Deleted Added
sdiff udiff text old ( 13759:9941fca869a9 ) new ( 13826:34a9929c35eb )
full compact
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62 : SimObject(p),
63 system(NULL),
64 _decoderFlavour(p->decoderFlavour),
65 _vecRegRenameMode(Enums::Full),
66 pmu(p->pmu),
67 haveGICv3CPUInterface(false),
68 impdefAsNop(p->impdef_nop)
69{
70 miscRegs[MISCREG_SCTLR_RST] = 0;
71
72 // Hook up a dummy device if we haven't been configured with a
73 // real PMU. By using a dummy device, we don't need to check that
74 // the PMU exist every time we try to access a PMU register.
75 if (!pmu)
76 pmu = &dummyDevice;
77
78 // Give all ISA devices a pointer to this ISA
79 pmu->setISA(this);
80
81 system = dynamic_cast<ArmSystem *>(p->system);
82
83 // Cache system-level properties
84 if (FullSystem && system) {
85 highestELIs64 = system->highestELIs64();
86 haveSecurity = system->haveSecurity();
87 haveLPAE = system->haveLPAE();
88 haveCrypto = system->haveCrypto();
89 haveVirtualization = system->haveVirtualization();
90 haveLargeAsid64 = system->haveLargeAsid64();
91 physAddrRange = system->physAddrRange();
92 haveSVE = system->haveSVE();
93 sveVL = system->sveVL();
94 } else {
95 highestELIs64 = true; // ArmSystem::highestELIs64 does the same
96 haveSecurity = haveLPAE = haveVirtualization = false;
97 haveCrypto = true;
98 haveLargeAsid64 = false;
99 physAddrRange = 32; // dummy value
100 haveSVE = true;
101 sveVL = p->sve_vl_se;
102 }
103
104 // Initial rename mode depends on highestEL
105 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
106 highestELIs64 ? Enums::Full : Enums::Elem;
107
108 initializeMiscRegMetadata();
109 preUnflattenMiscReg();
110
111 clear();
112}
113
114std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
115
116const ArmISAParams *
117ISA::params() const
118{
119 return dynamic_cast<const Params *>(_params);
120}
121
122void
123ISA::clear()
124{
125 const Params *p(params());
126
127 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
128 memset(miscRegs, 0, sizeof(miscRegs));
129
130 initID32(p);
131
132 // We always initialize AArch64 ID registers even
133 // if we are in AArch32. This is done since if we
134 // are in SE mode we don't know if our ArmProcess is
135 // AArch32 or AArch64
136 initID64(p);
137
138 // Start with an event in the mailbox
139 miscRegs[MISCREG_SEV_MAILBOX] = 1;
140
141 // Separate Instruction and Data TLBs
142 miscRegs[MISCREG_TLBTR] = 1;
143
144 MVFR0 mvfr0 = 0;
145 mvfr0.advSimdRegisters = 2;
146 mvfr0.singlePrecision = 2;
147 mvfr0.doublePrecision = 2;
148 mvfr0.vfpExceptionTrapping = 0;
149 mvfr0.divide = 1;
150 mvfr0.squareRoot = 1;
151 mvfr0.shortVectors = 1;
152 mvfr0.roundingModes = 1;
153 miscRegs[MISCREG_MVFR0] = mvfr0;
154
155 MVFR1 mvfr1 = 0;
156 mvfr1.flushToZero = 1;
157 mvfr1.defaultNaN = 1;
158 mvfr1.advSimdLoadStore = 1;
159 mvfr1.advSimdInteger = 1;
160 mvfr1.advSimdSinglePrecision = 1;
161 mvfr1.advSimdHalfPrecision = 1;
162 mvfr1.vfpHalfPrecision = 1;
163 miscRegs[MISCREG_MVFR1] = mvfr1;
164
165 // Reset values of PRRR and NMRR are implementation dependent
166
167 // @todo: PRRR and NMRR in secure state?
168 miscRegs[MISCREG_PRRR_NS] =
169 (1 << 19) | // 19
170 (0 << 18) | // 18
171 (0 << 17) | // 17
172 (1 << 16) | // 16
173 (2 << 14) | // 15:14
174 (0 << 12) | // 13:12
175 (2 << 10) | // 11:10
176 (2 << 8) | // 9:8
177 (2 << 6) | // 7:6
178 (2 << 4) | // 5:4
179 (1 << 2) | // 3:2
180 0; // 1:0
181
182 miscRegs[MISCREG_NMRR_NS] =
183 (1 << 30) | // 31:30
184 (0 << 26) | // 27:26
185 (0 << 24) | // 25:24
186 (3 << 22) | // 23:22
187 (2 << 20) | // 21:20
188 (0 << 18) | // 19:18
189 (0 << 16) | // 17:16
190 (1 << 14) | // 15:14
191 (0 << 12) | // 13:12
192 (2 << 10) | // 11:10
193 (0 << 8) | // 9:8
194 (3 << 6) | // 7:6
195 (2 << 4) | // 5:4
196 (0 << 2) | // 3:2
197 0; // 1:0
198
199 if (FullSystem && system->highestELIs64()) {
200 // Initialize AArch64 state
201 clear64(p);
202 return;
203 }
204
205 // Initialize AArch32 state...
206 clear32(p, sctlr_rst);
207}
208
209void
210ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
211{
212 CPSR cpsr = 0;
213 cpsr.mode = MODE_USER;
214
215 if (FullSystem) {
216 miscRegs[MISCREG_MVBAR] = system->resetAddr();
217 }
218
219 miscRegs[MISCREG_CPSR] = cpsr;
220 updateRegMap(cpsr);
221
222 SCTLR sctlr = 0;
223 sctlr.te = (bool) sctlr_rst.te;
224 sctlr.nmfi = (bool) sctlr_rst.nmfi;
225 sctlr.v = (bool) sctlr_rst.v;
226 sctlr.u = 1;
227 sctlr.xp = 1;
228 sctlr.rao2 = 1;
229 sctlr.rao3 = 1;
230 sctlr.rao4 = 0xf; // SCTLR[6:3]
231 sctlr.uci = 1;
232 sctlr.dze = 1;
233 miscRegs[MISCREG_SCTLR_NS] = sctlr;
234 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
235 miscRegs[MISCREG_HCPTR] = 0;
236
237 miscRegs[MISCREG_CPACR] = 0;
238
239 miscRegs[MISCREG_FPSID] = p->fpsid;
240
241 if (haveLPAE) {
242 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
243 ttbcr.eae = 0;
244 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
245 // Enforce consistency with system-level settings
246 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
247 }
248
249 if (haveSecurity) {
250 miscRegs[MISCREG_SCTLR_S] = sctlr;
251 miscRegs[MISCREG_SCR] = 0;
252 miscRegs[MISCREG_VBAR_S] = 0;
253 } else {
254 // we're always non-secure
255 miscRegs[MISCREG_SCR] = 1;
256 }
257
258 //XXX We need to initialize the rest of the state.
259}
260
261void
262ISA::clear64(const ArmISAParams *p)
263{
264 CPSR cpsr = 0;
265 Addr rvbar = system->resetAddr();
266 switch (system->highestEL()) {
267 // Set initial EL to highest implemented EL using associated stack
268 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
269 // value
270 case EL3:
271 cpsr.mode = MODE_EL3H;
272 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
273 break;
274 case EL2:
275 cpsr.mode = MODE_EL2H;
276 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
277 break;
278 case EL1:
279 cpsr.mode = MODE_EL1H;
280 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
281 break;
282 default:
283 panic("Invalid highest implemented exception level");
284 break;
285 }
286
287 // Initialize rest of CPSR
288 cpsr.daif = 0xf; // Mask all interrupts
289 cpsr.ss = 0;
290 cpsr.il = 0;
291 miscRegs[MISCREG_CPSR] = cpsr;
292 updateRegMap(cpsr);
293
294 // Initialize other control registers
295 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
296 if (haveSecurity) {
297 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
298 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
299 } else if (haveVirtualization) {
300 // also MISCREG_SCTLR_EL2 (by mapping)
301 miscRegs[MISCREG_HSCTLR] = 0x30c50830;
302 } else {
303 // also MISCREG_SCTLR_EL1 (by mapping)
304 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
305 // Always non-secure
306 miscRegs[MISCREG_SCR_EL3] = 1;
307 }
308}
309
310void
311ISA::initID32(const ArmISAParams *p)
312{
313 // Initialize configurable default values
314 miscRegs[MISCREG_MIDR] = p->midr;
315 miscRegs[MISCREG_MIDR_EL1] = p->midr;
316 miscRegs[MISCREG_VPIDR] = p->midr;
317
318 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
319 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
320 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
321 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
322 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
323 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
324
325 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
326 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
327 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
328 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
329
330 miscRegs[MISCREG_ID_ISAR5] = insertBits(
331 miscRegs[MISCREG_ID_ISAR5], 19, 4,
332 haveCrypto ? 0x1112 : 0x0);
333}
334
335void
336ISA::initID64(const ArmISAParams *p)
337{
338 // Initialize configurable id registers
339 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
340 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
341 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
342 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
343 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
344
345 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
346 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
347 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
348 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
349 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
350 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
351
352 miscRegs[MISCREG_ID_DFR0_EL1] =
353 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
354
355 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
356
357 // SVE
358 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0
359 if (haveSecurity) {
360 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
361 } else if (haveVirtualization) {
362 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
363 } else {
364 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
365 }
366
367 // Enforce consistency with system-level settings...
