Deleted Added
sdiff udiff text old ( 11435:0f1b46dde3fa ) new ( 11560:f050b8cf4754 )
full compact
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 * Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "cpu/checker/cpu.hh"
45#include "cpu/base.hh"
46#include "debug/Arm.hh"
47#include "debug/MiscRegs.hh"
48#include "dev/arm/generic_timer.hh"
49#include "params/ArmISA.hh"
50#include "sim/faults.hh"
51#include "sim/stat_control.hh"
52#include "sim/system.hh"
53
54namespace ArmISA
55{
56
57
58/**
59 * Some registers aliase with others, and therefore need to be translated.
60 * For each entry:
61 * The first value is the misc register that is to be looked up
62 * the second value is the lower part of the translation
63 * the third the upper part
64 */
65const struct ISA::MiscRegInitializerEntry
66 ISA::MiscRegSwitch[miscRegTranslateMax] = {
67 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}},
68 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}},
69 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}},
70 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}},
71 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}},
72 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}},
73 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}},
74 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}},
75 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}},
76 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}},
77 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}},
78 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}},
79 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}},
80 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}},
81 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}},
82 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}},
83 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}},
84 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}},
85 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}},
86 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}},
87 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}},
88 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}},
89 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}},
90 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}},
91 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}},
92 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}},
93 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}},
94 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}},
95 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}},
96 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}},
97 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}},
98 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}},
99 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}},
100 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}},
101 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}},
102 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}},
103 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}},
104 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}},
105 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}},
106 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}},
107 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}},
108 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}},
109 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}},
110 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}},
111 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}},
112 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}},
113 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}},
114 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}},
115 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}},
116 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}},
117 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}},
118 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}},
119 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}},
120 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}},
121 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}},
122 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}},
123 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}}
124};
125
126
127ISA::ISA(Params *p)
128 : SimObject(p),
129 system(NULL),
130 _decoderFlavour(p->decoderFlavour),
131 pmu(p->pmu),
132 lookUpMiscReg(NUM_MISCREGS, {0,0})
133{
134 SCTLR sctlr;
135 sctlr = 0;
136 miscRegs[MISCREG_SCTLR_RST] = sctlr;
137
138 // Hook up a dummy device if we haven't been configured with a
139 // real PMU. By using a dummy device, we don't need to check that
140 // the PMU exist every time we try to access a PMU register.
141 if (!pmu)
142 pmu = &dummyDevice;
143
144 // Give all ISA devices a pointer to this ISA
145 pmu->setISA(this);
146
147 system = dynamic_cast<ArmSystem *>(p->system);
148
149 // Cache system-level properties
150 if (FullSystem && system) {
151 haveSecurity = system->haveSecurity();
152 haveLPAE = system->haveLPAE();
153 haveVirtualization = system->haveVirtualization();
154 haveLargeAsid64 = system->haveLargeAsid64();
155 physAddrRange64 = system->physAddrRange64();
156 } else {
157 haveSecurity = haveLPAE = haveVirtualization = false;
158 haveLargeAsid64 = false;
159 physAddrRange64 = 32; // dummy value
160 }
161
162 /** Fill in the miscReg translation table */
163 for (uint32_t i = 0; i < miscRegTranslateMax; i++) {
164 struct MiscRegLUTEntry new_entry;
165
166 uint32_t select = MiscRegSwitch[i].index;
167 new_entry = MiscRegSwitch[i].entry;
168
169 lookUpMiscReg[select] = new_entry;
170 }
171
172 preUnflattenMiscReg();
173
174 clear();
175}
176
177const ArmISAParams *
178ISA::params() const
179{
180 return dynamic_cast<const Params *>(_params);
181}
182
183void
184ISA::clear()
185{
186 const Params *p(params());
187
188 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
189 memset(miscRegs, 0, sizeof(miscRegs));
190
191 // Initialize configurable default values
192 miscRegs[MISCREG_MIDR] = p->midr;
193 miscRegs[MISCREG_MIDR_EL1] = p->midr;
194 miscRegs[MISCREG_VPIDR] = p->midr;
195
196 if (FullSystem && system->highestELIs64()) {
197 // Initialize AArch64 state
198 clear64(p);
199 return;
200 }
201
202 // Initialize AArch32 state...
203
204 CPSR cpsr = 0;
205 cpsr.mode = MODE_USER;
206 miscRegs[MISCREG_CPSR] = cpsr;
207 updateRegMap(cpsr);
208
209 SCTLR sctlr = 0;
210 sctlr.te = (bool) sctlr_rst.te;
211 sctlr.nmfi = (bool) sctlr_rst.nmfi;
212 sctlr.v = (bool) sctlr_rst.v;
213 sctlr.u = 1;
214 sctlr.xp = 1;
215 sctlr.rao2 = 1;
216 sctlr.rao3 = 1;
217 sctlr.rao4 = 0xf; // SCTLR[6:3]
218 sctlr.uci = 1;
219 sctlr.dze = 1;
220 miscRegs[MISCREG_SCTLR_NS] = sctlr;
221 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
222 miscRegs[MISCREG_HCPTR] = 0;
223
224 // Start with an event in the mailbox
225 miscRegs[MISCREG_SEV_MAILBOX] = 1;
226
227 // Separate Instruction and Data TLBs
228 miscRegs[MISCREG_TLBTR] = 1;
229
230 MVFR0 mvfr0 = 0;
231 mvfr0.advSimdRegisters = 2;
232 mvfr0.singlePrecision = 2;
233 mvfr0.doublePrecision = 2;
234 mvfr0.vfpExceptionTrapping = 0;
235 mvfr0.divide = 1;
236 mvfr0.squareRoot = 1;
237 mvfr0.shortVectors = 1;
238 mvfr0.roundingModes = 1;
239 miscRegs[MISCREG_MVFR0] = mvfr0;
240
241 MVFR1 mvfr1 = 0;
242 mvfr1.flushToZero = 1;
243 mvfr1.defaultNaN = 1;
244 mvfr1.advSimdLoadStore = 1;
245 mvfr1.advSimdInteger = 1;
246 mvfr1.advSimdSinglePrecision = 1;
247 mvfr1.advSimdHalfPrecision = 1;
248 mvfr1.vfpHalfPrecision = 1;
249 miscRegs[MISCREG_MVFR1] = mvfr1;
250
251 // Reset values of PRRR and NMRR are implementation dependent
252
253 // @todo: PRRR and NMRR in secure state?
254 miscRegs[MISCREG_PRRR_NS] =
255 (1 << 19) | // 19
256 (0 << 18) | // 18
257 (0 << 17) | // 17
258 (1 << 16) | // 16
259 (2 << 14) | // 15:14
260 (0 << 12) | // 13:12
261 (2 << 10) | // 11:10
262 (2 << 8) | // 9:8
263 (2 << 6) | // 7:6
264 (2 << 4) | // 5:4
265 (1 << 2) | // 3:2
266 0; // 1:0
267 miscRegs[MISCREG_NMRR_NS] =
268 (1 << 30) | // 31:30
269 (0 << 26) | // 27:26
270 (0 << 24) | // 25:24
271 (3 << 22) | // 23:22
272 (2 << 20) | // 21:20
273 (0 << 18) | // 19:18
274 (0 << 16) | // 17:16
275 (1 << 14) | // 15:14
276 (0 << 12) | // 13:12
277 (2 << 10) | // 11:10
278 (0 << 8) | // 9:8
279 (3 << 6) | // 7:6
280 (2 << 4) | // 5:4
281 (0 << 2) | // 3:2
282 0; // 1:0
283
284 miscRegs[MISCREG_CPACR] = 0;
285
286
287 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0;
288 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1;
289
290 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
291 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
292 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
293 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
294
295 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
296 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
297 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
298 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
299 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
300 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
301
302 miscRegs[MISCREG_FPSID] = p->fpsid;
303
304 if (haveLPAE) {
305 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
306 ttbcr.eae = 0;
307 miscRegs[MISCREG_TTBCR_NS] = ttbcr;
308 // Enforce consistency with system-level settings
309 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
310 }
311
312 if (haveSecurity) {
313 miscRegs[MISCREG_SCTLR_S] = sctlr;
314 miscRegs[MISCREG_SCR] = 0;
315 miscRegs[MISCREG_VBAR_S] = 0;
316 } else {
317 // we're always non-secure
318 miscRegs[MISCREG_SCR] = 1;
319 }
320
321 //XXX We need to initialize the rest of the state.
