1; // el 0 and 1 are handled together
1217 scr = readMiscReg(MISCREG_SCR, tc);
1218 secure_lookup = haveSecurity && !scr.ns;
1219 sys = tc->getSystemPtr();
1220 for (x = 0; x < sys->numContexts(); x++) {
1221 oc = sys->getThreadContext(x);
1222 assert(oc->getITBPtr() && oc->getDTBPtr());
1223 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1224 secure_lookup, target_el);
1225 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1226 secure_lookup, target_el);
1227 CheckerCPU *checker = oc->getCheckerCpuPtr();
1228 if (checker) {
1229 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1230 secure_lookup, target_el);
1231 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1232 secure_lookup, target_el);
1233 }
1234 }
1235 return;
1236 // TLBI by address, EL0&1, inner sharable (ignored)
1237 case MISCREG_TLBIMVAAIS:
1238 case MISCREG_TLBIMVAA:
1239 assert32(tc);
1240 target_el = 1; // el 0 and 1 are handled together
1241 scr = readMiscReg(MISCREG_SCR, tc);
1242 secure_lookup = haveSecurity && !scr.ns;
1243 hyp = 0;
1244 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1245 return;
1246 // TLBI by address, EL2, hypervisor mode
1247 case MISCREG_TLBIMVAH:
1248 case MISCREG_TLBIMVAHIS:
1249 assert32(tc);
1250 target_el = 1; // aarch32, use hyp bit
1251 scr = readMiscReg(MISCREG_SCR, tc);
1252 secure_lookup = haveSecurity && !scr.ns;
1253 hyp = 1;
1254 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1255 return;
1256 // TLBI by address and asid, EL0&1, instruction side only
1257 case MISCREG_ITLBIMVA:
1258 assert32(tc);
1259 target_el = 1; // el 0 and 1 are handled together
1260 scr = readMiscReg(MISCREG_SCR, tc);
1261 secure_lookup = haveSecurity && !scr.ns;
1262 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1263 bits(newVal, 7,0), secure_lookup, target_el);
1264 return;
1265 // TLBI by address and asid, EL0&1, data side only
1266 case MISCREG_DTLBIMVA:
1267 assert32(tc);
1268 target_el = 1; // el 0 and 1 are handled together
1269 scr = readMiscReg(MISCREG_SCR, tc);
1270 secure_lookup = haveSecurity && !scr.ns;
1271 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1272 bits(newVal, 7,0), secure_lookup, target_el);
1273 return;
1274 // TLBI by ASID, EL0&1, instrution side only
1275 case MISCREG_ITLBIASID:
1276 assert32(tc);
1277 target_el = 1; // el 0 and 1 are handled together
1278 scr = readMiscReg(MISCREG_SCR, tc);
1279 secure_lookup = haveSecurity && !scr.ns;
1280 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1281 target_el);
1282 return;
1283 // TLBI by ASID EL0&1 data size only
1284 case MISCREG_DTLBIASID:
1285 assert32(tc);
1286 target_el = 1; // el 0 and 1 are handled together
1287 scr = readMiscReg(MISCREG_SCR, tc);
1288 secure_lookup = haveSecurity && !scr.ns;
1289 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1290 target_el);
1291 return;
1292 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1293 case MISCREG_TLBIALLNSNH:
1294 case MISCREG_TLBIALLNSNHIS:
1295 assert32(tc);
1296 target_el = 1; // el 0 and 1 are handled together
1297 hyp = 0;
1298 tlbiALLN(tc, hyp, target_el);
1299 return;
1300 // TLBI all entries, EL2, hyp,
1301 case MISCREG_TLBIALLH:
1302 case MISCREG_TLBIALLHIS:
1303 assert32(tc);
1304 target_el = 1; // aarch32, use hyp bit
1305 hyp = 1;
1306 tlbiALLN(tc, hyp, target_el);
1307 return;
1308 // AArch64 TLBI: invalidate all entries EL3
1309 case MISCREG_TLBI_ALLE3IS:
1310 case MISCREG_TLBI_ALLE3:
1311 assert64(tc);
1312 target_el = 3;
1313 secure_lookup = true;
1314 tlbiALL(tc, secure_lookup, target_el);
1315 return;
1316 // @todo: uncomment this to enable Virtualization
1317 // case MISCREG_TLBI_ALLE2IS:
1318 // case MISCREG_TLBI_ALLE2:
1319 // TLBI all entries, EL0&1
1320 case MISCREG_TLBI_ALLE1IS:
1321 case MISCREG_TLBI_ALLE1:
1322 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1323 case MISCREG_TLBI_VMALLE1IS:
1324 case MISCREG_TLBI_VMALLE1:
1325 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1326 case MISCREG_TLBI_VMALLS12E1IS:
1327 case MISCREG_TLBI_VMALLS12E1:
1328 // @todo: handle VMID and stage 2 to enable Virtualization
1329 assert64(tc);
1330 target_el = 1; // el 0 and 1 are handled together
1331 scr = readMiscReg(MISCREG_SCR, tc);
1332 secure_lookup = haveSecurity && !scr.ns;
1333 tlbiALL(tc, secure_lookup, target_el);
1334 return;
1335 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1336 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1337 // from the last level of translation table walks
1338 // @todo: handle VMID to enable Virtualization
1339 // TLBI all entries, EL0&1
1340 case MISCREG_TLBI_VAE3IS_Xt:
1341 case MISCREG_TLBI_VAE3_Xt:
1342 // TLBI by VA, EL3 regime stage 1, last level walk
1343 case MISCREG_TLBI_VALE3IS_Xt:
1344 case MISCREG_TLBI_VALE3_Xt:
1345 assert64(tc);
1346 target_el = 3;
1347 asid = 0xbeef; // does not matter, tlbi is global
1348 secure_lookup = true;
1349 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1350 return;
1351 // TLBI by VA, EL2
1352 case MISCREG_TLBI_VAE2IS_Xt:
1353 case MISCREG_TLBI_VAE2_Xt:
1354 // TLBI by VA, EL2, stage1 last level walk
1355 case MISCREG_TLBI_VALE2IS_Xt:
1356 case MISCREG_TLBI_VALE2_Xt:
1357 assert64(tc);
1358 target_el = 2;
1359 asid = 0xbeef; // does not matter, tlbi is global
1360 scr = readMiscReg(MISCREG_SCR, tc);
1361 secure_lookup = haveSecurity && !scr.ns;
1362 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1363 return;
1364 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1365 case MISCREG_TLBI_VAE1IS_Xt:
1366 case MISCREG_TLBI_VAE1_Xt:
1367 case MISCREG_TLBI_VALE1IS_Xt:
1368 case MISCREG_TLBI_VALE1_Xt:
1369 assert64(tc);
1370 asid = bits(newVal, 63, 48);
1371 target_el = 1; // el 0 and 1 are handled together
1372 scr = readMiscReg(MISCREG_SCR, tc);
1373 secure_lookup = haveSecurity && !scr.ns;
1374 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1375 return;
1376 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1377 // @todo: handle VMID to enable Virtualization
1378 case MISCREG_TLBI_ASIDE1IS_Xt:
1379 case MISCREG_TLBI_ASIDE1_Xt:
1380 assert64(tc);
1381 target_el = 1; // el 0 and 1 are handled together
1382 scr = readMiscReg(MISCREG_SCR, tc);
1383 secure_lookup = haveSecurity && !scr.ns;
1384 sys = tc->getSystemPtr();
1385 for (x = 0; x < sys->numContexts(); x++) {
1386 oc = sys->getThreadContext(x);
1387 assert(oc->getITBPtr() && oc->getDTBPtr());
1388 asid = bits(newVal, 63, 48);
1389 if (haveLargeAsid64)
1390 asid &= mask(8);
1391 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1392 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1393 CheckerCPU *checker = oc->getCheckerCpuPtr();
1394 if (checker) {
1395 checker->getITBPtr()->flushAsid(asid,
1396 secure_lookup, target_el);
1397 checker->getDTBPtr()->flushAsid(asid,
1398 secure_lookup, target_el);
1399 }
1400 }
1401 return;
1402 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1403 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1404 // entries from the last level of translation table walks
1405 // @todo: handle VMID to enable Virtualization
1406 case MISCREG_TLBI_VAAE1IS_Xt:
1407 case MISCREG_TLBI_VAAE1_Xt:
1408 case MISCREG_TLBI_VAALE1IS_Xt:
1409 case MISCREG_TLBI_VAALE1_Xt:
1410 assert64(tc);
1411 target_el = 1; // el 0 and 1 are handled together
1412 scr = readMiscReg(MISCREG_SCR, tc);
1413 secure_lookup = haveSecurity && !scr.ns;
1414 sys = tc->getSystemPtr();
1415 for (x = 0; x < sys->numContexts(); x++) {
1416 // @todo: extra controls on TLBI broadcast?