368
369 // EL3
370 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
371 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
372 haveSecurity ? 0x2 : 0x0);
373 // EL2
374 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
375 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
376 haveVirtualization ? 0x2 : 0x0);
377 // SVE
378 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
379 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
380 haveSVE ? 0x1 : 0x0);
381 // Large ASID support
382 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
383 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
384 haveLargeAsid64 ? 0x2 : 0x0);
385 // Physical address size
386 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
387 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
388 encodePhysAddrRange64(physAddrRange));
389 // Crypto
390 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
391 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
392 haveCrypto ? 0x1112 : 0x0);
393}
394
395void
396ISA::startup(ThreadContext *tc)
397{
398 pmu->setThreadContext(tc);
399
400 if (system) {
401 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
402 if (gicv3) {
403 haveGICv3CPUInterface = true;
404 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
405 gicv3CpuInterface->setISA(this);
406 }
407 }
408}
409
410
411RegVal
412ISA::readMiscRegNoEffect(int misc_reg) const
413{
414 assert(misc_reg < NumMiscRegs);
415
416 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
417 const auto &map = getMiscIndices(misc_reg);
418 int lower = map.first, upper = map.second;
419 // NB!: apply architectural masks according to desired register,
420 // despite possibly getting value from different (mapped) register.
421 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
422 |(miscRegs[upper] << 32));
423 if (val & reg.res0()) {
424 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
425 miscRegName[misc_reg], val & reg.res0());
426 }
427 if ((val & reg.res1()) != reg.res1()) {
428 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
429 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
430 }
431 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
432}
433
434
435RegVal
436ISA::readMiscReg(int misc_reg, ThreadContext *tc)
437{
438 CPSR cpsr = 0;
439 PCState pc = 0;
440 SCR scr = 0;
441
442 if (misc_reg == MISCREG_CPSR) {
443 cpsr = miscRegs[misc_reg];
444 pc = tc->pcState();
445 cpsr.j = pc.jazelle() ? 1 : 0;
446 cpsr.t = pc.thumb() ? 1 : 0;
447 return cpsr;
448 }
449
450#ifndef NDEBUG
451 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
452 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
453 warn("Unimplemented system register %s read.\n",
454 miscRegName[misc_reg]);
455 else
456 panic("Unimplemented system register %s read.\n",
457 miscRegName[misc_reg]);
458 }
459#endif
460
461 switch (unflattenMiscReg(misc_reg)) {
462 case MISCREG_HCR:
463 {
464 if (!haveVirtualization)
465 return 0;
466 else
467 return readMiscRegNoEffect(MISCREG_HCR);
468 }
469 case MISCREG_CPACR:
470 {
471 const uint32_t ones = (uint32_t)(-1);
472 CPACR cpacrMask = 0;
473 // Only cp10, cp11, and ase are implemented, nothing else should
474 // be readable? (straight copy from the write code)
475 cpacrMask.cp10 = ones;
476 cpacrMask.cp11 = ones;
477 cpacrMask.asedis = ones;
478
479 // Security Extensions may limit the readability of CPACR
480 if (haveSecurity) {
481 scr = readMiscRegNoEffect(MISCREG_SCR);
482 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
483 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
484 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
485 // NB: Skipping the full loop, here
486 if (!nsacr.cp10) cpacrMask.cp10 = 0;
487 if (!nsacr.cp11) cpacrMask.cp11 = 0;
488 }
489 }
490 RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
491 val &= cpacrMask;
492 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
493 miscRegName[misc_reg], val);
494 return val;
495 }
496 case MISCREG_MPIDR:
497 case MISCREG_MPIDR_EL1:
498 return readMPIDR(system, tc);
499 case MISCREG_VMPIDR:
500 case MISCREG_VMPIDR_EL2:
501 // top bit defined as RES1
502 return readMiscRegNoEffect(misc_reg) | 0x80000000;
503 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
504 case MISCREG_REVIDR: // not implemented, so alias MIDR
505 case MISCREG_MIDR:
506 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
507 scr = readMiscRegNoEffect(MISCREG_SCR);
508 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
509 return readMiscRegNoEffect(misc_reg);
510 } else {
511 return readMiscRegNoEffect(MISCREG_VPIDR);
512 }
513 break;
514 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
515 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
516 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
517 case MISCREG_AIDR: // AUX ID set to 0
518 case MISCREG_TCMTR: // No TCM's
519 return 0;
520
521 case MISCREG_CLIDR:
522 warn_once("The clidr register always reports 0 caches.\n");
523 warn_once("clidr LoUIS field of 0b001 to match current "
524 "ARM implementations.\n");
525 return 0x00200000;
526 case MISCREG_CCSIDR:
527 warn_once("The ccsidr register isn't implemented and "
528 "always reads as 0.\n");
529 break;
530 case MISCREG_CTR: // AArch32, ARMv7, top bit set
531 case MISCREG_CTR_EL0: // AArch64
532 {
533 //all caches have the same line size in gem5
534 //4 byte words in ARM
535 unsigned lineSizeWords =
536 tc->getSystemPtr()->cacheLineSize() / 4;
537 unsigned log2LineSizeWords = 0;
538
539 while (lineSizeWords >>= 1) {
540 ++log2LineSizeWords;
541 }
542
543 CTR ctr = 0;
544 //log2 of minimun i-cache line size (words)
545 ctr.iCacheLineSize = log2LineSizeWords;
546 //b11 - gem5 uses pipt
547 ctr.l1IndexPolicy = 0x3;
548 //log2 of minimum d-cache line size (words)
549 ctr.dCacheLineSize = log2LineSizeWords;
550 //log2 of max reservation size (words)
551 ctr.erg = log2LineSizeWords;
552 //log2 of max writeback size (words)
553 ctr.cwg = log2LineSizeWords;
554 //b100 - gem5 format is ARMv7
555 ctr.format = 0x4;
556
557 return ctr;
558 }
559 case MISCREG_ACTLR:
560 warn("Not doing anything for miscreg ACTLR\n");
561 break;
562
563 case MISCREG_PMXEVTYPER_PMCCFILTR:
564 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
565 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
566 case MISCREG_PMCR ... MISCREG_PMOVSSET:
567 return pmu->readMiscReg(misc_reg);
568
569 case MISCREG_CPSR_Q:
570 panic("shouldn't be reading this register seperately\n");
571 case MISCREG_FPSCR_QC:
572 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
573 case MISCREG_FPSCR_EXC:
574 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
575 case MISCREG_FPSR:
576 {
577 const uint32_t ones = (uint32_t)(-1);
578 FPSCR fpscrMask = 0;
579 fpscrMask.ioc = ones;
580 fpscrMask.dzc = ones;
581 fpscrMask.ofc = ones;
582 fpscrMask.ufc = ones;
583 fpscrMask.ixc = ones;
584 fpscrMask.idc = ones;
585 fpscrMask.qc = ones;
586 fpscrMask.v = ones;
587 fpscrMask.c = ones;
588 fpscrMask.z = ones;
589 fpscrMask.n = ones;
590 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
591 }
592 case MISCREG_FPCR:
593 {
594 const uint32_t ones = (uint32_t)(-1);
595 FPSCR fpscrMask = 0;
596 fpscrMask.len = ones;
597 fpscrMask.fz16 = ones;
598 fpscrMask.stride = ones;
599 fpscrMask.rMode = ones;
600 fpscrMask.fz = ones;
601 fpscrMask.dn = ones;
602 fpscrMask.ahp = ones;
603 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
604 }
605 case MISCREG_NZCV:
606 {
607 CPSR cpsr = 0;
608 cpsr.nz = tc->readCCReg(CCREG_NZ);
609 cpsr.c = tc->readCCReg(CCREG_C);
610 cpsr.v = tc->readCCReg(CCREG_V);
611 return cpsr;
612 }
613 case MISCREG_DAIF:
614 {
615 CPSR cpsr = 0;
616 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
617 return cpsr;
618 }
619 case MISCREG_SP_EL0:
620 {
621 return tc->readIntReg(INTREG_SP0);
622 }
623 case MISCREG_SP_EL1:
624 {
625 return tc->readIntReg(INTREG_SP1);
626 }
627 case MISCREG_SP_EL2:
628 {
629 return tc->readIntReg(INTREG_SP2);
630 }
631 case MISCREG_SPSEL:
632 {
633 return miscRegs[MISCREG_CPSR] & 0x1;
634 }
635 case MISCREG_CURRENTEL:
636 {
637 return miscRegs[MISCREG_CPSR] & 0xc;
638 }
639 case MISCREG_L2CTLR:
640 {
641 // mostly unimplemented, just set NumCPUs field from sim and return
642 L2CTLR l2ctlr = 0;
643 // b00:1CPU to b11:4CPUs
644 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
645 return l2ctlr;
646 }
647 case MISCREG_DBGDIDR:
648 /* For now just implement the version number.