322}
323
324void
325ISA::clear64(const ArmISAParams *p)
326{
327 CPSR cpsr = 0;
328 Addr rvbar = system->resetAddr64();
329 switch (system->highestEL()) {
330 // Set initial EL to highest implemented EL using associated stack
331 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
332 // value
333 case EL3:
334 cpsr.mode = MODE_EL3H;
335 miscRegs[MISCREG_RVBAR_EL3] = rvbar;
336 break;
337 case EL2:
338 cpsr.mode = MODE_EL2H;
339 miscRegs[MISCREG_RVBAR_EL2] = rvbar;
340 break;
341 case EL1:
342 cpsr.mode = MODE_EL1H;
343 miscRegs[MISCREG_RVBAR_EL1] = rvbar;
344 break;
345 default:
346 panic("Invalid highest implemented exception level");
347 break;
348 }
349
350 // Initialize rest of CPSR
351 cpsr.daif = 0xf; // Mask all interrupts
352 cpsr.ss = 0;
353 cpsr.il = 0;
354 miscRegs[MISCREG_CPSR] = cpsr;
355 updateRegMap(cpsr);
356
357 // Initialize other control registers
358 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
359 if (haveSecurity) {
360 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870;
361 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields
362 // @todo: uncomment this to enable Virtualization
363 // } else if (haveVirtualization) {
364 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870;
365 } else {
366 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870;
367 // Always non-secure
368 miscRegs[MISCREG_SCR_EL3] = 1;
369 }
370
371 // Initialize configurable id registers
372 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
373 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
374 miscRegs[MISCREG_ID_AA64DFR0_EL1] =
375 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
376 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3
377
378 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
379 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
380 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
381 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
382 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
383 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1;
384 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1;
385
386 miscRegs[MISCREG_ID_DFR0_EL1] =
387 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
388
389 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
390
391 // Enforce consistency with system-level settings...
392
393 // EL3
394 // (no AArch32/64 interprocessing support for now)
395 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
396 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
397 haveSecurity ? 0x1 : 0x0);
398 // EL2
399 // (no AArch32/64 interprocessing support for now)
400 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
401 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
402 haveVirtualization ? 0x1 : 0x0);
403 // Large ASID support
404 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
405 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
406 haveLargeAsid64 ? 0x2 : 0x0);
407 // Physical address size
408 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
409 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
410 encodePhysAddrRange64(physAddrRange64));
411}
412
413MiscReg
414ISA::readMiscRegNoEffect(int misc_reg) const
415{
416 assert(misc_reg < NumMiscRegs);
417
418 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
419 // registers are left unchanged
420 MiscReg val;
421
422 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR
423 || flat_idx == MISCREG_SCTLR_EL1) {
424 if (flat_idx == MISCREG_SPSR)
425 flat_idx = flattenMiscIndex(MISCREG_SPSR);
426 if (flat_idx == MISCREG_SCTLR_EL1)
427 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
428 val = miscRegs[flat_idx];
429 } else
430 if (lookUpMiscReg[flat_idx].upper > 0)
431 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32))
432 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32));
433 else
434 val = miscRegs[lookUpMiscReg[flat_idx].lower];
435
436 return val;
437}
438
439
440MiscReg
441ISA::readMiscReg(int misc_reg, ThreadContext *tc)
442{
443 CPSR cpsr = 0;
444 PCState pc = 0;
445 SCR scr = 0;
446
447 if (misc_reg == MISCREG_CPSR) {
448 cpsr = miscRegs[misc_reg];
449 pc = tc->pcState();
450 cpsr.j = pc.jazelle() ? 1 : 0;
451 cpsr.t = pc.thumb() ? 1 : 0;
452 return cpsr;
453 }
454
455#ifndef NDEBUG
456 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
457 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
458 warn("Unimplemented system register %s read.\n",
459 miscRegName[misc_reg]);
460 else
461 panic("Unimplemented system register %s read.\n",
462 miscRegName[misc_reg]);
463 }
464#endif
465
466 switch (unflattenMiscReg(misc_reg)) {
467 case MISCREG_HCR:
468 {
469 if (!haveVirtualization)
470 return 0;
471 else
472 return readMiscRegNoEffect(MISCREG_HCR);
473 }
474 case MISCREG_CPACR:
475 {
476 const uint32_t ones = (uint32_t)(-1);
477 CPACR cpacrMask = 0;
478 // Only cp10, cp11, and ase are implemented, nothing else should
479 // be readable? (straight copy from the write code)
480 cpacrMask.cp10 = ones;
481 cpacrMask.cp11 = ones;
482 cpacrMask.asedis = ones;
483
484 // Security Extensions may limit the readability of CPACR
485 if (haveSecurity) {
486 scr = readMiscRegNoEffect(MISCREG_SCR);
487 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
488 if (scr.ns && (cpsr.mode != MODE_MON)) {
489 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
490 // NB: Skipping the full loop, here
491 if (!nsacr.cp10) cpacrMask.cp10 = 0;
492 if (!nsacr.cp11) cpacrMask.cp11 = 0;
493 }
494 }
495 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
496 val &= cpacrMask;
497 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
498 miscRegName[misc_reg], val);
499 return val;
500 }
501 case MISCREG_MPIDR:
502 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
503 scr = readMiscRegNoEffect(MISCREG_SCR);
504 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
505 return getMPIDR(system, tc);
506 } else {
507 return readMiscReg(MISCREG_VMPIDR, tc);
508 }
509 break;
510 case MISCREG_MPIDR_EL1:
511 // @todo in the absence of v8 virtualization support just return MPIDR_EL1
512 return getMPIDR(system, tc) & 0xffffffff;
513 case MISCREG_VMPIDR:
514 // top bit defined as RES1
515 return readMiscRegNoEffect(misc_reg) | 0x80000000;
516 case MISCREG_ID_AFR0: // not implemented, so alias MIDR
517 case MISCREG_REVIDR: // not implemented, so alias MIDR
518 case MISCREG_MIDR:
519 cpsr = readMiscRegNoEffect(MISCREG_CPSR);
520 scr = readMiscRegNoEffect(MISCREG_SCR);
521 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
522 return readMiscRegNoEffect(misc_reg);
523 } else {
524 return readMiscRegNoEffect(MISCREG_VPIDR);
525 }
526 break;
527 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
528 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI
529 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI
530 case MISCREG_AIDR: // AUX ID set to 0
531 case MISCREG_TCMTR: // No TCM's
532 return 0;
533
534 case MISCREG_CLIDR:
535 warn_once("The clidr register always reports 0 caches.\n");
536 warn_once("clidr LoUIS field of 0b001 to match current "
537 "ARM implementations.\n");
538 return 0x00200000;
539 case MISCREG_CCSIDR:
540 warn_once("The ccsidr register isn't implemented and "
541 "always reads as 0.\n");
542 break;
543 case MISCREG_CTR:
544 {
545 //all caches have the same line size in gem5
546 //4 byte words in ARM
547 unsigned lineSizeWords =
548 tc->getSystemPtr()->cacheLineSize() / 4;
549 unsigned log2LineSizeWords = 0;
550
551 while (lineSizeWords >>= 1) {
552 ++log2LineSizeWords;
553 }
554
555 CTR ctr = 0;
556 //log2 of minimun i-cache line size (words)
557 ctr.iCacheLineSize = log2LineSizeWords;
558 //b11 - gem5 uses pipt
559 ctr.l1IndexPolicy = 0x3;
560 //log2 of minimum d-cache line size (words)
561 ctr.dCacheLineSize = log2LineSizeWords;
562 //log2 of max reservation size (words)
563 ctr.erg = log2LineSizeWords;
564 //log2 of max writeback size (words)
565 ctr.cwg = log2LineSizeWords;
566 //b100 - gem5 format is ARMv7
567 ctr.format = 0x4;
568
569 return ctr;
570 }
571 case MISCREG_ACTLR:
572 warn("Not doing anything for miscreg ACTLR\n");
573 break;
574
575 case MISCREG_PMXEVTYPER_PMCCFILTR:
576 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
577 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
578 case MISCREG_PMCR ... MISCREG_PMOVSSET:
579 return pmu->readMiscReg(misc_reg);
580
581 case MISCREG_CPSR_Q:
582 panic("shouldn't be reading this register seperately\n");
583 case MISCREG_FPSCR_QC:
584 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
585 case MISCREG_FPSCR_EXC:
586 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
587 case MISCREG_FPSR:
588 {
589 const uint32_t ones = (uint32_t)(-1);
590 FPSCR fpscrMask = 0;
591 fpscrMask.ioc = ones;
592 fpscrMask.dzc = ones;
593 fpscrMask.ofc = ones;
594 fpscrMask.ufc = ones;
595 fpscrMask.ixc = ones;
596 fpscrMask.idc = ones;
597 fpscrMask.qc = ones;
598 fpscrMask.v = ones;
599 fpscrMask.c = ones;
600 fpscrMask.z = ones;
601 fpscrMask.n = ones;
602 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
603 }
604 case MISCREG_FPCR:
605 {
606 const uint32_t ones = (uint32_t)(-1);
607 FPSCR fpscrMask = 0;
608 fpscrMask.ioe = ones;
609 fpscrMask.dze = ones;
610 fpscrMask.ofe = ones;
611 fpscrMask.ufe = ones;
612 fpscrMask.ixe = ones;
613 fpscrMask.ide = ones;
614 fpscrMask.len = ones;
615 fpscrMask.stride = ones;
616 fpscrMask.rMode = ones;
617 fpscrMask.fz = ones;
618 fpscrMask.dn = ones;
619 fpscrMask.ahp = ones;
620 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
621 }
622 case MISCREG_NZCV:
623 {
624 CPSR cpsr = 0;
625 cpsr.nz = tc->readCCReg(CCREG_NZ);
626 cpsr.c = tc->readCCReg(CCREG_C);
627 cpsr.v = tc->readCCReg(CCREG_V);
628 return cpsr;
629 }
630 case MISCREG_DAIF:
631 {
632 CPSR cpsr = 0;
633 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
634 return cpsr;
635 }
636 case MISCREG_SP_EL0:
637 {
638 return tc->readIntReg(INTREG_SP0);
639 }
640 case MISCREG_SP_EL1:
641 {
642 return tc->readIntReg(INTREG_SP1);
643 }
644 case MISCREG_SP_EL2:
645 {
646 return tc->readIntReg(INTREG_SP2);
647 }
648 case MISCREG_SPSEL:
649 {
650 return miscRegs[MISCREG_CPSR] & 0x1;
651 }
652 case MISCREG_CURRENTEL:
653 {
654 return miscRegs[MISCREG_CPSR] & 0xc;
655 }
656 case MISCREG_L2CTLR:
657 {
658 // mostly unimplemented, just set NumCPUs field from sim and return
659 L2CTLR l2ctlr = 0;
660 // b00:1CPU to b11:4CPUs
661 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
662 return l2ctlr;
663 }
664 case MISCREG_DBGDIDR:
665 /* For now just implement the version number.