1417 oc = sys->getThreadContext(x);
1418 assert(oc->getITBPtr() && oc->getDTBPtr());
1419 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1420 oc->getITBPtr()->flushMva(va,
1421 secure_lookup, false, target_el);
1422 oc->getDTBPtr()->flushMva(va,
1423 secure_lookup, false, target_el);
1424
1425 CheckerCPU *checker = oc->getCheckerCpuPtr();
1426 if (checker) {
1427 checker->getITBPtr()->flushMva(va,
1428 secure_lookup, false, target_el);
1429 checker->getDTBPtr()->flushMva(va,
1430 secure_lookup, false, target_el);
1431 }
1432 }
1433 return;
1434 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1435 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1436 case MISCREG_TLBI_IPAS2LE1_Xt:
1437 case MISCREG_TLBI_IPAS2E1IS_Xt:
1438 case MISCREG_TLBI_IPAS2E1_Xt:
1439 assert64(tc);
1440 // @todo: implement these as part of Virtualization
1441 warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
1442 return;
1443 case MISCREG_ACTLR:
1444 warn("Not doing anything for write of miscreg ACTLR\n");
1445 break;
1446
1447 case MISCREG_PMXEVTYPER_PMCCFILTR:
1448 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1449 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1450 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1451 pmu->setMiscReg(misc_reg, newVal);
1452 break;
1453
1454
1455 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1456 {
1457 HSTR hstrMask = 0;
1458 hstrMask.tjdbx = 1;
1459 newVal &= ~((uint32_t) hstrMask);
1460 break;
1461 }
1462 case MISCREG_HCPTR:
1463 {
1464 // If a CP bit in NSACR is 0 then the corresponding bit in
1465 // HCPTR is RAO/WI. Same applies to NSASEDIS
1466 secure_lookup = haveSecurity &&
1467 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1468 readMiscRegNoEffect(MISCREG_CPSR));
1469 if (!secure_lookup) {
1470 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1471 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1472 newVal = (newVal & ~mask) | (oldValue & mask);
1473 }
1474 break;
1475 }
1476 case MISCREG_HDFAR: // alias for secure DFAR
1477 misc_reg = MISCREG_DFAR_S;
1478 break;
1479 case MISCREG_HIFAR: // alias for secure IFAR
1480 misc_reg = MISCREG_IFAR_S;
1481 break;
1482 case MISCREG_ATS1CPR:
1483 case MISCREG_ATS1CPW:
1484 case MISCREG_ATS1CUR:
1485 case MISCREG_ATS1CUW:
1486 case MISCREG_ATS12NSOPR:
1487 case MISCREG_ATS12NSOPW:
1488 case MISCREG_ATS12NSOUR:
1489 case MISCREG_ATS12NSOUW:
1490 case MISCREG_ATS1HR:
1491 case MISCREG_ATS1HW:
1492 {
1493 RequestPtr req = new Request;
1494 unsigned flags = 0;
1495 BaseTLB::Mode mode = BaseTLB::Read;
1496 TLB::ArmTranslationType tranType = TLB::NormalTran;
1497 Fault fault;
1498 switch(misc_reg) {
1499 case MISCREG_ATS1CPR:
1500 flags = TLB::MustBeOne;
1501 tranType = TLB::S1CTran;
1502 mode = BaseTLB::Read;
1503 break;
1504 case MISCREG_ATS1CPW:
1505 flags = TLB::MustBeOne;
1506 tranType = TLB::S1CTran;
1507 mode = BaseTLB::Write;
1508 break;
1509 case MISCREG_ATS1CUR:
1510 flags = TLB::MustBeOne | TLB::UserMode;
1511 tranType = TLB::S1CTran;
1512 mode = BaseTLB::Read;
1513 break;
1514 case MISCREG_ATS1CUW:
1515 flags = TLB::MustBeOne | TLB::UserMode;
1516 tranType = TLB::S1CTran;
1517 mode = BaseTLB::Write;
1518 break;
1519 case MISCREG_ATS12NSOPR:
1520 if (!haveSecurity)
1521 panic("Security Extensions required for ATS12NSOPR");
1522 flags = TLB::MustBeOne;
1523 tranType = TLB::S1S2NsTran;
1524 mode = BaseTLB::Read;
1525 break;
1526 case MISCREG_ATS12NSOPW:
1527 if (!haveSecurity)
1528 panic("Security Extensions required for ATS12NSOPW");
1529 flags = TLB::MustBeOne;
1530 tranType = TLB::S1S2NsTran;
1531 mode = BaseTLB::Write;
1532 break;
1533 case MISCREG_ATS12NSOUR:
1534 if (!haveSecurity)
1535 panic("Security Extensions required for ATS12NSOUR");
1536 flags = TLB::MustBeOne | TLB::UserMode;
1537 tranType = TLB::S1S2NsTran;
1538 mode = BaseTLB::Read;
1539 break;
1540 case MISCREG_ATS12NSOUW:
1541 if (!haveSecurity)
1542 panic("Security Extensions required for ATS12NSOUW");
1543 flags = TLB::MustBeOne | TLB::UserMode;
1544 tranType = TLB::S1S2NsTran;
1545 mode = BaseTLB::Write;
1546 break;
1547 case MISCREG_ATS1HR: // only really useful from secure mode.