649 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
650 */
651 return 0x5 << 16;
652 case MISCREG_DBGDSCRint:
653 return 0;
654 case MISCREG_ISR:
655 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
656 readMiscRegNoEffect(MISCREG_HCR),
657 readMiscRegNoEffect(MISCREG_CPSR),
658 readMiscRegNoEffect(MISCREG_SCR));
659 case MISCREG_ISR_EL1:
660 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
661 readMiscRegNoEffect(MISCREG_HCR_EL2),
662 readMiscRegNoEffect(MISCREG_CPSR),
663 readMiscRegNoEffect(MISCREG_SCR_EL3));
664 case MISCREG_DCZID_EL0:
665 return 0x04; // DC ZVA clear 64-byte chunks
666 case MISCREG_HCPTR:
667 {
668 RegVal val = readMiscRegNoEffect(misc_reg);
669 // The trap bit associated with CP14 is defined as RAZ
670 val &= ~(1 << 14);
671 // If a CP bit in NSACR is 0 then the corresponding bit in
672 // HCPTR is RAO/WI
673 bool secure_lookup = haveSecurity &&
674 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
675 readMiscRegNoEffect(MISCREG_CPSR));
676 if (!secure_lookup) {
677 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
678 val |= (mask ^ 0x7FFF) & 0xBFFF;
679 }
680 // Set the bits for unimplemented coprocessors to RAO/WI
681 val |= 0x33FF;
682 return (val);
683 }
684 case MISCREG_HDFAR: // alias for secure DFAR
685 return readMiscRegNoEffect(MISCREG_DFAR_S);
686 case MISCREG_HIFAR: // alias for secure IFAR
687 return readMiscRegNoEffect(MISCREG_IFAR_S);
688
689 case MISCREG_ID_PFR0:
690 // !ThumbEE | !Jazelle | Thumb | ARM
691 return 0x00000031;
692 case MISCREG_ID_PFR1:
693 { // Timer | Virti | !M Profile | TrustZone | ARMv4
694 bool haveTimer = (system->getGenericTimer() != NULL);
695 return 0x00000001
696 | (haveSecurity ? 0x00000010 : 0x0)
697 | (haveVirtualization ? 0x00001000 : 0x0)
698 | (haveTimer ? 0x00010000 : 0x0);
699 }
700 case MISCREG_ID_AA64PFR0_EL1:
701 return 0x0000000000000002 | // AArch{64,32} supported at EL0
702 0x0000000000000020 | // EL1
703 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2
704 (haveSecurity ? 0x0000000000002000 : 0) | // EL3
705 (haveSVE ? 0x0000000100000000 : 0) | // SVE
706 (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
707 case MISCREG_ID_AA64PFR1_EL1:
708 return 0; // bits [63:0] RES0 (reserved for future use)
709
710 // Generic Timer registers
711 case MISCREG_CNTHV_CTL_EL2:
712 case MISCREG_CNTHV_CVAL_EL2:
713 case MISCREG_CNTHV_TVAL_EL2:
714 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
715 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
716 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
717 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
718 return getGenericTimer(tc).readMiscReg(misc_reg);
719
720 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
721 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
722 return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
723
724 default:
725 break;
726
727 }
728 return readMiscRegNoEffect(misc_reg);
729}
730
731void
732ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
733{
734 assert(misc_reg < NumMiscRegs);
735
736 const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
737 const auto &map = getMiscIndices(misc_reg);
738 int lower = map.first, upper = map.second;
739
740 auto v = (val & ~reg.wi()) | reg.rao();
741 if (upper > 0) {
742 miscRegs[lower] = bits(v, 31, 0);
743 miscRegs[upper] = bits(v, 63, 32);
744 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
745 misc_reg, lower, upper, v);
746 } else {
747 miscRegs[lower] = v;
748 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
749 misc_reg, lower, v);
750 }
751}
752
753void
754ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
755{
756
757 RegVal newVal = val;
758 bool secure_lookup;
759 SCR scr;
760
761 if (misc_reg == MISCREG_CPSR) {
762 updateRegMap(val);
763
764
765 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
766 int old_mode = old_cpsr.mode;
767 CPSR cpsr = val;
768 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
769 getITBPtr(tc)->invalidateMiscReg();
770 getDTBPtr(tc)->invalidateMiscReg();
771 }
772
773 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
774 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
775 PCState pc = tc->pcState();
776 pc.nextThumb(cpsr.t);
777 pc.nextJazelle(cpsr.j);
778 pc.illegalExec(cpsr.il == 1);
779
780 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
781
782 // Follow slightly different semantics if a CheckerCPU object
783 // is connected
784 CheckerCPU *checker = tc->getCheckerCpuPtr();
785 if (checker) {
786 tc->pcStateNoRecord(pc);
787 } else {
788 tc->pcState(pc);
789 }
790 } else {
791#ifndef NDEBUG
792 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
793 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
794 warn("Unimplemented system register %s write with %#x.\n",
795 miscRegName[misc_reg], val);
796 else
797 panic("Unimplemented system register %s write with %#x.\n",
798 miscRegName[misc_reg], val);
799 }
800#endif
801 switch (unflattenMiscReg(misc_reg)) {
802 case MISCREG_CPACR:
803 {
804
805 const uint32_t ones = (uint32_t)(-1);
806 CPACR cpacrMask = 0;
807 // Only cp10, cp11, and ase are implemented, nothing else should
808 // be writable
809 cpacrMask.cp10 = ones;
810 cpacrMask.cp11 = ones;
811 cpacrMask.asedis = ones;
812
813 // Security Extensions may limit the writability of CPACR
814 if (haveSecurity) {
815 scr = readMiscRegNoEffect(MISCREG_SCR);
816 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
817 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
818 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
819 // NB: Skipping the full loop, here
820 if (!nsacr.cp10) cpacrMask.cp10 = 0;
821 if (!nsacr.cp11) cpacrMask.cp11 = 0;
822 }
823 }
824
825 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
826 newVal &= cpacrMask;
827 newVal |= old_val & ~cpacrMask;
828 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
829 miscRegName[misc_reg], newVal);
830 }
831 break;
832 case MISCREG_CPACR_EL1:
833 {
834 const uint32_t ones = (uint32_t)(-1);
835 CPACR cpacrMask = 0;
836 cpacrMask.tta = ones;
837 cpacrMask.fpen = ones;
838 if (haveSVE) {
839 cpacrMask.zen = ones;
840 }
841 newVal &= cpacrMask;
842 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
843 miscRegName[misc_reg], newVal);
844 }
845 break;
846 case MISCREG_CPTR_EL2:
847 {
848 const uint32_t ones = (uint32_t)(-1);
849 CPTR cptrMask = 0;
850 cptrMask.tcpac = ones;
851 cptrMask.tta = ones;
852 cptrMask.tfp = ones;
853 if (haveSVE) {
854 cptrMask.tz = ones;
855 }
856 newVal &= cptrMask;
857 cptrMask = 0;
858 cptrMask.res1_13_12_el2 = ones;
859 cptrMask.res1_7_0_el2 = ones;
860 if (!haveSVE) {
861 cptrMask.res1_8_el2 = ones;
862 }
863 cptrMask.res1_9_el2 = ones;
864 newVal |= cptrMask;
865 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
866 miscRegName[misc_reg], newVal);
867 }
868 break;