666 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
667 */
668 return 0x5 << 16;
669 case MISCREG_DBGDSCRint:
670 return 0;
671 case MISCREG_ISR:
672 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
673 readMiscRegNoEffect(MISCREG_HCR),
674 readMiscRegNoEffect(MISCREG_CPSR),
675 readMiscRegNoEffect(MISCREG_SCR));
676 case MISCREG_ISR_EL1:
677 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
678 readMiscRegNoEffect(MISCREG_HCR_EL2),
679 readMiscRegNoEffect(MISCREG_CPSR),
680 readMiscRegNoEffect(MISCREG_SCR_EL3));
681 case MISCREG_DCZID_EL0:
682 return 0x04; // DC ZVA clear 64-byte chunks
683 case MISCREG_HCPTR:
684 {
685 MiscReg val = readMiscRegNoEffect(misc_reg);
686 // The trap bit associated with CP14 is defined as RAZ
687 val &= ~(1 << 14);
688 // If a CP bit in NSACR is 0 then the corresponding bit in
689 // HCPTR is RAO/WI
690 bool secure_lookup = haveSecurity &&
691 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
692 readMiscRegNoEffect(MISCREG_CPSR));
693 if (!secure_lookup) {
694 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
695 val |= (mask ^ 0x7FFF) & 0xBFFF;
696 }
697 // Set the bits for unimplemented coprocessors to RAO/WI
698 val |= 0x33FF;
699 return (val);
700 }
701 case MISCREG_HDFAR: // alias for secure DFAR
702 return readMiscRegNoEffect(MISCREG_DFAR_S);
703 case MISCREG_HIFAR: // alias for secure IFAR
704 return readMiscRegNoEffect(MISCREG_IFAR_S);
705 case MISCREG_HVBAR: // bottom bits reserved
706 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
707 case MISCREG_SCTLR: // Some bits hardwired
708 // The FI field (bit 21) is common between S/NS versions of the register
709 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
710 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR
711 case MISCREG_SCTLR_EL1:
712 // The FI field (bit 21) is common between S/NS versions of the register
713 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
714 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1
715 case MISCREG_SCTLR_EL3:
716 // The FI field (bit 21) is common between S/NS versions of the register
717 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) |
718 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3
719 case MISCREG_HSCTLR: // FI comes from SCTLR
720 {
721 uint32_t mask = 1 << 27;
722 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) |
723 (readMiscRegNoEffect(MISCREG_SCTLR) & mask);
724 }
725 case MISCREG_SCR:
726 {
727 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
728 if (cpsr.width) {
729 return readMiscRegNoEffect(MISCREG_SCR);
730 } else {
731 return readMiscRegNoEffect(MISCREG_SCR_EL3);
732 }
733 }
734
735 // Generic Timer registers
736 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
737 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
738 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
739 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
740 return getGenericTimer(tc).readMiscReg(misc_reg);
741
742 default:
743 break;
744
745 }
746 return readMiscRegNoEffect(misc_reg);
747}
748
749void
750ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
751{
752 assert(misc_reg < NumMiscRegs);
753
754 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64
755 // registers are left unchanged
756
757 int flat_idx2 = lookUpMiscReg[flat_idx].upper;
758
759 if (flat_idx2 > 0) {
760 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0);
761 miscRegs[flat_idx2] = bits(val, 63, 32);
762 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
763 misc_reg, flat_idx, flat_idx2, val);
764 } else {
765 if (flat_idx == MISCREG_SPSR)
766 flat_idx = flattenMiscIndex(MISCREG_SPSR);
767 else if (flat_idx == MISCREG_SCTLR_EL1)
768 flat_idx = flattenMiscIndex(MISCREG_SCTLR);
769 else
770 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ?
771 lookUpMiscReg[flat_idx].lower : flat_idx;
772 miscRegs[flat_idx] = val;
773 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
774 misc_reg, flat_idx, val);
775 }
776}
777
778void
779ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
780{
781
782 MiscReg newVal = val;
783 int x;
784 bool secure_lookup;
785 bool hyp;
786 System *sys;
787 ThreadContext *oc;
788 uint8_t target_el;
789 uint16_t asid;
790 SCR scr;
791
792 if (misc_reg == MISCREG_CPSR) {
793 updateRegMap(val);
794
795
796 CPSR old_cpsr = miscRegs[MISCREG_CPSR];
797 int old_mode = old_cpsr.mode;
798 CPSR cpsr = val;
799 if (old_mode != cpsr.mode) {
800 tc->getITBPtr()->invalidateMiscReg();
801 tc->getDTBPtr()->invalidateMiscReg();
802 }
803
804 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
805 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
806 PCState pc = tc->pcState();
807 pc.nextThumb(cpsr.t);
808 pc.nextJazelle(cpsr.j);
809
810 // Follow slightly different semantics if a CheckerCPU object
811 // is connected
812 CheckerCPU *checker = tc->getCheckerCpuPtr();
813 if (checker) {
814 tc->pcStateNoRecord(pc);
815 } else {
816 tc->pcState(pc);
817 }
818 } else {
819#ifndef NDEBUG
820 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
821 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
822 warn("Unimplemented system register %s write with %#x.\n",
823 miscRegName[misc_reg], val);
824 else
825 panic("Unimplemented system register %s write with %#x.\n",
826 miscRegName[misc_reg], val);
827 }
828#endif
829 switch (unflattenMiscReg(misc_reg)) {
830 case MISCREG_CPACR:
831 {
832
833 const uint32_t ones = (uint32_t)(-1);
834 CPACR cpacrMask = 0;
835 // Only cp10, cp11, and ase are implemented, nothing else should
836 // be writable
837 cpacrMask.cp10 = ones;
838 cpacrMask.cp11 = ones;
839 cpacrMask.asedis = ones;
840
841 // Security Extensions may limit the writability of CPACR
842 if (haveSecurity) {
843 scr = readMiscRegNoEffect(MISCREG_SCR);
844 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
845 if (scr.ns && (cpsr.mode != MODE_MON)) {
846 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
847 // NB: Skipping the full loop, here
848 if (!nsacr.cp10) cpacrMask.cp10 = 0;
849 if (!nsacr.cp11) cpacrMask.cp11 = 0;
850 }
851 }
852
853 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
854 newVal &= cpacrMask;
855 newVal |= old_val & ~cpacrMask;
856 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
857 miscRegName[misc_reg], newVal);
858 }
859 break;
860 case MISCREG_CPACR_EL1:
861 {
862 const uint32_t ones = (uint32_t)(-1);
863 CPACR cpacrMask = 0;
864 cpacrMask.tta = ones;
865 cpacrMask.fpen = ones;