1548 flags = TLB::MustBeOne;
1549 tranType = TLB::HypMode;
1550 mode = BaseTLB::Read;
1551 break;
1552 case MISCREG_ATS1HW:
1553 flags = TLB::MustBeOne;
1554 tranType = TLB::HypMode;
1555 mode = BaseTLB::Write;
1556 break;
1557 }
1558 // If we're in timing mode then doing the translation in
1559 // functional mode then we're slightly distorting performance
1560 // results obtained from simulations. The translation should be
1561 // done in the same mode the core is running in. NOTE: This
1562 // can't be an atomic translation because that causes problems
1563 // with unexpected atomic snoop requests.
1564 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1493 unsigned flags = 0;
1494 BaseTLB::Mode mode = BaseTLB::Read;
1495 TLB::ArmTranslationType tranType = TLB::NormalTran;
1496 Fault fault;
1497 switch(misc_reg) {
1498 case MISCREG_ATS1CPR:
1499 flags = TLB::MustBeOne;
1500 tranType = TLB::S1CTran;
1501 mode = BaseTLB::Read;
1502 break;
1503 case MISCREG_ATS1CPW:
1504 flags = TLB::MustBeOne;
1505 tranType = TLB::S1CTran;
1506 mode = BaseTLB::Write;
1507 break;
1508 case MISCREG_ATS1CUR:
1509 flags = TLB::MustBeOne | TLB::UserMode;
1510 tranType = TLB::S1CTran;
1511 mode = BaseTLB::Read;
1512 break;
1513 case MISCREG_ATS1CUW:
1514 flags = TLB::MustBeOne | TLB::UserMode;
1515 tranType = TLB::S1CTran;
1516 mode = BaseTLB::Write;
1517 break;
1518 case MISCREG_ATS12NSOPR:
1519 if (!haveSecurity)
1520 panic("Security Extensions required for ATS12NSOPR");
1521 flags = TLB::MustBeOne;
1522 tranType = TLB::S1S2NsTran;
1523 mode = BaseTLB::Read;
1524 break;
1525 case MISCREG_ATS12NSOPW:
1526 if (!haveSecurity)
1527 panic("Security Extensions required for ATS12NSOPW");
1528 flags = TLB::MustBeOne;
1529 tranType = TLB::S1S2NsTran;
1530 mode = BaseTLB::Write;
1531 break;
1532 case MISCREG_ATS12NSOUR:
1533 if (!haveSecurity)
1534 panic("Security Extensions required for ATS12NSOUR");
1535 flags = TLB::MustBeOne | TLB::UserMode;
1536 tranType = TLB::S1S2NsTran;
1537 mode = BaseTLB::Read;
1538 break;
1539 case MISCREG_ATS12NSOUW:
1540 if (!haveSecurity)
1541 panic("Security Extensions required for ATS12NSOUW");
1542 flags = TLB::MustBeOne | TLB::UserMode;
1543 tranType = TLB::S1S2NsTran;
1544 mode = BaseTLB::Write;
1545 break;
1546 case MISCREG_ATS1HR: // only really useful from secure mode.
1547 flags = TLB::MustBeOne;
1548 tranType = TLB::HypMode;
1549 mode = BaseTLB::Read;
1550 break;
1551 case MISCREG_ATS1HW:
1552 flags = TLB::MustBeOne;
1553 tranType = TLB::HypMode;
1554 mode = BaseTLB::Write;
1555 break;
1556 }
1557 // If we're in timing mode then doing the translation in
1558 // functional mode then we're slightly distorting performance
1559 // results obtained from simulations. The translation should be
1560 // done in the same mode the core is running in. NOTE: This
1561 // can't be an atomic translation because that causes problems
1562 // with unexpected atomic snoop requests.
1563 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1565 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1566 tc->pcState().pc());
1567 req->setThreadContext(tc->contextId(), tc->threadId());
1568 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, tranType);
1564 Request req(0, val, 1, flags, Request::funcMasterId,
1565 tc->pcState().pc(), tc->contextId(),
1566 tc->threadId());
1567 fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType);
1569 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1570 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1571
1572 MiscReg newVal;
1573 if (fault == NoFault) {
1568 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1569 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1570
1571 MiscReg newVal;
1572 if (fault == NoFault) {
1574 Addr paddr = req->getPaddr();
1573 Addr paddr = req.getPaddr();
1575 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1576 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1577 newVal = (paddr & mask(39, 12)) |
1578 (tc->getDTBPtr()->getAttr());
1579 } else {
1580 newVal = (paddr & 0xfffff000) |
1581 (tc->getDTBPtr()->getAttr());
1582 }
1583 DPRINTF(MiscRegs,
1584 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1585 val, newVal);
1586 } else {
1587 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1588 // Set fault bit and FSR
1589 FSR fsr = armFault->getFsr(tc);
1590
1591 newVal = ((fsr >> 9) & 1) << 11;
1592 if (newVal) {
1593 // LPAE - rearange fault status
1594 newVal |= ((fsr >> 0) & 0x3f) << 1;
1595 } else {
1596 // VMSA - rearange fault status
1597 newVal |= ((fsr >> 0) & 0xf) << 1;
1598 newVal |= ((fsr >> 10) & 0x1) << 5;
1599 newVal |= ((fsr >> 12) & 0x1) << 6;
1600 }
1601 newVal |= 0x1; // F bit
1602 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1603 newVal |= armFault->isStage2() ? 0x200 : 0;
1604 DPRINTF(MiscRegs,
1605 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1606 val, fsr, newVal);
1607 }
1574 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1575 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1576 newVal = (paddr & mask(39, 12)) |
1577 (tc->getDTBPtr()->getAttr());
1578 } else {
1579 newVal = (paddr & 0xfffff000) |
1580 (tc->getDTBPtr()->getAttr());
1581 }
1582 DPRINTF(MiscRegs,
1583 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1584 val, newVal);
1585 } else {
1586 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1587 // Set fault bit and FSR
1588 FSR fsr = armFault->getFsr(tc);
1589
1590 newVal = ((fsr >> 9) & 1) << 11;
1591 if (newVal) {
1592 // LPAE - rearange fault status
1593 newVal |= ((fsr >> 0) & 0x3f) << 1;
1594 } else {
1595 // VMSA - rearange fault status