869 case MISCREG_CPTR_EL3:
870 {
871 const uint32_t ones = (uint32_t)(-1);
872 CPTR cptrMask = 0;
873 cptrMask.tcpac = ones;
874 cptrMask.tta = ones;
875 cptrMask.tfp = ones;
876 if (haveSVE) {
877 cptrMask.ez = ones;
878 }
879 newVal &= cptrMask;
880 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
881 miscRegName[misc_reg], newVal);
882 }
883 break;
884 case MISCREG_CSSELR:
885 warn_once("The csselr register isn't implemented.\n");
886 return;
887
888 case MISCREG_DC_ZVA_Xt:
889 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
890 return;
891
892 case MISCREG_FPSCR:
893 {
894 const uint32_t ones = (uint32_t)(-1);
895 FPSCR fpscrMask = 0;
896 fpscrMask.ioc = ones;
897 fpscrMask.dzc = ones;
898 fpscrMask.ofc = ones;
899 fpscrMask.ufc = ones;
900 fpscrMask.ixc = ones;
901 fpscrMask.idc = ones;
902 fpscrMask.ioe = ones;
903 fpscrMask.dze = ones;
904 fpscrMask.ofe = ones;
905 fpscrMask.ufe = ones;
906 fpscrMask.ixe = ones;
907 fpscrMask.ide = ones;
908 fpscrMask.len = ones;
909 fpscrMask.fz16 = ones;
910 fpscrMask.stride = ones;
911 fpscrMask.rMode = ones;
912 fpscrMask.fz = ones;
913 fpscrMask.dn = ones;
914 fpscrMask.ahp = ones;
915 fpscrMask.qc = ones;
916 fpscrMask.v = ones;
917 fpscrMask.c = ones;
918 fpscrMask.z = ones;
919 fpscrMask.n = ones;
920 newVal = (newVal & (uint32_t)fpscrMask) |
921 (readMiscRegNoEffect(MISCREG_FPSCR) &
922 ~(uint32_t)fpscrMask);
923 tc->getDecoderPtr()->setContext(newVal);
924 }
925 break;
926 case MISCREG_FPSR:
927 {
928 const uint32_t ones = (uint32_t)(-1);
929 FPSCR fpscrMask = 0;
930 fpscrMask.ioc = ones;
931 fpscrMask.dzc = ones;
932 fpscrMask.ofc = ones;
933 fpscrMask.ufc = ones;
934 fpscrMask.ixc = ones;
935 fpscrMask.idc = ones;
936 fpscrMask.qc = ones;
937 fpscrMask.v = ones;
938 fpscrMask.c = ones;
939 fpscrMask.z = ones;
940 fpscrMask.n = ones;
941 newVal = (newVal & (uint32_t)fpscrMask) |
942 (readMiscRegNoEffect(MISCREG_FPSCR) &
943 ~(uint32_t)fpscrMask);
944 misc_reg = MISCREG_FPSCR;
945 }
946 break;
947 case MISCREG_FPCR:
948 {
949 const uint32_t ones = (uint32_t)(-1);
950 FPSCR fpscrMask = 0;
951 fpscrMask.len = ones;
952 fpscrMask.fz16 = ones;
953 fpscrMask.stride = ones;
954 fpscrMask.rMode = ones;
955 fpscrMask.fz = ones;
956 fpscrMask.dn = ones;
957 fpscrMask.ahp = ones;
958 newVal = (newVal & (uint32_t)fpscrMask) |
959 (readMiscRegNoEffect(MISCREG_FPSCR) &
960 ~(uint32_t)fpscrMask);
961 misc_reg = MISCREG_FPSCR;
962 }
963 break;
964 case MISCREG_CPSR_Q:
965 {
966 assert(!(newVal & ~CpsrMaskQ));
967 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
968 misc_reg = MISCREG_CPSR;
969 }
970 break;
971 case MISCREG_FPSCR_QC:
972 {
973 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
974 (newVal & FpscrQcMask);
975 misc_reg = MISCREG_FPSCR;
976 }
977 break;
978 case MISCREG_FPSCR_EXC:
979 {
980 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
981 (newVal & FpscrExcMask);
982 misc_reg = MISCREG_FPSCR;
983 }
984 break;
985 case MISCREG_FPEXC:
986 {
987 // vfpv3 architecture, section B.6.1 of DDI04068
988 // bit 29 - valid only if fpexc[31] is 0
989 const uint32_t fpexcMask = 0x60000000;
990 newVal = (newVal & fpexcMask) |
991 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
992 }
993 break;
994 case MISCREG_HCR:
995 {
996 if (!haveVirtualization)
997 return;
998 }
999 break;
1000 case MISCREG_IFSR:
1001 {
1002 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1003 const uint32_t ifsrMask =
1004 mask(31, 13) | mask(11, 11) | mask(8, 6);
1005 newVal = newVal & ~ifsrMask;
1006 }
1007 break;
1008 case MISCREG_DFSR:
1009 {
1010 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1011 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1012 newVal = newVal & ~dfsrMask;
1013 }
1014 break;
1015 case MISCREG_AMAIR0:
1016 case MISCREG_AMAIR1:
1017 {
1018 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1019 // Valid only with LPAE
1020 if (!haveLPAE)
1021 return;
1022 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1023 }
1024 break;
1025 case MISCREG_SCR:
1026 getITBPtr(tc)->invalidateMiscReg();
1027 getDTBPtr(tc)->invalidateMiscReg();
1028 break;
1029 case MISCREG_SCTLR:
1030 {
1031 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1032 scr = readMiscRegNoEffect(MISCREG_SCR);
1033
1034 MiscRegIndex sctlr_idx;
1035 if (haveSecurity && !highestELIs64 && !scr.ns) {
1036 sctlr_idx = MISCREG_SCTLR_S;
1037 } else {
1038 sctlr_idx = MISCREG_SCTLR_NS;
1039 }
1040
1041 SCTLR sctlr = miscRegs[sctlr_idx];
1042 SCTLR new_sctlr = newVal;
1043 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1044 miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1045 getITBPtr(tc)->invalidateMiscReg();
1046 getDTBPtr(tc)->invalidateMiscReg();
1047 }
1048 case MISCREG_MIDR:
1049 case MISCREG_ID_PFR0:
1050 case MISCREG_ID_PFR1:
1051 case MISCREG_ID_DFR0:
1052 case MISCREG_ID_MMFR0:
1053 case MISCREG_ID_MMFR1:
1054 case MISCREG_ID_MMFR2:
1055 case MISCREG_ID_MMFR3:
1056 case MISCREG_ID_ISAR0:
1057 case MISCREG_ID_ISAR1:
1058 case MISCREG_ID_ISAR2:
1059 case MISCREG_ID_ISAR3:
1060 case MISCREG_ID_ISAR4:
1061 case MISCREG_ID_ISAR5:
1062
1063 case MISCREG_MPIDR:
1064 case MISCREG_FPSID:
1065 case MISCREG_TLBTR:
1066 case MISCREG_MVFR0:
1067 case MISCREG_MVFR1:
1068
1069 case MISCREG_ID_AA64AFR0_EL1:
1070 case MISCREG_ID_AA64AFR1_EL1:
1071 case MISCREG_ID_AA64DFR0_EL1:
1072 case MISCREG_ID_AA64DFR1_EL1:
1073 case MISCREG_ID_AA64ISAR0_EL1:
1074 case MISCREG_ID_AA64ISAR1_EL1:
1075 case MISCREG_ID_AA64MMFR0_EL1:
1076 case MISCREG_ID_AA64MMFR1_EL1:
1077 case MISCREG_ID_AA64MMFR2_EL1:
1078 case MISCREG_ID_AA64PFR0_EL1:
1079 case MISCREG_ID_AA64PFR1_EL1:
1080 // ID registers are constants.
1081 return;
1082
1083 // TLB Invalidate All
1084 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1085 {
1086 assert32(tc);
1087 scr = readMiscReg(MISCREG_SCR, tc);
1088
1089 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1090 tlbiOp(tc);
1091 return;
1092 }
1093 // TLB Invalidate All, Inner Shareable
1094 case MISCREG_TLBIALLIS:
1095 {
1096 assert32(tc);
1097 scr = readMiscReg(MISCREG_SCR, tc);
1098
1099 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1100 tlbiOp.broadcast(tc);
1101 return;
1102 }
1103 // Instruction TLB Invalidate All
1104 case MISCREG_ITLBIALL:
1105 {
1106 assert32(tc);
1107 scr = readMiscReg(MISCREG_SCR, tc);
1108
1109 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1110 tlbiOp(tc);
1111 return;
1112 }
1113 // Data TLB Invalidate All
1114 case MISCREG_DTLBIALL:
1115 {
1116 assert32(tc);
1117 scr = readMiscReg(MISCREG_SCR, tc);
1118
1119 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1120 tlbiOp(tc);
1121 return;
1122 }
1123 // TLB Invalidate by VA
1124 // mcr tlbimval(is) is invalidating all matching entries
1125 // regardless of the level of lookup, since in gem5 we cache
1126 // in the tlb the last level of lookup only.