866 newVal &= cpacrMask;
867 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
868 miscRegName[misc_reg], newVal);
869 }
870 break;
871 case MISCREG_CPTR_EL2:
872 {
873 const uint32_t ones = (uint32_t)(-1);
874 CPTR cptrMask = 0;
875 cptrMask.tcpac = ones;
876 cptrMask.tta = ones;
877 cptrMask.tfp = ones;
878 newVal &= cptrMask;
879 cptrMask = 0;
880 cptrMask.res1_13_12_el2 = ones;
881 cptrMask.res1_9_0_el2 = ones;
882 newVal |= cptrMask;
883 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
884 miscRegName[misc_reg], newVal);
885 }
886 break;
887 case MISCREG_CPTR_EL3:
888 {
889 const uint32_t ones = (uint32_t)(-1);
890 CPTR cptrMask = 0;
891 cptrMask.tcpac = ones;
892 cptrMask.tta = ones;
893 cptrMask.tfp = ones;
894 newVal &= cptrMask;
895 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
896 miscRegName[misc_reg], newVal);
897 }
898 break;
899 case MISCREG_CSSELR:
900 warn_once("The csselr register isn't implemented.\n");
901 return;
902
903 case MISCREG_DC_ZVA_Xt:
904 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
905 return;
906
907 case MISCREG_FPSCR:
908 {
909 const uint32_t ones = (uint32_t)(-1);
910 FPSCR fpscrMask = 0;
911 fpscrMask.ioc = ones;
912 fpscrMask.dzc = ones;
913 fpscrMask.ofc = ones;
914 fpscrMask.ufc = ones;
915 fpscrMask.ixc = ones;
916 fpscrMask.idc = ones;
917 fpscrMask.ioe = ones;
918 fpscrMask.dze = ones;
919 fpscrMask.ofe = ones;
920 fpscrMask.ufe = ones;
921 fpscrMask.ixe = ones;
922 fpscrMask.ide = ones;
923 fpscrMask.len = ones;
924 fpscrMask.stride = ones;
925 fpscrMask.rMode = ones;
926 fpscrMask.fz = ones;
927 fpscrMask.dn = ones;
928 fpscrMask.ahp = ones;
929 fpscrMask.qc = ones;
930 fpscrMask.v = ones;
931 fpscrMask.c = ones;
932 fpscrMask.z = ones;
933 fpscrMask.n = ones;
934 newVal = (newVal & (uint32_t)fpscrMask) |
935 (readMiscRegNoEffect(MISCREG_FPSCR) &
936 ~(uint32_t)fpscrMask);
937 tc->getDecoderPtr()->setContext(newVal);
938 }
939 break;
940 case MISCREG_FPSR:
941 {
942 const uint32_t ones = (uint32_t)(-1);
943 FPSCR fpscrMask = 0;
944 fpscrMask.ioc = ones;
945 fpscrMask.dzc = ones;
946 fpscrMask.ofc = ones;
947 fpscrMask.ufc = ones;
948 fpscrMask.ixc = ones;
949 fpscrMask.idc = ones;
950 fpscrMask.qc = ones;
951 fpscrMask.v = ones;
952 fpscrMask.c = ones;
953 fpscrMask.z = ones;
954 fpscrMask.n = ones;
955 newVal = (newVal & (uint32_t)fpscrMask) |
956 (readMiscRegNoEffect(MISCREG_FPSCR) &
957 ~(uint32_t)fpscrMask);
958 misc_reg = MISCREG_FPSCR;
959 }
960 break;
961 case MISCREG_FPCR:
962 {
963 const uint32_t ones = (uint32_t)(-1);
964 FPSCR fpscrMask = 0;
965 fpscrMask.ioe = ones;
966 fpscrMask.dze = ones;
967 fpscrMask.ofe = ones;
968 fpscrMask.ufe = ones;
969 fpscrMask.ixe = ones;
970 fpscrMask.ide = ones;
971 fpscrMask.len = ones;
972 fpscrMask.stride = ones;
973 fpscrMask.rMode = ones;
974 fpscrMask.fz = ones;
975 fpscrMask.dn = ones;
976 fpscrMask.ahp = ones;
977 newVal = (newVal & (uint32_t)fpscrMask) |
978 (readMiscRegNoEffect(MISCREG_FPSCR) &
979 ~(uint32_t)fpscrMask);
980 misc_reg = MISCREG_FPSCR;
981 }
982 break;
983 case MISCREG_CPSR_Q:
984 {
985 assert(!(newVal & ~CpsrMaskQ));
986 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
987 misc_reg = MISCREG_CPSR;
988 }
989 break;
990 case MISCREG_FPSCR_QC:
991 {
992 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
993 (newVal & FpscrQcMask);
994 misc_reg = MISCREG_FPSCR;
995 }
996 break;
997 case MISCREG_FPSCR_EXC:
998 {
999 newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1000 (newVal & FpscrExcMask);
1001 misc_reg = MISCREG_FPSCR;
1002 }
1003 break;
1004 case MISCREG_FPEXC:
1005 {
1006 // vfpv3 architecture, section B.6.1 of DDI04068
1007 // bit 29 - valid only if fpexc[31] is 0
1008 const uint32_t fpexcMask = 0x60000000;
1009 newVal = (newVal & fpexcMask) |
1010 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1011 }
1012 break;
1013 case MISCREG_HCR:
1014 {
1015 if (!haveVirtualization)
1016 return;
1017 }
1018 break;
1019 case MISCREG_IFSR:
1020 {
1021 // ARM ARM (ARM DDI 0406C.b) B4.1.96
1022 const uint32_t ifsrMask =
1023 mask(31, 13) | mask(11, 11) | mask(8, 6);
1024 newVal = newVal & ~ifsrMask;
1025 }
1026 break;
1027 case MISCREG_DFSR:
1028 {
1029 // ARM ARM (ARM DDI 0406C.b) B4.1.52
1030 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1031 newVal = newVal & ~dfsrMask;
1032 }
1033 break;
1034 case MISCREG_AMAIR0:
1035 case MISCREG_AMAIR1:
1036 {
1037 // ARM ARM (ARM DDI 0406C.b) B4.1.5
1038 // Valid only with LPAE
1039 if (!haveLPAE)
1040 return;
1041 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1042 }
1043 break;
1044 case MISCREG_SCR:
1045 tc->getITBPtr()->invalidateMiscReg();
1046 tc->getDTBPtr()->invalidateMiscReg();
1047 break;
1048 case MISCREG_SCTLR:
1049 {
1050 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1051 MiscRegIndex sctlr_idx;
1052 scr = readMiscRegNoEffect(MISCREG_SCR);
1053 if (haveSecurity && !scr.ns) {
1054 sctlr_idx = MISCREG_SCTLR_S;
1055 } else {
1056 sctlr_idx = MISCREG_SCTLR_NS;
1057 // The FI field (bit 21) is common between S/NS versions
1058 // of the register, we store this in the secure copy of
1059 // the reg
1060 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21);
1061 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21);
1062 }
1063 SCTLR sctlr = miscRegs[sctlr_idx];
1064 SCTLR new_sctlr = newVal;
1065 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization;
1066 miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1067 tc->getITBPtr()->invalidateMiscReg();
1068 tc->getDTBPtr()->invalidateMiscReg();
1069 }
1070 case MISCREG_MIDR:
1071 case MISCREG_ID_PFR0:
1072 case MISCREG_ID_PFR1:
1073 case MISCREG_ID_DFR0:
1074 case MISCREG_ID_MMFR0:
1075 case MISCREG_ID_MMFR1:
1076 case MISCREG_ID_MMFR2:
1077 case MISCREG_ID_MMFR3:
1078 case MISCREG_ID_ISAR0:
1079 case MISCREG_ID_ISAR1:
1080 case MISCREG_ID_ISAR2:
1081 case MISCREG_ID_ISAR3:
1082 case MISCREG_ID_ISAR4:
1083 case MISCREG_ID_ISAR5:
1084
1085 case MISCREG_MPIDR:
1086 case MISCREG_FPSID:
1087 case MISCREG_TLBTR:
1088 case MISCREG_MVFR0:
1089 case MISCREG_MVFR1:
1090
1091 case MISCREG_ID_AA64AFR0_EL1:
1092 case MISCREG_ID_AA64AFR1_EL1:
1093 case MISCREG_ID_AA64DFR0_EL1:
1094 case MISCREG_ID_AA64DFR1_EL1:
1095 case MISCREG_ID_AA64ISAR0_EL1:
1096 case MISCREG_ID_AA64ISAR1_EL1:
1097 case MISCREG_ID_AA64MMFR0_EL1:
1098 case MISCREG_ID_AA64MMFR1_EL1:
1099 case MISCREG_ID_AA64PFR0_EL1:
1100 case MISCREG_ID_AA64PFR1_EL1:
1101 // ID registers are constants.