1596 newVal |= ((fsr >> 0) & 0xf) << 1;
1597 newVal |= ((fsr >> 10) & 0x1) << 5;
1598 newVal |= ((fsr >> 12) & 0x1) << 6;
1599 }
1600 newVal |= 0x1; // F bit
1601 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1602 newVal |= armFault->isStage2() ? 0x200 : 0;
1603 DPRINTF(MiscRegs,
1604 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1605 val, fsr, newVal);
1606 }
1608 delete req;
1609 setMiscRegNoEffect(MISCREG_PAR, newVal);
1610 return;
1611 }
1612 case MISCREG_TTBCR:
1613 {
1614 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1615 const uint32_t ones = (uint32_t)(-1);
1616 TTBCR ttbcrMask = 0;
1617 TTBCR ttbcrNew = newVal;
1618
1619 // ARM DDI 0406C.b, ARMv7-32
1620 ttbcrMask.n = ones; // T0SZ
1621 if (haveSecurity) {
1622 ttbcrMask.pd0 = ones;
1623 ttbcrMask.pd1 = ones;
1624 }
1625 ttbcrMask.epd0 = ones;
1626 ttbcrMask.irgn0 = ones;
1627 ttbcrMask.orgn0 = ones;
1628 ttbcrMask.sh0 = ones;
1629 ttbcrMask.ps = ones; // T1SZ
1630 ttbcrMask.a1 = ones;
1631 ttbcrMask.epd1 = ones;
1632 ttbcrMask.irgn1 = ones;
1633 ttbcrMask.orgn1 = ones;
1634 ttbcrMask.sh1 = ones;
1635 if (haveLPAE)
1636 ttbcrMask.eae = ones;
1637
1638 if (haveLPAE && ttbcrNew.eae) {
1639 newVal = newVal & ttbcrMask;
1640 } else {
1641 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1642 }
1643 }
1644 case MISCREG_TTBR0:
1645 case MISCREG_TTBR1:
1646 {
1647 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1648 if (haveLPAE) {
1649 if (ttbcr.eae) {
1650 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1651 // ARMv8 AArch32 bit 63-56 only
1652 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1653 newVal = (newVal & (~ttbrMask));
1654 }
1655 }
1656 }
1657 case MISCREG_SCTLR_EL1:
1658 {
1659 tc->getITBPtr()->invalidateMiscReg();
1660 tc->getDTBPtr()->invalidateMiscReg();
1661 SCTLR new_sctlr = newVal;
1662 setMiscRegNoEffect(misc_reg, newVal);
1663 if (new_sctlr.c)
1664 updateBootUncacheable(misc_reg, tc);
1665 return;
1666 }
1667 case MISCREG_CONTEXTIDR:
1668 case MISCREG_PRRR:
1669 case MISCREG_NMRR:
1670 case MISCREG_MAIR0:
1671 case MISCREG_MAIR1:
1672 case MISCREG_DACR:
1673 case MISCREG_VTTBR:
1674 case MISCREG_SCR_EL3:
1675 case MISCREG_TCR_EL1:
1676 case MISCREG_TCR_EL2:
1677 case MISCREG_TCR_EL3:
1678 case MISCREG_SCTLR_EL2:
1679 case MISCREG_SCTLR_EL3:
1680 case MISCREG_TTBR0_EL1:
1681 case MISCREG_TTBR1_EL1:
1682 case MISCREG_TTBR0_EL2:
1683 case MISCREG_TTBR0_EL3:
1684 tc->getITBPtr()->invalidateMiscReg();
1685 tc->getDTBPtr()->invalidateMiscReg();
1686 break;
1687 case MISCREG_NZCV:
1688 {
1689 CPSR cpsr = val;
1690
1691 tc->setCCReg(CCREG_NZ, cpsr.nz);
1692 tc->setCCReg(CCREG_C, cpsr.c);
1693 tc->setCCReg(CCREG_V, cpsr.v);
1694 }
1695 break;
1696 case MISCREG_DAIF:
1697 {
1698 CPSR cpsr = miscRegs[MISCREG_CPSR];
1699 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1700 newVal = cpsr;
1701 misc_reg = MISCREG_CPSR;
1702 }
1703 break;
1704 case MISCREG_SP_EL0:
1705 tc->setIntReg(INTREG_SP0, newVal);
1706 break;
1707 case MISCREG_SP_EL1:
1708 tc->setIntReg(INTREG_SP1, newVal);
1709 break;
1710 case MISCREG_SP_EL2:
1711 tc->setIntReg(INTREG_SP2, newVal);
1712 break;
1713 case MISCREG_SPSEL:
1714 {
1715 CPSR cpsr = miscRegs[MISCREG_CPSR];
1716 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1717 newVal = cpsr;
1718 misc_reg = MISCREG_CPSR;
1719 }
1720 break;
1721 case MISCREG_CURRENTEL:
1722 {
1723 CPSR cpsr = miscRegs[MISCREG_CPSR];
1724 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1725 newVal = cpsr;
1726 misc_reg = MISCREG_CPSR;
1727 }
1728 break;
1729 case MISCREG_AT_S1E1R_Xt:
1730 case MISCREG_AT_S1E1W_Xt:
1731 case MISCREG_AT_S1E0R_Xt:
1732 case MISCREG_AT_S1E0W_Xt:
1733 case MISCREG_AT_S1E2R_Xt:
1734 case MISCREG_AT_S1E2W_Xt:
1735 case MISCREG_AT_S12E1R_Xt:
1736 case MISCREG_AT_S12E1W_Xt:
1737 case MISCREG_AT_S12E0R_Xt:
1738 case MISCREG_AT_S12E0W_Xt:
1739 case MISCREG_AT_S1E3R_Xt:
1740 case MISCREG_AT_S1E3W_Xt:
1741 {
1742 RequestPtr req = new Request;
1743 unsigned flags = 0;
1744 BaseTLB::Mode mode = BaseTLB::Read;
1745 TLB::ArmTranslationType tranType = TLB::NormalTran;
1746 Fault fault;
1747 switch(misc_reg) {
1748 case MISCREG_AT_S1E1R_Xt:
1749 flags = TLB::MustBeOne;
1750 tranType = TLB::S1CTran;
1751 mode = BaseTLB::Read;
1752 break;
1753 case MISCREG_AT_S1E1W_Xt:
1754 flags = TLB::MustBeOne;
1755 tranType = TLB::S1CTran;
1756 mode = BaseTLB::Write;
1757 break;
1758 case MISCREG_AT_S1E0R_Xt:
1759 flags = TLB::MustBeOne | TLB::UserMode;
1760 tranType = TLB::S1CTran;
1761 mode = BaseTLB::Read;
1762 break;
1763 case MISCREG_AT_S1E0W_Xt:
1764 flags = TLB::MustBeOne | TLB::UserMode;
1765 tranType = TLB::S1CTran;
1766 mode = BaseTLB::Write;
1767 break;
1768 case MISCREG_AT_S1E2R_Xt:
1769 flags = TLB::MustBeOne;
1770 tranType = TLB::HypMode;
1771 mode = BaseTLB::Read;
1772 break;
1773 case MISCREG_AT_S1E2W_Xt:
1774 flags = TLB::MustBeOne;
1775 tranType = TLB::HypMode;
1776 mode = BaseTLB::Write;
1777 break;
1778 case MISCREG_AT_S12E0R_Xt:
1779 flags = TLB::MustBeOne | TLB::UserMode;
1780 tranType = TLB::S1S2NsTran;
1781 mode = BaseTLB::Read;
1782 break;
1783 case MISCREG_AT_S12E0W_Xt:
1784 flags = TLB::MustBeOne | TLB::UserMode;
1785 tranType = TLB::S1S2NsTran;
1786 mode = BaseTLB::Write;
1787 break;
1788 case MISCREG_AT_S12E1R_Xt:
1789 flags = TLB::MustBeOne;
1790 tranType = TLB::S1S2NsTran;
1791 mode = BaseTLB::Read;
1792 break;
1793 case MISCREG_AT_S12E1W_Xt:
1794 flags = TLB::MustBeOne;
1795 tranType = TLB::S1S2NsTran;
1796 mode = BaseTLB::Write;
1797 break;
1798 case MISCREG_AT_S1E3R_Xt:
1799 flags = TLB::MustBeOne;
1800 tranType = TLB::HypMode; // There is no TZ mode defined.