1127 case MISCREG_TLBIMVA:
1128 case MISCREG_TLBIMVAL:
1129 {
1130 assert32(tc);
1131 scr = readMiscReg(MISCREG_SCR, tc);
1132
1133 TLBIMVA tlbiOp(EL1,
1134 haveSecurity && !scr.ns,
1135 mbits(newVal, 31, 12),
1136 bits(newVal, 7,0));
1137
1138 tlbiOp(tc);
1139 return;
1140 }
1141 // TLB Invalidate by VA, Inner Shareable
1142 case MISCREG_TLBIMVAIS:
1143 case MISCREG_TLBIMVALIS:
1144 {
1145 assert32(tc);
1146 scr = readMiscReg(MISCREG_SCR, tc);
1147
1148 TLBIMVA tlbiOp(EL1,
1149 haveSecurity && !scr.ns,
1150 mbits(newVal, 31, 12),
1151 bits(newVal, 7,0));
1152
1153 tlbiOp.broadcast(tc);
1154 return;
1155 }
1156 // TLB Invalidate by ASID match
1157 case MISCREG_TLBIASID:
1158 {
1159 assert32(tc);
1160 scr = readMiscReg(MISCREG_SCR, tc);
1161
1162 TLBIASID tlbiOp(EL1,
1163 haveSecurity && !scr.ns,
1164 bits(newVal, 7,0));
1165
1166 tlbiOp(tc);
1167 return;
1168 }
1169 // TLB Invalidate by ASID match, Inner Shareable
1170 case MISCREG_TLBIASIDIS:
1171 {
1172 assert32(tc);
1173 scr = readMiscReg(MISCREG_SCR, tc);
1174
1175 TLBIASID tlbiOp(EL1,
1176 haveSecurity && !scr.ns,
1177 bits(newVal, 7,0));
1178
1179 tlbiOp.broadcast(tc);
1180 return;
1181 }
1182 // mcr tlbimvaal(is) is invalidating all matching entries
1183 // regardless of the level of lookup, since in gem5 we cache
1184 // in the tlb the last level of lookup only.
1185 // TLB Invalidate by VA, All ASID
1186 case MISCREG_TLBIMVAA:
1187 case MISCREG_TLBIMVAAL:
1188 {
1189 assert32(tc);
1190 scr = readMiscReg(MISCREG_SCR, tc);
1191
1192 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1193 mbits(newVal, 31,12), false);
1194
1195 tlbiOp(tc);
1196 return;
1197 }
1198 // TLB Invalidate by VA, All ASID, Inner Shareable
1199 case MISCREG_TLBIMVAAIS:
1200 case MISCREG_TLBIMVAALIS:
1201 {
1202 assert32(tc);
1203 scr = readMiscReg(MISCREG_SCR, tc);
1204
1205 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1206 mbits(newVal, 31,12), false);
1207
1208 tlbiOp.broadcast(tc);
1209 return;
1210 }
1211 // mcr tlbimvalh(is) is invalidating all matching entries
1212 // regardless of the level of lookup, since in gem5 we cache
1213 // in the tlb the last level of lookup only.
1214 // TLB Invalidate by VA, Hyp mode
1215 case MISCREG_TLBIMVAH:
1216 case MISCREG_TLBIMVALH:
1217 {
1218 assert32(tc);
1219 scr = readMiscReg(MISCREG_SCR, tc);
1220
1221 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1222 mbits(newVal, 31,12), true);
1223
1224 tlbiOp(tc);
1225 return;
1226 }
1227 // TLB Invalidate by VA, Hyp mode, Inner Shareable
1228 case MISCREG_TLBIMVAHIS:
1229 case MISCREG_TLBIMVALHIS:
1230 {
1231 assert32(tc);
1232 scr = readMiscReg(MISCREG_SCR, tc);
1233
1234 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1235 mbits(newVal, 31,12), true);
1236
1237 tlbiOp.broadcast(tc);
1238 return;
1239 }
1240 // mcr tlbiipas2l(is) is invalidating all matching entries
1241 // regardless of the level of lookup, since in gem5 we cache
1242 // in the tlb the last level of lookup only.
1243 // TLB Invalidate by Intermediate Physical Address, Stage 2
1244 case MISCREG_TLBIIPAS2:
1245 case MISCREG_TLBIIPAS2L:
1246 {
1247 assert32(tc);
1248 scr = readMiscReg(MISCREG_SCR, tc);
1249
1250 TLBIIPA tlbiOp(EL1,
1251 haveSecurity && !scr.ns,
1252 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1253
1254 tlbiOp(tc);
1255 return;
1256 }
1257 // TLB Invalidate by Intermediate Physical Address, Stage 2,
1258 // Inner Shareable
1259 case MISCREG_TLBIIPAS2IS:
1260 case MISCREG_TLBIIPAS2LIS:
1261 {
1262 assert32(tc);
1263 scr = readMiscReg(MISCREG_SCR, tc);
1264
1265 TLBIIPA tlbiOp(EL1,
1266 haveSecurity && !scr.ns,
1267 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1268
1269 tlbiOp.broadcast(tc);
1270 return;
1271 }
1272 // Instruction TLB Invalidate by VA
1273 case MISCREG_ITLBIMVA:
1274 {
1275 assert32(tc);
1276 scr = readMiscReg(MISCREG_SCR, tc);
1277
1278 ITLBIMVA tlbiOp(EL1,
1279 haveSecurity && !scr.ns,
1280 mbits(newVal, 31, 12),
1281 bits(newVal, 7,0));
1282
1283 tlbiOp(tc);
1284 return;
1285 }
1286 // Data TLB Invalidate by VA
1287 case MISCREG_DTLBIMVA:
1288 {
1289 assert32(tc);
1290 scr = readMiscReg(MISCREG_SCR, tc);
1291
1292 DTLBIMVA tlbiOp(EL1,
1293 haveSecurity && !scr.ns,
1294 mbits(newVal, 31, 12),
1295 bits(newVal, 7,0));
1296
1297 tlbiOp(tc);
1298 return;
1299 }
1300 // Instruction TLB Invalidate by ASID match
1301 case MISCREG_ITLBIASID:
1302 {
1303 assert32(tc);
1304 scr = readMiscReg(MISCREG_SCR, tc);
1305
1306 ITLBIASID tlbiOp(EL1,
1307 haveSecurity && !scr.ns,
1308 bits(newVal, 7,0));
1309
1310 tlbiOp(tc);
1311 return;
1312 }
1313 // Data TLB Invalidate by ASID match
1314 case MISCREG_DTLBIASID:
1315 {
1316 assert32(tc);
1317 scr = readMiscReg(MISCREG_SCR, tc);
1318
1319 DTLBIASID tlbiOp(EL1,
1320 haveSecurity && !scr.ns,
1321 bits(newVal, 7,0));
1322
1323 tlbiOp(tc);
1324 return;
1325 }
1326 // TLB Invalidate All, Non-Secure Non-Hyp
1327 case MISCREG_TLBIALLNSNH:
1328 {
1329 assert32(tc);
1330
1331 TLBIALLN tlbiOp(EL1, false);
1332 tlbiOp(tc);
1333 return;
1334 }
1335 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1336 case MISCREG_TLBIALLNSNHIS:
1337 {
1338 assert32(tc);
1339
1340 TLBIALLN tlbiOp(EL1, false);
1341 tlbiOp.broadcast(tc);
1342 return;
1343 }
1344 // TLB Invalidate All, Hyp mode
1345 case MISCREG_TLBIALLH:
1346 {
1347 assert32(tc);
1348
1349 TLBIALLN tlbiOp(EL1, true);
1350 tlbiOp(tc);
1351 return;
1352 }
1353 // TLB Invalidate All, Hyp mode, Inner Shareable
1354 case MISCREG_TLBIALLHIS:
1355 {
1356 assert32(tc);
1357
1358 TLBIALLN tlbiOp(EL1, true);
1359 tlbiOp.broadcast(tc);
1360 return;
1361 }
1362 // AArch64 TLB Invalidate All, EL3
1363 case MISCREG_TLBI_ALLE3:
1364 {
1365 assert64(tc);
1366
1367 TLBIALL tlbiOp(EL3, true);
1368 tlbiOp(tc);
1369 return;
1370 }
1371 // AArch64 TLB Invalidate All, EL3, Inner Shareable
1372 case MISCREG_TLBI_ALLE3IS:
1373 {
1374 assert64(tc);
1375
1376 TLBIALL tlbiOp(EL3, true);
1377 tlbiOp.broadcast(tc);
1378 return;
1379 }
1380 // AArch64 TLB Invalidate All, EL2, Inner Shareable
1381 case MISCREG_TLBI_ALLE2:
1382 case MISCREG_TLBI_ALLE2IS:
1383 {
1384 assert64(tc);
1385 scr = readMiscReg(MISCREG_SCR, tc);
1386
1387 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1388 tlbiOp(tc);
1389 return;
1390 }
1391 // AArch64 TLB Invalidate All, EL1
1392 case MISCREG_TLBI_ALLE1:
1393 case MISCREG_TLBI_VMALLE1:
1394 case MISCREG_TLBI_VMALLS12E1:
1395 // @todo: handle VMID and stage 2 to enable Virtualization
1396 {
1397 assert64(tc);
1398 scr = readMiscReg(MISCREG_SCR, tc);
1399
1400 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1401 tlbiOp(tc);
1402 return;
1403 }
1404 // AArch64 TLB Invalidate All, EL1, Inner Shareable
1405 case MISCREG_TLBI_ALLE1IS:
1406 case MISCREG_TLBI_VMALLE1IS:
1407 case MISCREG_TLBI_VMALLS12E1IS:
1408 // @todo: handle VMID and stage 2 to enable Virtualization
1409 {
1410 assert64(tc);
1411 scr = readMiscReg(MISCREG_SCR, tc);
1412
1413 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1414 tlbiOp.broadcast(tc);
1415 return;
1416 }
1417 // VAEx(IS) and VALEx(IS) are the same because TLBs
1418 // only store entries
1419 // from the last level of translation table walks
1420 // @todo: handle VMID to enable Virtualization
1421 // AArch64 TLB Invalidate by VA, EL3
1422 case MISCREG_TLBI_VAE3_Xt:
1423 case MISCREG_TLBI_VALE3_Xt:
1424 {
1425 assert64(tc);
1426
1427 TLBIMVA tlbiOp(EL3, true,
1428 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1429 0xbeef);
1430 tlbiOp(tc);
1431 return;
1432 }
1433 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1434 case MISCREG_TLBI_VAE3IS_Xt:
1435 case MISCREG_TLBI_VALE3IS_Xt:
1436 {
1437 assert64(tc);
1438
1439 TLBIMVA tlbiOp(EL3, true,
1440 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1441 0xbeef);
1442
1443 tlbiOp.broadcast(tc);
1444 return;
1445 }
1446 // AArch64 TLB Invalidate by VA, EL2
1447 case MISCREG_TLBI_VAE2_Xt:
1448 case MISCREG_TLBI_VALE2_Xt:
1449 {
1450 assert64(tc);
1451 scr = readMiscReg(MISCREG_SCR, tc);
1452
1453 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1454 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1455 0xbeef);
1456 tlbiOp(tc);
1457 return;
1458 }
1459 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1460 case MISCREG_TLBI_VAE2IS_Xt:
1461 case MISCREG_TLBI_VALE2IS_Xt:
1462 {
1463 assert64(tc);
1464 scr = readMiscReg(MISCREG_SCR, tc);
1465
1466 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1467 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1468 0xbeef);
1469
1470 tlbiOp.broadcast(tc);
1471 return;
1472 }
1473 // AArch64 TLB Invalidate by VA, EL1
1474 case MISCREG_TLBI_VAE1_Xt:
1475 case MISCREG_TLBI_VALE1_Xt:
1476 {
1477 assert64(tc);
1478 scr = readMiscReg(MISCREG_SCR, tc);
1479 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1480 bits(newVal, 55, 48);
1481
1482 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1483 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1484 asid);
1485
1486 tlbiOp(tc);
1487 return;
1488 }
1489 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1490 case MISCREG_TLBI_VAE1IS_Xt:
1491 case MISCREG_TLBI_VALE1IS_Xt:
1492 {
1493 assert64(tc);
1494 scr = readMiscReg(MISCREG_SCR, tc);
1495 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1496 bits(newVal, 55, 48);
1497
1498 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1499 static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1500 asid);
1501
1502 tlbiOp.broadcast(tc);
1503 return;
1504 }
1505 // AArch64 TLB Invalidate by ASID, EL1
1506 // @todo: handle VMID to enable Virtualization
1507 case MISCREG_TLBI_ASIDE1_Xt:
1508 {
1509 assert64(tc);
1510 scr = readMiscReg(MISCREG_SCR, tc);
1511 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1512 bits(newVal, 55, 48);
1513
1514 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1515 tlbiOp(tc);
1516 return;
1517 }
1518 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1519 case MISCREG_TLBI_ASIDE1IS_Xt:
1520 {
1521 assert64(tc);
1522 scr = readMiscReg(MISCREG_SCR, tc);
1523 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1524 bits(newVal, 55, 48);
1525
1526 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1527 tlbiOp.broadcast(tc);
1528 return;
1529 }
1530 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1531 // entries from the last level of translation table walks
1532 // AArch64 TLB Invalidate by VA, All ASID, EL1
1533 case MISCREG_TLBI_VAAE1_Xt:
1534 case MISCREG_TLBI_VAALE1_Xt:
1535 {
1536 assert64(tc);
1537 scr = readMiscReg(MISCREG_SCR, tc);
1538
1539 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1540 static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1541
1542 tlbiOp(tc);
1543 return;
1544 }
1545 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1546 case MISCREG_TLBI_VAAE1IS_Xt:
1547 case MISCREG_TLBI_VAALE1IS_Xt:
1548 {
1549 assert64(tc);
1550 scr = readMiscReg(MISCREG_SCR, tc);
1551
1552 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1553 static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1554
1555 tlbiOp.broadcast(tc);
1556 return;
1557 }
1558 // AArch64 TLB Invalidate by Intermediate Physical Address,
1559 // Stage 2, EL1
1560 case MISCREG_TLBI_IPAS2E1_Xt:
1561 case MISCREG_TLBI_IPAS2LE1_Xt:
1562 {
1563 assert64(tc);
1564 scr = readMiscReg(MISCREG_SCR, tc);
1565
1566 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1567 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1568
1569 tlbiOp(tc);
1570 return;
1571 }
1572 // AArch64 TLB Invalidate by Intermediate Physical Address,
1573 // Stage 2, EL1, Inner Shareable
1574 case MISCREG_TLBI_IPAS2E1IS_Xt:
1575 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1576 {
1577 assert64(tc);
1578 scr = readMiscReg(MISCREG_SCR, tc);
1579
1580 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1581 static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1582
1583 tlbiOp.broadcast(tc);
1584 return;
1585 }
1586 case MISCREG_ACTLR:
1587 warn("Not doing anything for write of miscreg ACTLR\n");
1588 break;
1589
1590 case MISCREG_PMXEVTYPER_PMCCFILTR:
1591 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1592 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1593 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1594 pmu->setMiscReg(misc_reg, newVal);
1595 break;
1596
1597
1598 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1599 {
1600 HSTR hstrMask = 0;
1601 hstrMask.tjdbx = 1;
1602 newVal &= ~((uint32_t) hstrMask);
1603 break;
1604 }
1605 case MISCREG_HCPTR:
1606 {
1607 // If a CP bit in NSACR is 0 then the corresponding bit in
1608 // HCPTR is RAO/WI. Same applies to NSASEDIS
1609 secure_lookup = haveSecurity &&
1610 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1611 readMiscRegNoEffect(MISCREG_CPSR));
1612 if (!secure_lookup) {
1613 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1614 RegVal mask =
1615 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1616 newVal = (newVal & ~mask) | (oldValue & mask);
1617 }
1618 break;
1619 }
1620 case MISCREG_HDFAR: // alias for secure DFAR
1621 misc_reg = MISCREG_DFAR_S;
1622 break;
1623 case MISCREG_HIFAR: // alias for secure IFAR
1624 misc_reg = MISCREG_IFAR_S;
1625 break;
1626 case MISCREG_ATS1CPR:
1627 case MISCREG_ATS1CPW:
1628 case MISCREG_ATS1CUR:
1629 case MISCREG_ATS1CUW:
1630 case MISCREG_ATS12NSOPR:
1631 case MISCREG_ATS12NSOPW:
1632 case MISCREG_ATS12NSOUR:
1633 case MISCREG_ATS12NSOUW:
1634 case MISCREG_ATS1HR:
1635 case MISCREG_ATS1HW:
1636 {
1637 Request::Flags flags = 0;
1638 BaseTLB::Mode mode = BaseTLB::Read;
1639 TLB::ArmTranslationType tranType = TLB::NormalTran;
1640 Fault fault;
1641 switch(misc_reg) {
1642 case MISCREG_ATS1CPR:
1643 flags = TLB::MustBeOne;
1644 tranType = TLB::S1CTran;
1645 mode = BaseTLB::Read;
1646 break;
1647 case MISCREG_ATS1CPW:
1648 flags = TLB::MustBeOne;
1649 tranType = TLB::S1CTran;
1650 mode = BaseTLB::Write;
1651 break;
1652 case MISCREG_ATS1CUR:
1653 flags = TLB::MustBeOne | TLB::UserMode;
1654 tranType = TLB::S1CTran;
1655 mode = BaseTLB::Read;
1656 break;
1657 case MISCREG_ATS1CUW:
1658 flags = TLB::MustBeOne | TLB::UserMode;
1659 tranType = TLB::S1CTran;
1660 mode = BaseTLB::Write;
1661 break;
1662 case MISCREG_ATS12NSOPR:
1663 if (!haveSecurity)
1664 panic("Security Extensions required for ATS12NSOPR");
1665 flags = TLB::MustBeOne;
1666 tranType = TLB::S1S2NsTran;
1667 mode = BaseTLB::Read;
1668 break;
1669 case MISCREG_ATS12NSOPW:
1670 if (!haveSecurity)
1671 panic("Security Extensions required for ATS12NSOPW");
1672 flags = TLB::MustBeOne;
1673 tranType = TLB::S1S2NsTran;
1674 mode = BaseTLB::Write;
1675 break;
1676 case MISCREG_ATS12NSOUR:
1677 if (!haveSecurity)
1678 panic("Security Extensions required for ATS12NSOUR");
1679 flags = TLB::MustBeOne | TLB::UserMode;
1680 tranType = TLB::S1S2NsTran;
1681 mode = BaseTLB::Read;
1682 break;
1683 case MISCREG_ATS12NSOUW:
1684 if (!haveSecurity)
1685 panic("Security Extensions required for ATS12NSOUW");
1686 flags = TLB::MustBeOne | TLB::UserMode;
1687 tranType = TLB::S1S2NsTran;
1688 mode = BaseTLB::Write;
1689 break;
1690 case MISCREG_ATS1HR: // only really useful from secure mode.