1102 return;
1103
1104 // TLBI all entries, EL0&1 inner sharable (ignored)
1105 case MISCREG_TLBIALLIS:
1106 case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1107 assert32(tc);
1108 target_el = 1; // el 0 and 1 are handled together
1109 scr = readMiscReg(MISCREG_SCR, tc);
1110 secure_lookup = haveSecurity && !scr.ns;
1111 sys = tc->getSystemPtr();
1112 for (x = 0; x < sys->numContexts(); x++) {
1113 oc = sys->getThreadContext(x);
1114 assert(oc->getITBPtr() && oc->getDTBPtr());
1115 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1116 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1117
1118 // If CheckerCPU is connected, need to notify it of a flush
1119 CheckerCPU *checker = oc->getCheckerCpuPtr();
1120 if (checker) {
1121 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1122 target_el);
1123 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1124 target_el);
1125 }
1126 }
1127 return;
1128 // TLBI all entries, EL0&1, instruction side
1129 case MISCREG_ITLBIALL:
1130 assert32(tc);
1131 target_el = 1; // el 0 and 1 are handled together
1132 scr = readMiscReg(MISCREG_SCR, tc);
1133 secure_lookup = haveSecurity && !scr.ns;
1134 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1135 return;
1136 // TLBI all entries, EL0&1, data side
1137 case MISCREG_DTLBIALL:
1138 assert32(tc);
1139 target_el = 1; // el 0 and 1 are handled together
1140 scr = readMiscReg(MISCREG_SCR, tc);
1141 secure_lookup = haveSecurity && !scr.ns;
1142 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1143 return;
1144 // TLBI based on VA, EL0&1 inner sharable (ignored)
1145 case MISCREG_TLBIMVAIS:
1146 case MISCREG_TLBIMVA:
1147 assert32(tc);
1148 target_el = 1; // el 0 and 1 are handled together
1149 scr = readMiscReg(MISCREG_SCR, tc);
1150 secure_lookup = haveSecurity && !scr.ns;
1151 sys = tc->getSystemPtr();
1152 for (x = 0; x < sys->numContexts(); x++) {
1153 oc = sys->getThreadContext(x);
1154 assert(oc->getITBPtr() && oc->getDTBPtr());
1155 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1156 bits(newVal, 7,0),
1157 secure_lookup, target_el);
1158 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1159 bits(newVal, 7,0),
1160 secure_lookup, target_el);
1161
1162 CheckerCPU *checker = oc->getCheckerCpuPtr();
1163 if (checker) {
1164 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1165 bits(newVal, 7,0), secure_lookup, target_el);
1166 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1167 bits(newVal, 7,0), secure_lookup, target_el);
1168 }
1169 }
1170 return;
1171 // TLBI by ASID, EL0&1, inner sharable
1172 case MISCREG_TLBIASIDIS:
1173 case MISCREG_TLBIASID:
1174 assert32(tc);
1175 target_el = 1; // el 0 and 1 are handled together
1176 scr = readMiscReg(MISCREG_SCR, tc);
1177 secure_lookup = haveSecurity && !scr.ns;
1178 sys = tc->getSystemPtr();
1179 for (x = 0; x < sys->numContexts(); x++) {
1180 oc = sys->getThreadContext(x);
1181 assert(oc->getITBPtr() && oc->getDTBPtr());
1182 oc->getITBPtr()->flushAsid(bits(newVal, 7,0),
1183 secure_lookup, target_el);
1184 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1185 secure_lookup, target_el);
1186 CheckerCPU *checker = oc->getCheckerCpuPtr();
1187 if (checker) {
1188 checker->getITBPtr()->flushAsid(bits(newVal, 7,0),
1189 secure_lookup, target_el);
1190 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0),
1191 secure_lookup, target_el);
1192 }
1193 }
1194 return;
1195 // TLBI by address, EL0&1, inner sharable (ignored)
1196 case MISCREG_TLBIMVAAIS:
1197 case MISCREG_TLBIMVAA:
1198 assert32(tc);
1199 target_el = 1; // el 0 and 1 are handled together
1200 scr = readMiscReg(MISCREG_SCR, tc);
1201 secure_lookup = haveSecurity && !scr.ns;
1202 hyp = 0;
1203 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1204 return;
1205 // TLBI by address, EL2, hypervisor mode
1206 case MISCREG_TLBIMVAH:
1207 case MISCREG_TLBIMVAHIS:
1208 assert32(tc);
1209 target_el = 1; // aarch32, use hyp bit
1210 scr = readMiscReg(MISCREG_SCR, tc);
1211 secure_lookup = haveSecurity && !scr.ns;
1212 hyp = 1;
1213 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1214 return;
1215 // TLBI by address and asid, EL0&1, instruction side only
1216 case MISCREG_ITLBIMVA:
1217 assert32(tc);
1218 target_el = 1; // el 0 and 1 are handled together
1219 scr = readMiscReg(MISCREG_SCR, tc);
1220 secure_lookup = haveSecurity && !scr.ns;
1221 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1222 bits(newVal, 7,0), secure_lookup, target_el);
1223 return;
1224 // TLBI by address and asid, EL0&1, data side only
1225 case MISCREG_DTLBIMVA:
1226 assert32(tc);
1227 target_el = 1; // el 0 and 1 are handled together
1228 scr = readMiscReg(MISCREG_SCR, tc);
1229 secure_lookup = haveSecurity && !scr.ns;
1230 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12),
1231 bits(newVal, 7,0), secure_lookup, target_el);
1232 return;
1233 // TLBI by ASID, EL0&1, instrution side only
1234 case MISCREG_ITLBIASID:
1235 assert32(tc);
1236 target_el = 1; // el 0 and 1 are handled together
1237 scr = readMiscReg(MISCREG_SCR, tc);
1238 secure_lookup = haveSecurity && !scr.ns;
1239 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1240 target_el);
1241 return;
1242 // TLBI by ASID EL0&1 data size only
1243 case MISCREG_DTLBIASID:
1244 assert32(tc);
1245 target_el = 1; // el 0 and 1 are handled together
1246 scr = readMiscReg(MISCREG_SCR, tc);
1247 secure_lookup = haveSecurity && !scr.ns;
1248 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup,
1249 target_el);
1250 return;
1251 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1252 case MISCREG_TLBIALLNSNH:
1253 case MISCREG_TLBIALLNSNHIS:
1254 assert32(tc);
1255 target_el = 1; // el 0 and 1 are handled together
1256 hyp = 0;
1257 tlbiALLN(tc, hyp, target_el);
1258 return;
1259 // TLBI all entries, EL2, hyp,
1260 case MISCREG_TLBIALLH:
1261 case MISCREG_TLBIALLHIS:
1262 assert32(tc);
1263 target_el = 1; // aarch32, use hyp bit
1264 hyp = 1;
1265 tlbiALLN(tc, hyp, target_el);
1266 return;
1267 // AArch64 TLBI: invalidate all entries EL3
1268 case MISCREG_TLBI_ALLE3IS:
1269 case MISCREG_TLBI_ALLE3:
1270 assert64(tc);
1271 target_el = 3;
1272 secure_lookup = true;
1273 tlbiALL(tc, secure_lookup, target_el);
1274 return;
1275 // @todo: uncomment this to enable Virtualization
1276 // case MISCREG_TLBI_ALLE2IS:
1277 // case MISCREG_TLBI_ALLE2:
1278 // TLBI all entries, EL0&1
1279 case MISCREG_TLBI_ALLE1IS:
1280 case MISCREG_TLBI_ALLE1:
1281 // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1282 case MISCREG_TLBI_VMALLE1IS:
1283 case MISCREG_TLBI_VMALLE1:
1284 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1285 case MISCREG_TLBI_VMALLS12E1IS:
1286 case MISCREG_TLBI_VMALLS12E1:
1287 // @todo: handle VMID and stage 2 to enable Virtualization
1288 assert64(tc);
1289 target_el = 1; // el 0 and 1 are handled together
1290 scr = readMiscReg(MISCREG_SCR, tc);
1291 secure_lookup = haveSecurity && !scr.ns;
1292 tlbiALL(tc, secure_lookup, target_el);
1293 return;
1294 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1295 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1296 // from the last level of translation table walks