1801 mode = BaseTLB::Read;
1802 break;
1803 case MISCREG_AT_S1E3W_Xt:
1804 flags = TLB::MustBeOne;
1805 tranType = TLB::HypMode; // There is no TZ mode defined.
1806 mode = BaseTLB::Write;
1807 break;
1808 }
1809 // If we're in timing mode then doing the translation in
1810 // functional mode then we're slightly distorting performance
1811 // results obtained from simulations. The translation should be
1812 // done in the same mode the core is running in. NOTE: This
1813 // can't be an atomic translation because that causes problems
1814 // with unexpected atomic snoop requests.
1815 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1816 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1817 tc->pcState().pc());
1818 req->setThreadContext(tc->contextId(), tc->threadId());
1819 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1820 tranType);
1821
1822 MiscReg newVal;
1823 if (fault == NoFault) {
1824 Addr paddr = req->getPaddr();
1825 uint64_t attr = tc->getDTBPtr()->getAttr();
1826 uint64_t attr1 = attr >> 56;
1827 if (!attr1 || attr1 ==0x44) {
1828 attr |= 0x100;
1829 attr &= ~ uint64_t(0x80);
1830 }
1831 newVal = (paddr & mask(47, 12)) | attr;
1832 DPRINTF(MiscRegs,
1833 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1834 val, newVal);
1835 } else {
1836 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1837 // Set fault bit and FSR
1838 FSR fsr = armFault->getFsr(tc);
1839
1840 newVal = ((fsr >> 9) & 1) << 11;
1841 // rearange fault status
1842 newVal |= ((fsr >> 0) & 0x3f) << 1;
1843 newVal |= 0x1; // F bit
1844 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1845 newVal |= armFault->isStage2() ? 0x200 : 0;
1846 DPRINTF(MiscRegs,
1847 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1848 val, fsr, newVal);
1849 }
1850 delete req;
1851 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1852 return;
1853 }
1854 case MISCREG_SPSR_EL3:
1855 case MISCREG_SPSR_EL2:
1856 case MISCREG_SPSR_EL1:
1857 // Force bits 23:21 to 0
1858 newVal = val & ~(0x7 << 21);
1859 break;
1860 case MISCREG_L2CTLR:
1861 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1862 miscRegName[misc_reg], uint32_t(val));
1863 break;
1864
1865 // Generic Timer registers
1866 case MISCREG_CNTFRQ:
1867 case MISCREG_CNTFRQ_EL0:
1868 getSystemCounter(tc)->setFreq(val);
1869 break;
1870 case MISCREG_CNTP_CVAL:
1871 case MISCREG_CNTP_CVAL_EL0:
1872 getArchTimer(tc, tc->cpuId())->setCompareValue(val);
1873 break;
1874 case MISCREG_CNTP_TVAL:
1875 case MISCREG_CNTP_TVAL_EL0:
1876 getArchTimer(tc, tc->cpuId())->setTimerValue(val);
1877 break;
1878 case MISCREG_CNTP_CTL:
1879 case MISCREG_CNTP_CTL_EL0:
1880 getArchTimer(tc, tc->cpuId())->setControl(val);
1881 break;
1882 // PL1 phys. timer, secure
1883 // AArch64
1884 case MISCREG_CNTPS_CVAL_EL1:
1885 case MISCREG_CNTPS_TVAL_EL1:
1886 case MISCREG_CNTPS_CTL_EL1:
1887 // PL2 phys. timer, non-secure
1888 // AArch32
1889 case MISCREG_CNTHCTL:
1890 case MISCREG_CNTHP_CVAL:
1891 case MISCREG_CNTHP_TVAL:
1892 case MISCREG_CNTHP_CTL:
1893 // AArch64
1894 case MISCREG_CNTHCTL_EL2:
1895 case MISCREG_CNTHP_CVAL_EL2:
1896 case MISCREG_CNTHP_TVAL_EL2:
1897 case MISCREG_CNTHP_CTL_EL2:
1898 // Virtual timer
1899 // AArch32
1900 case MISCREG_CNTV_CVAL:
1901 case MISCREG_CNTV_TVAL:
1902 case MISCREG_CNTV_CTL:
1903 // AArch64
1904 // case MISCREG_CNTV_CVAL_EL2:
1905 // case MISCREG_CNTV_TVAL_EL2:
1906 // case MISCREG_CNTV_CTL_EL2:
1907 break;
1908 }
1909 }
1910 setMiscRegNoEffect(misc_reg, newVal);
1911}
1912
1913void
1914ISA::updateBootUncacheable(int sctlr_idx, ThreadContext *tc)
1915{
1916 System *sys;
1917 ThreadContext *oc;
1918
1919 // Check if all CPUs are booted with caches enabled
1920 // so we can stop enforcing coherency of some kernel
1921 // structures manually.
1922 sys = tc->getSystemPtr();
1923 for (int x = 0; x < sys->numContexts(); x++) {
1924 oc = sys->getThreadContext(x);
1925 // @todo: double check this for security
1926 SCTLR other_sctlr = oc->readMiscRegNoEffect(sctlr_idx);
1927 if (!other_sctlr.c && oc->status() != ThreadContext::Halted)
1928 return;
1929 }
1930
1931 for (int x = 0; x < sys->numContexts(); x++) {
1932 oc = sys->getThreadContext(x);
1933 oc->getDTBPtr()->allCpusCaching();
1934 oc->getITBPtr()->allCpusCaching();
1935
1936 // If CheckerCPU is connected, need to notify it.