1691 flags = TLB::MustBeOne;
1692 tranType = TLB::HypMode;
1693 mode = BaseTLB::Read;
1694 break;
1695 case MISCREG_ATS1HW:
1696 flags = TLB::MustBeOne;
1697 tranType = TLB::HypMode;
1698 mode = BaseTLB::Write;
1699 break;
1700 }
1701 // If we're in timing mode then doing the translation in
1702 // functional mode then we're slightly distorting performance
1703 // results obtained from simulations. The translation should be
1704 // done in the same mode the core is running in. NOTE: This
1705 // can't be an atomic translation because that causes problems
1706 // with unexpected atomic snoop requests.
1707 warn("Translating via %s in functional mode! Fix Me!\n",
1708 miscRegName[misc_reg]);
1709
1710 auto req = std::make_shared<Request>(
1711 0, val, 0, flags, Request::funcMasterId,
1712 tc->pcState().pc(), tc->contextId());
1713
1714 fault = getDTBPtr(tc)->translateFunctional(
1715 req, tc, mode, tranType);
1716
1717 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1718 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1719
1720 RegVal newVal;
1721 if (fault == NoFault) {
1722 Addr paddr = req->getPaddr();
1723 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1724 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1725 newVal = (paddr & mask(39, 12)) |
1726 (getDTBPtr(tc)->getAttr());
1727 } else {
1728 newVal = (paddr & 0xfffff000) |
1729 (getDTBPtr(tc)->getAttr());
1730 }
1731 DPRINTF(MiscRegs,
1732 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1733 val, newVal);
1734 } else {
1735 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1736 armFault->update(tc);
1737 // Set fault bit and FSR
1738 FSR fsr = armFault->getFsr(tc);
1739
1740 newVal = ((fsr >> 9) & 1) << 11;
1741 if (newVal) {
1742 // LPAE - rearange fault status
1743 newVal |= ((fsr >> 0) & 0x3f) << 1;
1744 } else {
1745 // VMSA - rearange fault status
1746 newVal |= ((fsr >> 0) & 0xf) << 1;
1747 newVal |= ((fsr >> 10) & 0x1) << 5;
1748 newVal |= ((fsr >> 12) & 0x1) << 6;
1749 }
1750 newVal |= 0x1; // F bit
1751 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1752 newVal |= armFault->isStage2() ? 0x200 : 0;
1753 DPRINTF(MiscRegs,
1754 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1755 val, fsr, newVal);
1756 }
1757 setMiscRegNoEffect(MISCREG_PAR, newVal);
1758 return;
1759 }
1760 case MISCREG_TTBCR:
1761 {
1762 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1763 const uint32_t ones = (uint32_t)(-1);
1764 TTBCR ttbcrMask = 0;
1765 TTBCR ttbcrNew = newVal;
1766
1767 // ARM DDI 0406C.b, ARMv7-32
1768 ttbcrMask.n = ones; // T0SZ
1769 if (haveSecurity) {
1770 ttbcrMask.pd0 = ones;
1771 ttbcrMask.pd1 = ones;
1772 }
1773 ttbcrMask.epd0 = ones;
1774 ttbcrMask.irgn0 = ones;
1775 ttbcrMask.orgn0 = ones;
1776 ttbcrMask.sh0 = ones;
1777 ttbcrMask.ps = ones; // T1SZ
1778 ttbcrMask.a1 = ones;
1779 ttbcrMask.epd1 = ones;
1780 ttbcrMask.irgn1 = ones;
1781 ttbcrMask.orgn1 = ones;
1782 ttbcrMask.sh1 = ones;
1783 if (haveLPAE)
1784 ttbcrMask.eae = ones;
1785
1786 if (haveLPAE && ttbcrNew.eae) {
1787 newVal = newVal & ttbcrMask;
1788 } else {
1789 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1790 }
1791 // Invalidate TLB MiscReg
1792 getITBPtr(tc)->invalidateMiscReg();
1793 getDTBPtr(tc)->invalidateMiscReg();
1794 break;
1795 }
1796 case MISCREG_TTBR0:
1797 case MISCREG_TTBR1:
1798 {
1799 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1800 if (haveLPAE) {
1801 if (ttbcr.eae) {
1802 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1803 // ARMv8 AArch32 bit 63-56 only
1804 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1805 newVal = (newVal & (~ttbrMask));
1806 }
1807 }
1808 // Invalidate TLB MiscReg
1809 getITBPtr(tc)->invalidateMiscReg();
1810 getDTBPtr(tc)->invalidateMiscReg();
1811 break;
1812 }
1813 case MISCREG_SCTLR_EL1:
1814 case MISCREG_CONTEXTIDR:
1815 case MISCREG_PRRR:
1816 case MISCREG_NMRR:
1817 case MISCREG_MAIR0:
1818 case MISCREG_MAIR1:
1819 case MISCREG_DACR:
1820 case MISCREG_VTTBR:
1821 case MISCREG_SCR_EL3:
1822 case MISCREG_HCR_EL2:
1823 case MISCREG_TCR_EL1:
1824 case MISCREG_TCR_EL2:
1825 case MISCREG_TCR_EL3:
1826 case MISCREG_SCTLR_EL2:
1827 case MISCREG_SCTLR_EL3:
1828 case MISCREG_HSCTLR:
1829 case MISCREG_TTBR0_EL1:
1830 case MISCREG_TTBR1_EL1:
1831 case MISCREG_TTBR0_EL2:
1832 case MISCREG_TTBR1_EL2:
1833 case MISCREG_TTBR0_EL3:
1834 getITBPtr(tc)->invalidateMiscReg();
1835 getDTBPtr(tc)->invalidateMiscReg();
1836 break;
1837 case MISCREG_NZCV:
1838 {
1839 CPSR cpsr = val;
1840
1841 tc->setCCReg(CCREG_NZ, cpsr.nz);
1842 tc->setCCReg(CCREG_C, cpsr.c);
1843 tc->setCCReg(CCREG_V, cpsr.v);
1844 }
1845 break;
1846 case MISCREG_DAIF:
1847 {
1848 CPSR cpsr = miscRegs[MISCREG_CPSR];
1849 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1850 newVal = cpsr;
1851 misc_reg = MISCREG_CPSR;
1852 }
1853 break;
1854 case MISCREG_SP_EL0:
1855 tc->setIntReg(INTREG_SP0, newVal);
1856 break;
1857 case MISCREG_SP_EL1:
1858 tc->setIntReg(INTREG_SP1, newVal);
1859 break;
1860 case MISCREG_SP_EL2:
1861 tc->setIntReg(INTREG_SP2, newVal);
1862 break;
1863 case MISCREG_SPSEL:
1864 {
1865 CPSR cpsr = miscRegs[MISCREG_CPSR];
1866 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1867 newVal = cpsr;
1868 misc_reg = MISCREG_CPSR;
1869 }
1870 break;
1871 case MISCREG_CURRENTEL:
1872 {
1873 CPSR cpsr = miscRegs[MISCREG_CPSR];
1874 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1875 newVal = cpsr;
1876 misc_reg = MISCREG_CPSR;
1877 }
1878 break;
1879 case MISCREG_AT_S1E1R_Xt:
1880 case MISCREG_AT_S1E1W_Xt:
1881 case MISCREG_AT_S1E0R_Xt:
1882 case MISCREG_AT_S1E0W_Xt:
1883 case MISCREG_AT_S1E2R_Xt:
1884 case MISCREG_AT_S1E2W_Xt:
1885 case MISCREG_AT_S12E1R_Xt:
1886 case MISCREG_AT_S12E1W_Xt:
1887 case MISCREG_AT_S12E0R_Xt:
1888 case MISCREG_AT_S12E0W_Xt:
1889 case MISCREG_AT_S1E3R_Xt:
1890 case MISCREG_AT_S1E3W_Xt:
1891 {
1892 RequestPtr req = std::make_shared<Request>();
1893 Request::Flags flags = 0;
1894 BaseTLB::Mode mode = BaseTLB::Read;
1895 TLB::ArmTranslationType tranType = TLB::NormalTran;
1896 Fault fault;
1897 switch(misc_reg) {
1898 case MISCREG_AT_S1E1R_Xt:
1899 flags = TLB::MustBeOne;
1900 tranType = TLB::S1E1Tran;
1901 mode = BaseTLB::Read;
1902 break;
1903 case MISCREG_AT_S1E1W_Xt:
1904 flags = TLB::MustBeOne;
1905 tranType = TLB::S1E1Tran;
1906 mode = BaseTLB::Write;
1907 break;
1908 case MISCREG_AT_S1E0R_Xt:
1909 flags = TLB::MustBeOne | TLB::UserMode;
1910 tranType = TLB::S1E0Tran;
1911 mode = BaseTLB::Read;
1912 break;
1913 case MISCREG_AT_S1E0W_Xt:
1914 flags = TLB::MustBeOne | TLB::UserMode;
1915 tranType = TLB::S1E0Tran;
1916 mode = BaseTLB::Write;