1297 // @todo: handle VMID to enable Virtualization
1298 // TLBI all entries, EL0&1
1299 case MISCREG_TLBI_VAE3IS_Xt:
1300 case MISCREG_TLBI_VAE3_Xt:
1301 // TLBI by VA, EL3 regime stage 1, last level walk
1302 case MISCREG_TLBI_VALE3IS_Xt:
1303 case MISCREG_TLBI_VALE3_Xt:
1304 assert64(tc);
1305 target_el = 3;
1306 asid = 0xbeef; // does not matter, tlbi is global
1307 secure_lookup = true;
1308 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1309 return;
1310 // TLBI by VA, EL2
1311 case MISCREG_TLBI_VAE2IS_Xt:
1312 case MISCREG_TLBI_VAE2_Xt:
1313 // TLBI by VA, EL2, stage1 last level walk
1314 case MISCREG_TLBI_VALE2IS_Xt:
1315 case MISCREG_TLBI_VALE2_Xt:
1316 assert64(tc);
1317 target_el = 2;
1318 asid = 0xbeef; // does not matter, tlbi is global
1319 scr = readMiscReg(MISCREG_SCR, tc);
1320 secure_lookup = haveSecurity && !scr.ns;
1321 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1322 return;
1323 // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1324 case MISCREG_TLBI_VAE1IS_Xt:
1325 case MISCREG_TLBI_VAE1_Xt:
1326 case MISCREG_TLBI_VALE1IS_Xt:
1327 case MISCREG_TLBI_VALE1_Xt:
1328 assert64(tc);
1329 asid = bits(newVal, 63, 48);
1330 target_el = 1; // el 0 and 1 are handled together
1331 scr = readMiscReg(MISCREG_SCR, tc);
1332 secure_lookup = haveSecurity && !scr.ns;
1333 tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1334 return;
1335 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1336 // @todo: handle VMID to enable Virtualization
1337 case MISCREG_TLBI_ASIDE1IS_Xt:
1338 case MISCREG_TLBI_ASIDE1_Xt:
1339 assert64(tc);
1340 target_el = 1; // el 0 and 1 are handled together
1341 scr = readMiscReg(MISCREG_SCR, tc);
1342 secure_lookup = haveSecurity && !scr.ns;
1343 sys = tc->getSystemPtr();
1344 for (x = 0; x < sys->numContexts(); x++) {
1345 oc = sys->getThreadContext(x);
1346 assert(oc->getITBPtr() && oc->getDTBPtr());
1347 asid = bits(newVal, 63, 48);
1348 if (!haveLargeAsid64)
1349 asid &= mask(8);
1350 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el);
1351 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el);
1352 CheckerCPU *checker = oc->getCheckerCpuPtr();
1353 if (checker) {
1354 checker->getITBPtr()->flushAsid(asid,
1355 secure_lookup, target_el);
1356 checker->getDTBPtr()->flushAsid(asid,
1357 secure_lookup, target_el);
1358 }
1359 }
1360 return;
1361 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1362 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1363 // entries from the last level of translation table walks
1364 // @todo: handle VMID to enable Virtualization
1365 case MISCREG_TLBI_VAAE1IS_Xt:
1366 case MISCREG_TLBI_VAAE1_Xt:
1367 case MISCREG_TLBI_VAALE1IS_Xt:
1368 case MISCREG_TLBI_VAALE1_Xt:
1369 assert64(tc);
1370 target_el = 1; // el 0 and 1 are handled together
1371 scr = readMiscReg(MISCREG_SCR, tc);
1372 secure_lookup = haveSecurity && !scr.ns;
1373 sys = tc->getSystemPtr();
1374 for (x = 0; x < sys->numContexts(); x++) {
1375 // @todo: extra controls on TLBI broadcast?
1376 oc = sys->getThreadContext(x);
1377 assert(oc->getITBPtr() && oc->getDTBPtr());
1378 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1379 oc->getITBPtr()->flushMva(va,
1380 secure_lookup, false, target_el);
1381 oc->getDTBPtr()->flushMva(va,
1382 secure_lookup, false, target_el);
1383
1384 CheckerCPU *checker = oc->getCheckerCpuPtr();
1385 if (checker) {
1386 checker->getITBPtr()->flushMva(va,
1387 secure_lookup, false, target_el);
1388 checker->getDTBPtr()->flushMva(va,
1389 secure_lookup, false, target_el);
1390 }
1391 }
1392 return;
1393 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1394 case MISCREG_TLBI_IPAS2LE1IS_Xt:
1395 case MISCREG_TLBI_IPAS2LE1_Xt:
1396 case MISCREG_TLBI_IPAS2E1IS_Xt:
1397 case MISCREG_TLBI_IPAS2E1_Xt:
1398 assert64(tc);
1399 // @todo: implement these as part of Virtualization
1400 warn("Not doing anything for write of miscreg ITLB_IPAS2\n");
1401 return;
1402 case MISCREG_ACTLR:
1403 warn("Not doing anything for write of miscreg ACTLR\n");
1404 break;
1405
1406 case MISCREG_PMXEVTYPER_PMCCFILTR:
1407 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1408 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1409 case MISCREG_PMCR ... MISCREG_PMOVSSET:
1410 pmu->setMiscReg(misc_reg, newVal);
1411 break;
1412
1413
1414 case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1415 {
1416 HSTR hstrMask = 0;
1417 hstrMask.tjdbx = 1;
1418 newVal &= ~((uint32_t) hstrMask);
1419 break;
1420 }
1421 case MISCREG_HCPTR:
1422 {
1423 // If a CP bit in NSACR is 0 then the corresponding bit in
1424 // HCPTR is RAO/WI. Same applies to NSASEDIS
1425 secure_lookup = haveSecurity &&
1426 inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1427 readMiscRegNoEffect(MISCREG_CPSR));
1428 if (!secure_lookup) {
1429 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1430 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1431 newVal = (newVal & ~mask) | (oldValue & mask);
1432 }
1433 break;
1434 }
1435 case MISCREG_HDFAR: // alias for secure DFAR
1436 misc_reg = MISCREG_DFAR_S;
1437 break;
1438 case MISCREG_HIFAR: // alias for secure IFAR
1439 misc_reg = MISCREG_IFAR_S;
1440 break;
1441 case MISCREG_ATS1CPR:
1442 case MISCREG_ATS1CPW:
1443 case MISCREG_ATS1CUR:
1444 case MISCREG_ATS1CUW:
1445 case MISCREG_ATS12NSOPR:
1446 case MISCREG_ATS12NSOPW:
1447 case MISCREG_ATS12NSOUR:
1448 case MISCREG_ATS12NSOUW:
1449 case MISCREG_ATS1HR:
1450 case MISCREG_ATS1HW:
1451 {
1452 unsigned flags = 0;
1453 BaseTLB::Mode mode = BaseTLB::Read;
1454 TLB::ArmTranslationType tranType = TLB::NormalTran;
1455 Fault fault;
1456 switch(misc_reg) {
1457 case MISCREG_ATS1CPR:
1458 flags = TLB::MustBeOne;
1459 tranType = TLB::S1CTran;
1460 mode = BaseTLB::Read;
1461 break;
1462 case MISCREG_ATS1CPW:
1463 flags = TLB::MustBeOne;
1464 tranType = TLB::S1CTran;
1465 mode = BaseTLB::Write;
1466 break;
1467 case MISCREG_ATS1CUR:
1468 flags = TLB::MustBeOne | TLB::UserMode;
1469 tranType = TLB::S1CTran;
1470 mode = BaseTLB::Read;
1471 break;
1472 case MISCREG_ATS1CUW:
1473 flags = TLB::MustBeOne | TLB::UserMode;
1474 tranType = TLB::S1CTran;
1475 mode = BaseTLB::Write;
1476 break;
1477 case MISCREG_ATS12NSOPR:
1478 if (!haveSecurity)
1479 panic("Security Extensions required for ATS12NSOPR");
1480 flags = TLB::MustBeOne;
1481 tranType = TLB::S1S2NsTran;
1482 mode = BaseTLB::Read;
1483 break;
1484 case MISCREG_ATS12NSOPW:
1485 if (!haveSecurity)
1486 panic("Security Extensions required for ATS12NSOPW");
1487 flags = TLB::MustBeOne;
1488 tranType = TLB::S1S2NsTran;
1489 mode = BaseTLB::Write;
1490 break;
1491 case MISCREG_ATS12NSOUR:
1492 if (!haveSecurity)
1493 panic("Security Extensions required for ATS12NSOUR");
1494 flags = TLB::MustBeOne | TLB::UserMode;
1495 tranType = TLB::S1S2NsTran;
1496 mode = BaseTLB::Read;
1497 break;
1498 case MISCREG_ATS12NSOUW:
1499 if (!haveSecurity)
1500 panic("Security Extensions required for ATS12NSOUW");
1501 flags = TLB::MustBeOne | TLB::UserMode;
1502 tranType = TLB::S1S2NsTran;
1503 mode = BaseTLB::Write;
1504 break;
1505 case MISCREG_ATS1HR: // only really useful from secure mode.