1937 CheckerCPU *checker = oc->getCheckerCpuPtr();
1938 if (checker) {
1939 checker->getDTBPtr()->allCpusCaching();
1940 checker->getITBPtr()->allCpusCaching();
1941 }
1942 }
1943}
1944
1945void
1946ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint8_t asid, bool secure_lookup,
1947 uint8_t target_el)
1948{
1949 if (haveLargeAsid64)
1950 asid &= mask(8);
1951 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1952 System *sys = tc->getSystemPtr();
1953 for (int x = 0; x < sys->numContexts(); x++) {
1954 ThreadContext *oc = sys->getThreadContext(x);
1955 assert(oc->getITBPtr() && oc->getDTBPtr());
1956 oc->getITBPtr()->flushMvaAsid(va, asid,
1957 secure_lookup, target_el);
1958 oc->getDTBPtr()->flushMvaAsid(va, asid,
1959 secure_lookup, target_el);
1960
1961 CheckerCPU *checker = oc->getCheckerCpuPtr();
1962 if (checker) {
1963 checker->getITBPtr()->flushMvaAsid(
1964 va, asid, secure_lookup, target_el);
1965 checker->getDTBPtr()->flushMvaAsid(
1966 va, asid, secure_lookup, target_el);
1967 }
1968 }
1969}
1970
1971void
1972ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1973{
1974 System *sys = tc->getSystemPtr();
1975 for (int x = 0; x < sys->numContexts(); x++) {
1976 ThreadContext *oc = sys->getThreadContext(x);
1977 assert(oc->getITBPtr() && oc->getDTBPtr());
1978 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1979 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1980
1981 // If CheckerCPU is connected, need to notify it of a flush
1982 CheckerCPU *checker = oc->getCheckerCpuPtr();
1983 if (checker) {
1984 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1985 target_el);
1986 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1987 target_el);
1988 }
1989 }
1990}
1991
1992void
1993ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1994{
1995 System *sys = tc->getSystemPtr();
1996 for (int x = 0; x < sys->numContexts(); x++) {
1997 ThreadContext *oc = sys->getThreadContext(x);
1998 assert(oc->getITBPtr() && oc->getDTBPtr());
1999 oc->getITBPtr()->flushAllNs(hyp, target_el);
2000 oc->getDTBPtr()->flushAllNs(hyp, target_el);
2001
2002 CheckerCPU *checker = oc->getCheckerCpuPtr();
2003 if (checker) {
2004 checker->getITBPtr()->flushAllNs(hyp, target_el);
2005 checker->getDTBPtr()->flushAllNs(hyp, target_el);
2006 }
2007 }
2008}
2009
2010void
2011ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
2012 uint8_t target_el)
2013{
2014 System *sys = tc->getSystemPtr();
2015 for (int x = 0; x < sys->numContexts(); x++) {
2016 ThreadContext *oc = sys->getThreadContext(x);
2017 assert(oc->getITBPtr() && oc->getDTBPtr());
2018 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
2019 secure_lookup, hyp, target_el);
2020 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2021 secure_lookup, hyp, target_el);
2022
2023 CheckerCPU *checker = oc->getCheckerCpuPtr();
2024 if (checker) {
2025 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
2026 secure_lookup, hyp, target_el);
2027 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2028 secure_lookup, hyp, target_el);
2029 }
2030 }
2031}
2032
2033::GenericTimer::SystemCounter *
2034ISA::getSystemCounter(ThreadContext *tc)
2035{
2036 ::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())->
2037 getSystemCounter();
2038 if (cnt == NULL) {
2039 panic("System counter not available\n");
2040 }
2041 return cnt;
2042}
2043
2044::GenericTimer::ArchTimer *
2045ISA::getArchTimer(ThreadContext *tc, int cpu_id)
2046{
2047 ::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())->
2048 getArchTimer(cpu_id);
2049 if (timer == NULL) {
2050 panic("Architected timer not available\n");
2051 }
2052 return timer;
2053}
2054
2055}
2056
2057ArmISA::ISA *
2058ArmISAParams::create()
2059{
2060 return new ArmISA::ISA(this);
2061}
1607 setMiscRegNoEffect(MISCREG_PAR, newVal);
1608 return;
1609 }
1610 case MISCREG_TTBCR:
1611 {
1612 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1613 const uint32_t ones = (uint32_t)(-1);
1614 TTBCR ttbcrMask = 0;
1615 TTBCR ttbcrNew = newVal;
1616
1617 // ARM DDI 0406C.b, ARMv7-32
1618 ttbcrMask.n = ones; // T0SZ
1619 if (haveSecurity) {
1620 ttbcrMask.pd0 = ones;
1621 ttbcrMask.pd1 = ones;
1622 }
1623 ttbcrMask.epd0 = ones;
1624 ttbcrMask.irgn0 = ones;
1625 ttbcrMask.orgn0 = ones;
1626 ttbcrMask.sh0 = ones;
1627 ttbcrMask.ps = ones; // T1SZ
1628 ttbcrMask.a1 = ones;
1629 ttbcrMask.epd1 = ones;
1630 ttbcrMask.irgn1 = ones;
1631 ttbcrMask.orgn1 = ones;
1632 ttbcrMask.sh1 = ones;
1633 if (haveLPAE)
1634 ttbcrMask.eae = ones;
1635
1636 if (haveLPAE && ttbcrNew.eae) {
1637 newVal = newVal & ttbcrMask;
1638 } else {
1639 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1640 }
1641 }
1642 case MISCREG_TTBR0:
1643 case MISCREG_TTBR1:
1644 {
1645 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1646 if (haveLPAE) {