1917 break;
1918 case MISCREG_AT_S1E2R_Xt:
1919 flags = TLB::MustBeOne;
1920 tranType = TLB::S1E2Tran;
1921 mode = BaseTLB::Read;
1922 break;
1923 case MISCREG_AT_S1E2W_Xt:
1924 flags = TLB::MustBeOne;
1925 tranType = TLB::S1E2Tran;
1926 mode = BaseTLB::Write;
1927 break;
1928 case MISCREG_AT_S12E0R_Xt:
1929 flags = TLB::MustBeOne | TLB::UserMode;
1930 tranType = TLB::S12E0Tran;
1931 mode = BaseTLB::Read;
1932 break;
1933 case MISCREG_AT_S12E0W_Xt:
1934 flags = TLB::MustBeOne | TLB::UserMode;
1935 tranType = TLB::S12E0Tran;
1936 mode = BaseTLB::Write;
1937 break;
1938 case MISCREG_AT_S12E1R_Xt:
1939 flags = TLB::MustBeOne;
1940 tranType = TLB::S12E1Tran;
1941 mode = BaseTLB::Read;
1942 break;
1943 case MISCREG_AT_S12E1W_Xt:
1944 flags = TLB::MustBeOne;
1945 tranType = TLB::S12E1Tran;
1946 mode = BaseTLB::Write;
1947 break;
1948 case MISCREG_AT_S1E3R_Xt:
1949 flags = TLB::MustBeOne;
1950 tranType = TLB::S1E3Tran;
1951 mode = BaseTLB::Read;
1952 break;
1953 case MISCREG_AT_S1E3W_Xt:
1954 flags = TLB::MustBeOne;
1955 tranType = TLB::S1E3Tran;
1956 mode = BaseTLB::Write;
1957 break;
1958 }
1959 // If we're in timing mode then doing the translation in
1960 // functional mode then we're slightly distorting performance
1961 // results obtained from simulations. The translation should be
1962 // done in the same mode the core is running in. NOTE: This
1963 // can't be an atomic translation because that causes problems
1964 // with unexpected atomic snoop requests.
1965 warn("Translating via %s in functional mode! Fix Me!\n",
1966 miscRegName[misc_reg]);
1967
1968 req->setVirt(0, val, 0, flags, Request::funcMasterId,
1969 tc->pcState().pc());
1970 req->setContext(tc->contextId());
1971 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1972 tranType);
1973
1974 RegVal newVal;
1975 if (fault == NoFault) {
1976 Addr paddr = req->getPaddr();
1977 uint64_t attr = getDTBPtr(tc)->getAttr();
1978 uint64_t attr1 = attr >> 56;
1979 if (!attr1 || attr1 ==0x44) {
1980 attr |= 0x100;
1981 attr &= ~ uint64_t(0x80);
1982 }
1983 newVal = (paddr & mask(47, 12)) | attr;
1984 DPRINTF(MiscRegs,
1985 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1986 val, newVal);
1987 } else {
1988 ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1989 armFault->update(tc);
1990 // Set fault bit and FSR
1991 FSR fsr = armFault->getFsr(tc);
1992
1993 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1994 if (cpsr.width) { // AArch32
1995 newVal = ((fsr >> 9) & 1) << 11;
1996 // rearrange fault status
1997 newVal |= ((fsr >> 0) & 0x3f) << 1;
1998 newVal |= 0x1; // F bit
1999 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2000 newVal |= armFault->isStage2() ? 0x200 : 0;
2001 } else { // AArch64
2002 newVal = 1; // F bit
2003 newVal |= fsr << 1; // FST
2004 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2005 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2006 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2007 newVal |= 1 << 11; // RES1
2008 }
2009 DPRINTF(MiscRegs,
2010 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2011 val, fsr, newVal);
2012 }
2013 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2014 return;
2015 }
2016 case MISCREG_SPSR_EL3:
2017 case MISCREG_SPSR_EL2:
2018 case MISCREG_SPSR_EL1:
2019 // Force bits 23:21 to 0
2020 newVal = val & ~(0x7 << 21);
2021 break;
2022 case MISCREG_L2CTLR:
2023 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2024 miscRegName[misc_reg], uint32_t(val));
2025 break;
2026
2027 // Generic Timer registers
2028 case MISCREG_CNTHV_CTL_EL2:
2029 case MISCREG_CNTHV_CVAL_EL2:
2030 case MISCREG_CNTHV_TVAL_EL2:
2031 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2032 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2033 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2034 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2035 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2036 break;
2037 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2038 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2039 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2040 return;
2041 case MISCREG_ZCR_EL3:
2042 case MISCREG_ZCR_EL2:
2043 case MISCREG_ZCR_EL1:
2044 tc->getDecoderPtr()->setSveLen(
2045 (getCurSveVecLenInBits(tc) >> 7) - 1);
2046 break;
2047 }
2048 }
2049 setMiscRegNoEffect(misc_reg, newVal);
2050}
2051
2052BaseISADevice &
2053ISA::getGenericTimer(ThreadContext *tc)
2054{
2055 // We only need to create an ISA interface the first time we try
2056 // to access the timer.
2057 if (timer)
2058 return *timer.get();
2059
2060 assert(system);
2061 GenericTimer *generic_timer(system->getGenericTimer());
2062 if (!generic_timer) {
2063 panic("Trying to get a generic timer from a system that hasn't "
2064 "been configured to use a generic timer.\n");
2065 }
2066
2067 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2068 timer->setThreadContext(tc);
2069
2070 return *timer.get();
2071}
2072
2073BaseISADevice &
2074ISA::getGICv3CPUInterface(ThreadContext *tc)
2075{
2076 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2077 return *gicv3CpuInterface.get();
2078}
2079
2080unsigned
2081ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2082{
2083 if (!FullSystem) {
2084 return sveVL * 128;
2085 }
2086
2087 panic_if(!tc,
2088 "A ThreadContext is needed to determine the SVE vector length "
2089 "in full-system mode");
2090
2091 CPSR cpsr = miscRegs[MISCREG_CPSR];
2092 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2093
2094 unsigned len = 0;
2095
2096 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2097 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2098 }
2099
2100 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2101 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2102 } else if (haveVirtualization && !inSecureState(tc) &&
2103 (el == EL0 || el == EL1)) {
2104 len = std::min(
2105 len,
2106 static_cast<unsigned>(
2107 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2108 }
2109
2110 if (el == EL3) {
2111 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2112 } else if (haveSecurity) {
2113 len = std::min(
2114 len,
2115 static_cast<unsigned>(
2116 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2117 }
2118
2119 len = std::min(len, sveVL - 1);
2120
2121 return (len + 1) * 128;
2122}
2123
2124void
2125ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2126{
2127 auto vv = vc.as<uint64_t>();
2128 for (int i = 2; i < eCount; ++i) {
2129 vv[i] = 0;
2130 }
2131}
2132
2133} // namespace ArmISA
2134
2135ArmISA::ISA *
2136ArmISAParams::create()
2137{
2138 return new ArmISA::ISA(this);
2139}