1506 flags = TLB::MustBeOne;
1507 tranType = TLB::HypMode;
1508 mode = BaseTLB::Read;
1509 break;
1510 case MISCREG_ATS1HW:
1511 flags = TLB::MustBeOne;
1512 tranType = TLB::HypMode;
1513 mode = BaseTLB::Write;
1514 break;
1515 }
1516 // If we're in timing mode then doing the translation in
1517 // functional mode then we're slightly distorting performance
1518 // results obtained from simulations. The translation should be
1519 // done in the same mode the core is running in. NOTE: This
1520 // can't be an atomic translation because that causes problems
1521 // with unexpected atomic snoop requests.
1522 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1523 Request req(0, val, 1, flags, Request::funcMasterId,
1524 tc->pcState().pc(), tc->contextId());
1525 fault = tc->getDTBPtr()->translateFunctional(&req, tc, mode, tranType);
1526 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1527 HCR hcr = readMiscRegNoEffect(MISCREG_HCR);
1528
1529 MiscReg newVal;
1530 if (fault == NoFault) {
1531 Addr paddr = req.getPaddr();
1532 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1533 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1534 newVal = (paddr & mask(39, 12)) |
1535 (tc->getDTBPtr()->getAttr());
1536 } else {
1537 newVal = (paddr & 0xfffff000) |
1538 (tc->getDTBPtr()->getAttr());
1539 }
1540 DPRINTF(MiscRegs,
1541 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1542 val, newVal);
1543 } else {
1544 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1545 // Set fault bit and FSR
1546 FSR fsr = armFault->getFsr(tc);
1547
1548 newVal = ((fsr >> 9) & 1) << 11;
1549 if (newVal) {
1550 // LPAE - rearange fault status
1551 newVal |= ((fsr >> 0) & 0x3f) << 1;
1552 } else {
1553 // VMSA - rearange fault status
1554 newVal |= ((fsr >> 0) & 0xf) << 1;
1555 newVal |= ((fsr >> 10) & 0x1) << 5;
1556 newVal |= ((fsr >> 12) & 0x1) << 6;
1557 }
1558 newVal |= 0x1; // F bit
1559 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1560 newVal |= armFault->isStage2() ? 0x200 : 0;
1561 DPRINTF(MiscRegs,
1562 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1563 val, fsr, newVal);
1564 }
1565 setMiscRegNoEffect(MISCREG_PAR, newVal);
1566 return;
1567 }
1568 case MISCREG_TTBCR:
1569 {
1570 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1571 const uint32_t ones = (uint32_t)(-1);
1572 TTBCR ttbcrMask = 0;
1573 TTBCR ttbcrNew = newVal;
1574
1575 // ARM DDI 0406C.b, ARMv7-32
1576 ttbcrMask.n = ones; // T0SZ
1577 if (haveSecurity) {
1578 ttbcrMask.pd0 = ones;
1579 ttbcrMask.pd1 = ones;
1580 }
1581 ttbcrMask.epd0 = ones;
1582 ttbcrMask.irgn0 = ones;
1583 ttbcrMask.orgn0 = ones;
1584 ttbcrMask.sh0 = ones;
1585 ttbcrMask.ps = ones; // T1SZ
1586 ttbcrMask.a1 = ones;
1587 ttbcrMask.epd1 = ones;
1588 ttbcrMask.irgn1 = ones;
1589 ttbcrMask.orgn1 = ones;
1590 ttbcrMask.sh1 = ones;
1591 if (haveLPAE)
1592 ttbcrMask.eae = ones;
1593
1594 if (haveLPAE && ttbcrNew.eae) {
1595 newVal = newVal & ttbcrMask;
1596 } else {
1597 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1598 }
1599 }
1600 case MISCREG_TTBR0:
1601 case MISCREG_TTBR1:
1602 {
1603 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1604 if (haveLPAE) {
1605 if (ttbcr.eae) {
1606 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1607 // ARMv8 AArch32 bit 63-56 only
1608 uint64_t ttbrMask = mask(63,56) | mask(47,40);
1609 newVal = (newVal & (~ttbrMask));
1610 }
1611 }
1612 }
1613 case MISCREG_SCTLR_EL1:
1614 {
1615 tc->getITBPtr()->invalidateMiscReg();
1616 tc->getDTBPtr()->invalidateMiscReg();
1617 setMiscRegNoEffect(misc_reg, newVal);
1618 }
1619 case MISCREG_CONTEXTIDR:
1620 case MISCREG_PRRR:
1621 case MISCREG_NMRR:
1622 case MISCREG_MAIR0:
1623 case MISCREG_MAIR1:
1624 case MISCREG_DACR:
1625 case MISCREG_VTTBR:
1626 case MISCREG_SCR_EL3:
1627 case MISCREG_TCR_EL1:
1628 case MISCREG_TCR_EL2:
1629 case MISCREG_TCR_EL3:
1630 case MISCREG_SCTLR_EL2:
1631 case MISCREG_SCTLR_EL3:
1632 case MISCREG_TTBR0_EL1:
1633 case MISCREG_TTBR1_EL1:
1634 case MISCREG_TTBR0_EL2:
1635 case MISCREG_TTBR0_EL3:
1636 tc->getITBPtr()->invalidateMiscReg();
1637 tc->getDTBPtr()->invalidateMiscReg();
1638 break;
1639 case MISCREG_NZCV:
1640 {
1641 CPSR cpsr = val;
1642
1643 tc->setCCReg(CCREG_NZ, cpsr.nz);
1644 tc->setCCReg(CCREG_C, cpsr.c);
1645 tc->setCCReg(CCREG_V, cpsr.v);
1646 }
1647 break;
1648 case MISCREG_DAIF:
1649 {
1650 CPSR cpsr = miscRegs[MISCREG_CPSR];
1651 cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1652 newVal = cpsr;
1653 misc_reg = MISCREG_CPSR;
1654 }
1655 break;
1656 case MISCREG_SP_EL0:
1657 tc->setIntReg(INTREG_SP0, newVal);
1658 break;
1659 case MISCREG_SP_EL1:
1660 tc->setIntReg(INTREG_SP1, newVal);
1661 break;
1662 case MISCREG_SP_EL2:
1663 tc->setIntReg(INTREG_SP2, newVal);
1664 break;
1665 case MISCREG_SPSEL:
1666 {
1667 CPSR cpsr = miscRegs[MISCREG_CPSR];
1668 cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1669 newVal = cpsr;
1670 misc_reg = MISCREG_CPSR;
1671 }
1672 break;
1673 case MISCREG_CURRENTEL:
1674 {
1675 CPSR cpsr = miscRegs[MISCREG_CPSR];
1676 cpsr.el = (uint8_t) ((CPSR) newVal).el;
1677 newVal = cpsr;
1678 misc_reg = MISCREG_CPSR;
1679 }
1680 break;
1681 case MISCREG_AT_S1E1R_Xt:
1682 case MISCREG_AT_S1E1W_Xt:
1683 case MISCREG_AT_S1E0R_Xt:
1684 case MISCREG_AT_S1E0W_Xt:
1685 case MISCREG_AT_S1E2R_Xt:
1686 case MISCREG_AT_S1E2W_Xt:
1687 case MISCREG_AT_S12E1R_Xt:
1688 case MISCREG_AT_S12E1W_Xt:
1689 case MISCREG_AT_S12E0R_Xt:
1690 case MISCREG_AT_S12E0W_Xt:
1691 case MISCREG_AT_S1E3R_Xt:
1692 case MISCREG_AT_S1E3W_Xt:
1693 {
1694 RequestPtr req = new Request;
1695 unsigned flags = 0;
1696 BaseTLB::Mode mode = BaseTLB::Read;
1697 TLB::ArmTranslationType tranType = TLB::NormalTran;
1698 Fault fault;
1699 switch(misc_reg) {
1700 case MISCREG_AT_S1E1R_Xt:
1701 flags = TLB::MustBeOne;
1702 tranType = TLB::S1CTran;
1703 mode = BaseTLB::Read;
1704 break;
1705 case MISCREG_AT_S1E1W_Xt:
1706 flags = TLB::MustBeOne;
1707 tranType = TLB::S1CTran;
1708 mode = BaseTLB::Write;
1709 break;
1710 case MISCREG_AT_S1E0R_Xt:
1711 flags = TLB::MustBeOne | TLB::UserMode;
1712 tranType = TLB::S1CTran;
1713 mode = BaseTLB::Read;
1714 break;
1715 case MISCREG_AT_S1E0W_Xt:
1716 flags = TLB::MustBeOne | TLB::UserMode;
1717 tranType = TLB::S1CTran;
1718 mode = BaseTLB::Write;
1719 break;
1720 case MISCREG_AT_S1E2R_Xt:
1721 flags = TLB::MustBeOne;
1722 tranType = TLB::HypMode;
1723 mode = BaseTLB::Read;
1724 break;
1725 case MISCREG_AT_S1E2W_Xt:
1726 flags = TLB::MustBeOne;
1727 tranType = TLB::HypMode;
1728 mode = BaseTLB::Write;
1729 break;
1730 case MISCREG_AT_S12E0R_Xt:
1731 flags = TLB::MustBeOne | TLB::UserMode;
1732 tranType = TLB::S1S2NsTran;
1733 mode = BaseTLB::Read;
1734 break;
1735 case MISCREG_AT_S12E0W_Xt:
1736 flags = TLB::MustBeOne | TLB::UserMode;
1737 tranType = TLB::S1S2NsTran;
1738 mode = BaseTLB::Write;
1739 break;
1740 case MISCREG_AT_S12E1R_Xt:
1741 flags = TLB::MustBeOne;
1742 tranType = TLB::S1S2NsTran;
1743 mode = BaseTLB::Read;
1744 break;
1745 case MISCREG_AT_S12E1W_Xt:
1746 flags = TLB::MustBeOne;
1747 tranType = TLB::S1S2NsTran;
1748 mode = BaseTLB::Write;
1749 break;
1750 case MISCREG_AT_S1E3R_Xt:
1751 flags = TLB::MustBeOne;
1752 tranType = TLB::HypMode; // There is no TZ mode defined.