1647 if (ttbcr.eae) {
1648 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1649 // ARMv8 AArch32 bit 63-56 only
1650 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1651 newVal = (newVal & (~ttbrMask));
1652 }
1653 }
1654 }
1655 case MISCREG_SCTLR_EL1:
1656 {
1657 tc->getITBPtr()->invalidateMiscReg();
1658 tc->getDTBPtr()->invalidateMiscReg();
1659 SCTLR new_sctlr = newVal;
1660 setMiscRegNoEffect(misc_reg, newVal);
1661 if (new_sctlr.c)
1662 updateBootUncacheable(misc_reg, tc);
1663 return;
1664 }
1665 case MISCREG_CONTEXTIDR:
1666 case MISCREG_PRRR:
1667 case MISCREG_NMRR:
1668 case MISCREG_MAIR0:
1669 case MISCREG_MAIR1:
1670 case MISCREG_DACR:
1671 case MISCREG_VTTBR:
1672 case MISCREG_SCR_EL3:
1673 case MISCREG_TCR_EL1:
1674 case MISCREG_TCR_EL2:
1675 case MISCREG_TCR_EL3:
1676 case MISCREG_SCTLR_EL2:
1677 case MISCREG_SCTLR_EL3:
1678 case MISCREG_TTBR0_EL1:
1679 case MISCREG_TTBR1_EL1:
1680 case MISCREG_TTBR0_EL2:
1681 case MISCREG_TTBR0_EL3:
1682 tc->getITBPtr()->invalidateMiscReg();
1683 tc->getDTBPtr()->invalidateMiscReg();
1684 break;
1685 case MISCREG_NZCV:
1686 {
1687 CPSR cpsr = val;
1688
1689 tc->setCCReg(CCREG_NZ, cpsr.nz);
1690 tc->setCCReg(CCREG_C, cpsr.c);
1691 tc->setCCReg(CCREG_V, cpsr.v);
1692 }
1693 break;
1694 case MISCREG_DAIF:
1695 {
1696 CPSR cpsr = miscRegs[MISCREG_CPSR];
1697 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1698 newVal = cpsr;
1699 misc_reg = MISCREG_CPSR;
1700 }
1701 break;
1702 case MISCREG_SP_EL0:
1703 tc->setIntReg(INTREG_SP0, newVal);
1704 break;
1705 case MISCREG_SP_EL1:
1706 tc->setIntReg(INTREG_SP1, newVal);
1707 break;
1708 case MISCREG_SP_EL2:
1709 tc->setIntReg(INTREG_SP2, newVal);
1710 break;
1711 case MISCREG_SPSEL:
1712 {
1713 CPSR cpsr = miscRegs[MISCREG_CPSR];
1714 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1715 newVal = cpsr;
1716 misc_reg = MISCREG_CPSR;
1717 }
1718 break;
1719 case MISCREG_CURRENTEL:
1720 {
1721 CPSR cpsr = miscRegs[MISCREG_CPSR];
1722 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1723 newVal = cpsr;
1724 misc_reg = MISCREG_CPSR;
1725 }
1726 break;
1727 case MISCREG_AT_S1E1R_Xt:
1728 case MISCREG_AT_S1E1W_Xt:
1729 case MISCREG_AT_S1E0R_Xt:
1730 case MISCREG_AT_S1E0W_Xt:
1731 case MISCREG_AT_S1E2R_Xt:
1732 case MISCREG_AT_S1E2W_Xt:
1733 case MISCREG_AT_S12E1R_Xt:
1734 case MISCREG_AT_S12E1W_Xt:
1735 case MISCREG_AT_S12E0R_Xt:
1736 case MISCREG_AT_S12E0W_Xt:
1737 case MISCREG_AT_S1E3R_Xt:
1738 case MISCREG_AT_S1E3W_Xt:
1739 {
1740 RequestPtr req = new Request;
1741 unsigned flags = 0;
1742 BaseTLB::Mode mode = BaseTLB::Read;
1743 TLB::ArmTranslationType tranType = TLB::NormalTran;
1744 Fault fault;
1745 switch(misc_reg) {
1746 case MISCREG_AT_S1E1R_Xt:
1747 flags = TLB::MustBeOne;
1748 tranType = TLB::S1CTran;
1749 mode = BaseTLB::Read;
1750 break;
1751 case MISCREG_AT_S1E1W_Xt:
1752 flags = TLB::MustBeOne;
1753 tranType = TLB::S1CTran;
1754 mode = BaseTLB::Write;
1755 break;
1756 case MISCREG_AT_S1E0R_Xt:
1757 flags = TLB::MustBeOne | TLB::UserMode;
1758 tranType = TLB::S1CTran;
1759 mode = BaseTLB::Read;
1760 break;
1761 case MISCREG_AT_S1E0W_Xt:
1762 flags = TLB::MustBeOne | TLB::UserMode;
1763 tranType = TLB::S1CTran;
1764 mode = BaseTLB::Write;
1765 break;
1766 case MISCREG_AT_S1E2R_Xt:
1767 flags = TLB::MustBeOne;
1768 tranType = TLB::HypMode;
1769 mode = BaseTLB::Read;
1770 break;
1771 case MISCREG_AT_S1E2W_Xt:
1772 flags = TLB::MustBeOne;
1773 tranType = TLB::HypMode;
1774 mode = BaseTLB::Write;
1775 break;
1776 case MISCREG_AT_S12E0R_Xt:
1777 flags = TLB::MustBeOne | TLB::UserMode;
1778 tranType = TLB::S1S2NsTran;
1779 mode = BaseTLB::Read;
1780 break;
1781 case MISCREG_AT_S12E0W_Xt:
1782 flags = TLB::MustBeOne | TLB::UserMode;
1783 tranType = TLB::S1S2NsTran;
1784 mode = BaseTLB::Write;
1785 break;
1786 case MISCREG_AT_S12E1R_Xt:
1787 flags = TLB::MustBeOne;
1788 tranType = TLB::S1S2NsTran;
1789 mode = BaseTLB::Read;
1790 break;
1791 case MISCREG_AT_S12E1W_Xt:
1792 flags = TLB::MustBeOne;
1793 tranType = TLB::S1S2NsTran;
1794 mode = BaseTLB::Write;
1795 break;
1796 case MISCREG_AT_S1E3R_Xt:
1797 flags = TLB::MustBeOne;
1798 tranType = TLB::HypMode; // There is no TZ mode defined.
1799 mode = BaseTLB::Read;
1800 break;
1801 case MISCREG_AT_S1E3W_Xt:
1802 flags = TLB::MustBeOne;
1803 tranType = TLB::HypMode; // There is no TZ mode defined.
1804 mode = BaseTLB::Write;
1805 break;
1806 }
1807 // If we're in timing mode then doing the translation in
1808 // functional mode then we're slightly distorting performance
1809 // results obtained from simulations. The translation should be
1810 // done in the same mode the core is running in. NOTE: This
1811 // can't be an atomic translation because that causes problems
1812 // with unexpected atomic snoop requests.