1753 mode = BaseTLB::Read;
1754 break;
1755 case MISCREG_AT_S1E3W_Xt:
1756 flags = TLB::MustBeOne;
1757 tranType = TLB::HypMode; // There is no TZ mode defined.
1758 mode = BaseTLB::Write;
1759 break;
1760 }
1761 // If we're in timing mode then doing the translation in
1762 // functional mode then we're slightly distorting performance
1763 // results obtained from simulations. The translation should be
1764 // done in the same mode the core is running in. NOTE: This
1765 // can't be an atomic translation because that causes problems
1766 // with unexpected atomic snoop requests.
1767 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1768 req->setVirt(0, val, 1, flags, Request::funcMasterId,
1769 tc->pcState().pc());
1770 req->setContext(tc->contextId());
1771 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode,
1772 tranType);
1773
1774 MiscReg newVal;
1775 if (fault == NoFault) {
1776 Addr paddr = req->getPaddr();
1777 uint64_t attr = tc->getDTBPtr()->getAttr();
1778 uint64_t attr1 = attr >> 56;
1779 if (!attr1 || attr1 ==0x44) {
1780 attr |= 0x100;
1781 attr &= ~ uint64_t(0x80);
1782 }
1783 newVal = (paddr & mask(47, 12)) | attr;
1784 DPRINTF(MiscRegs,
1785 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1786 val, newVal);
1787 } else {
1788 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1789 // Set fault bit and FSR
1790 FSR fsr = armFault->getFsr(tc);
1791
1792 newVal = ((fsr >> 9) & 1) << 11;
1793 // rearange fault status
1794 newVal |= ((fsr >> 0) & 0x3f) << 1;
1795 newVal |= 0x1; // F bit
1796 newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1797 newVal |= armFault->isStage2() ? 0x200 : 0;
1798 DPRINTF(MiscRegs,
1799 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1800 val, fsr, newVal);
1801 }
1802 delete req;
1803 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1804 return;
1805 }
1806 case MISCREG_SPSR_EL3:
1807 case MISCREG_SPSR_EL2:
1808 case MISCREG_SPSR_EL1:
1809 // Force bits 23:21 to 0
1810 newVal = val & ~(0x7 << 21);
1811 break;
1812 case MISCREG_L2CTLR:
1813 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1814 miscRegName[misc_reg], uint32_t(val));
1815 break;
1816
1817 // Generic Timer registers
1818 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1819 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1820 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1821 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1822 getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1823 break;
1824 }
1825 }
1826 setMiscRegNoEffect(misc_reg, newVal);
1827}
1828
1829void
1830ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1831 bool secure_lookup, uint8_t target_el)
1832{
1833 if (!haveLargeAsid64)
1834 asid &= mask(8);
1835 Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1836 System *sys = tc->getSystemPtr();
1837 for (int x = 0; x < sys->numContexts(); x++) {
1838 ThreadContext *oc = sys->getThreadContext(x);
1839 assert(oc->getITBPtr() && oc->getDTBPtr());
1840 oc->getITBPtr()->flushMvaAsid(va, asid,
1841 secure_lookup, target_el);
1842 oc->getDTBPtr()->flushMvaAsid(va, asid,
1843 secure_lookup, target_el);
1844
1845 CheckerCPU *checker = oc->getCheckerCpuPtr();
1846 if (checker) {
1847 checker->getITBPtr()->flushMvaAsid(
1848 va, asid, secure_lookup, target_el);
1849 checker->getDTBPtr()->flushMvaAsid(
1850 va, asid, secure_lookup, target_el);
1851 }
1852 }
1853}
1854
1855void
1856ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1857{
1858 System *sys = tc->getSystemPtr();
1859 for (int x = 0; x < sys->numContexts(); x++) {
1860 ThreadContext *oc = sys->getThreadContext(x);
1861 assert(oc->getITBPtr() && oc->getDTBPtr());
1862 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el);
1863 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el);
1864
1865 // If CheckerCPU is connected, need to notify it of a flush
1866 CheckerCPU *checker = oc->getCheckerCpuPtr();
1867 if (checker) {
1868 checker->getITBPtr()->flushAllSecurity(secure_lookup,
1869 target_el);
1870 checker->getDTBPtr()->flushAllSecurity(secure_lookup,
1871 target_el);
1872 }
1873 }
1874}
1875
1876void
1877ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1878{
1879 System *sys = tc->getSystemPtr();
1880 for (int x = 0; x < sys->numContexts(); x++) {
1881 ThreadContext *oc = sys->getThreadContext(x);
1882 assert(oc->getITBPtr() && oc->getDTBPtr());
1883 oc->getITBPtr()->flushAllNs(hyp, target_el);
1884 oc->getDTBPtr()->flushAllNs(hyp, target_el);
1885
1886 CheckerCPU *checker = oc->getCheckerCpuPtr();
1887 if (checker) {
1888 checker->getITBPtr()->flushAllNs(hyp, target_el);
1889 checker->getDTBPtr()->flushAllNs(hyp, target_el);
1890 }
1891 }
1892}
1893
1894void
1895ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
1896 uint8_t target_el)
1897{
1898 System *sys = tc->getSystemPtr();
1899 for (int x = 0; x < sys->numContexts(); x++) {
1900 ThreadContext *oc = sys->getThreadContext(x);
1901 assert(oc->getITBPtr() && oc->getDTBPtr());
1902 oc->getITBPtr()->flushMva(mbits(newVal, 31,12),
1903 secure_lookup, hyp, target_el);
1904 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1905 secure_lookup, hyp, target_el);
1906
1907 CheckerCPU *checker = oc->getCheckerCpuPtr();
1908 if (checker) {
1909 checker->getITBPtr()->flushMva(mbits(newVal, 31,12),
1910 secure_lookup, hyp, target_el);
1911 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12),
1912 secure_lookup, hyp, target_el);
1913 }
1914 }
1915}
1916
1917BaseISADevice &
1918ISA::getGenericTimer(ThreadContext *tc)
1919{
1920 // We only need to create an ISA interface the first time we try
1921 // to access the timer.
1922 if (timer)
1923 return *timer.get();
1924
1925 assert(system);
1926 GenericTimer *generic_timer(system->getGenericTimer());
1927 if (!generic_timer) {
1928 panic("Trying to get a generic timer from a system that hasn't "
1929 "been configured to use a generic timer.\n");
1930 }
1931
1932 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
1933 return *timer.get();
1934}
1935
1936}
1937
1938ArmISA::ISA *
1939ArmISAParams::create()
1940{
1941 return new ArmISA::ISA(this);
1942}