1813 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1814 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1815 tc->pcState().pc());
1816 req->setThreadContext(tc->contextId(), tc->threadId());
1817 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1818 tranType);
1819
1820 MiscReg newVal;
1821 if (fault == NoFault) {
1822 Addr paddr = req->getPaddr();
1823 uint64_t attr = tc->getDTBPtr()->getAttr();
1824 uint64_t attr1 = attr >> 56;
1825 if (!attr1 || attr1 ==0x44) {
1826 attr |= 0x100;
1827 attr &= ~ uint64_t(0x80);
1828 }
1829 newVal = (paddr & mask(47, 12)) | attr;
1830 DPRINTF(MiscRegs,
1831 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1832 val, newVal);
1833 } else {
1834 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1835 // Set fault bit and FSR
1836 FSR fsr = armFault->getFsr(tc);
1837
1838 newVal = ((fsr >> 9) & 1) << 11;
1839 // rearange fault status
1840 newVal |= ((fsr >> 0) & 0x3f) << 1;
1841 newVal |= 0x1; // F bit
1842 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1843 newVal |= armFault->isStage2() ? 0x200 : 0;
1844 DPRINTF(MiscRegs,
1845 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1846 val, fsr, newVal);
1847 }
1848 delete req;
1849 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1850 return;
1851 }
1852 case MISCREG_SPSR_EL3:
1853 case MISCREG_SPSR_EL2:
1854 case MISCREG_SPSR_EL1:
1855 // Force bits 23:21 to 0
1856 newVal = val & ~(0x7 << 21);
1857 break;
1858 case MISCREG_L2CTLR:
1859 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1860 miscRegName[misc_reg], uint32_t(val));
1861 break;
1862
1863 // Generic Timer registers
1864 case MISCREG_CNTFRQ:
1865 case MISCREG_CNTFRQ_EL0:
1866 getSystemCounter(tc)->setFreq(val);
1867 break;
1868 case MISCREG_CNTP_CVAL:
1869 case MISCREG_CNTP_CVAL_EL0:
1870 getArchTimer(tc, tc->cpuId())->setCompareValue(val);
1871 break;
1872 case MISCREG_CNTP_TVAL:
1873 case MISCREG_CNTP_TVAL_EL0:
1874 getArchTimer(tc, tc->cpuId())->setTimerValue(val);
1875 break;
1876 case MISCREG_CNTP_CTL:
1877 case MISCREG_CNTP_CTL_EL0:
1878 getArchTimer(tc, tc->cpuId())->setControl(val);
1879 break;
1880 // PL1 phys. timer, secure
1881 // AArch64
1882 case MISCREG_CNTPS_CVAL_EL1:
1883 case MISCREG_CNTPS_TVAL_EL1:
1884 case MISCREG_CNTPS_CTL_EL1:
1885 // PL2 phys. timer, non-secure
1886 // AArch32
1887 case MISCREG_CNTHCTL:
1888 case MISCREG_CNTHP_CVAL:
1889 case MISCREG_CNTHP_TVAL:
1890 case MISCREG_CNTHP_CTL:
1891 // AArch64
1892 case MISCREG_CNTHCTL_EL2:
1893 case MISCREG_CNTHP_CVAL_EL2:
1894 case MISCREG_CNTHP_TVAL_EL2:
1895 case MISCREG_CNTHP_CTL_EL2:
1896 // Virtual timer
1897 // AArch32
1898 case MISCREG_CNTV_CVAL:
1899 case MISCREG_CNTV_TVAL:
1900 case MISCREG_CNTV_CTL:
1901 // AArch64
1902 // case MISCREG_CNTV_CVAL_EL2:
1903 // case MISCREG_CNTV_TVAL_EL2:
1904 // case MISCREG_CNTV_CTL_EL2:
1905 break;
1906 }
1907 }
1908 setMiscRegNoEffect(misc_reg, newVal);
1909}
1910
1911void
1912ISA::updateBootUncacheable(int sctlr_idx, ThreadContext *tc)
1913{
1914 System *sys;
1915 ThreadContext *oc;
1916
1917 // Check if all CPUs are booted with caches enabled
1918 // so we can stop enforcing coherency of some kernel
1919 // structures manually.
1920 sys = tc->getSystemPtr();
1921 for (int x = 0; x < sys->numContexts(); x++) {
1922 oc = sys->getThreadContext(x);
1923 // @todo: double check this for security
1924 SCTLR other_sctlr = oc->readMiscRegNoEffect(sctlr_idx);
1925 if (!other_sctlr.c && oc->status() != ThreadContext::Halted)
1926 return;
1927 }
1928
1929 for (int x = 0; x < sys->numContexts(); x++) {
1930 oc = sys->getThreadContext(x);
1931 oc->getDTBPtr()->allCpusCaching();
1932 oc->getITBPtr()->allCpusCaching();
1933
1934 // If CheckerCPU is connected, need to notify it.
1935 CheckerCPU *checker = oc->getCheckerCpuPtr();
1936 if (checker) {
1937 checker->getDTBPtr()->allCpusCaching();
1938 checker->getITBPtr()->allCpusCaching();
1939 }
1940 }
1941}
1942
1943void
1944ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint8_t asid, bool secure_lookup,
1945 uint8_t target_el)
1946{
1947 if (haveLargeAsid64)
1948 asid &= mask(8);
1949 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1950 System *sys = tc->getSystemPtr();
1951 for (int x = 0; x < sys->numContexts(); x++) {
1952 ThreadContext *oc = sys->getThreadContext(x);
1953 assert(oc->getITBPtr() && oc->getDTBPtr());
1954 oc->getITBPtr()->flushMvaAsid(va, asid,
1955 secure_lookup, target_el);
1956 oc->getDTBPtr()->flushMvaAsid(va, asid,
1957 secure_lookup, target_el);
1958
1959 CheckerCPU *checker = oc->getCheckerCpuPtr();
1960 if (checker) {
1961 checker->getITBPtr()->flushMvaAsid(
1962 va, asid, secure_lookup, target_el);
1963 checker->getDTBPtr()->flushMvaAsid(
1964 va, asid, secure_lookup, target_el);
1965 }
1966 }
1967}
1968
1969void
1970ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1971{
1972 System *sys = tc->getSystemPtr();
1973 for (int x = 0; x < sys->numContexts(); x++) {
1974 ThreadContext *oc = sys->getThreadContext(x);
1975 assert(oc->getITBPtr() && oc->getDTBPtr());
1976 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1977 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1978
1979 // If CheckerCPU is connected, need to notify it of a flush
1980 CheckerCPU *checker = oc->getCheckerCpuPtr();
1981 if (checker) {
1982 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1983 target_el);
1984 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1985 target_el);
1986 }
1987 }
1988}
1989
1990void
1991ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1992{
1993 System *sys = tc->getSystemPtr();
1994 for (int x = 0; x < sys->numContexts(); x++) {
1995 ThreadContext *oc = sys->getThreadContext(x);
1996 assert(oc->getITBPtr() && oc->getDTBPtr());
1997 oc->getITBPtr()->flushAllNs(hyp, target_el);
1998 oc->getDTBPtr()->flushAllNs(hyp, target_el);
1999
2000 CheckerCPU *checker = oc->getCheckerCpuPtr();
2001 if (checker) {
2002 checker->getITBPtr()->flushAllNs(hyp, target_el);
2003 checker->getDTBPtr()->flushAllNs(hyp, target_el);
2004 }
2005 }
2006}
2007
2008void
2009ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
2010 uint8_t target_el)
2011{
2012 System *sys = tc->getSystemPtr();
2013 for (int x = 0; x < sys->numContexts(); x++) {
2014 ThreadContext *oc = sys->getThreadContext(x);
2015 assert(oc->getITBPtr() && oc->getDTBPtr());
2016 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
2017 secure_lookup, hyp, target_el);
2018 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2019 secure_lookup, hyp, target_el);
2020
2021 CheckerCPU *checker = oc->getCheckerCpuPtr();
2022 if (checker) {
2023 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
2024 secure_lookup, hyp, target_el);
2025 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
2026 secure_lookup, hyp, target_el);
2027 }
2028 }
2029}
2030
2031::GenericTimer::SystemCounter *
2032ISA::getSystemCounter(ThreadContext *tc)
2033{
2034 ::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())->
2035 getSystemCounter();
2036 if (cnt == NULL) {
2037 panic("System counter not available\n");
2038 }
2039 return cnt;
2040}
2041
2042::GenericTimer::ArchTimer *
2043ISA::getArchTimer(ThreadContext *tc, int cpu_id)
2044{
2045 ::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())->
2046 getArchTimer(cpu_id);
2047 if (timer == NULL) {
2048 panic("Architected timer not available\n");
2049 }
2050 return timer;
2051}
2052
2053}
2054
2055ArmISA::ISA *
2056ArmISAParams::create()
2057{
2058 return new ArmISA::ISA(this);
2059}