vfp.hh (7381:bc68c91e9814) vfp.hh (7382:b3c768629a54)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#ifndef __ARCH_ARM_INSTS_VFP_HH__
41#define __ARCH_ARM_INSTS_VFP_HH__
42
43#include "arch/arm/insts/misc.hh"
44#include "arch/arm/miscregs.hh"
45#include <fenv.h>
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#ifndef __ARCH_ARM_INSTS_VFP_HH__
41#define __ARCH_ARM_INSTS_VFP_HH__
42
43#include "arch/arm/insts/misc.hh"
44#include "arch/arm/miscregs.hh"
45#include <fenv.h>
46#include <cmath>
46
47enum VfpMicroMode {
48 VfpNotAMicroop,
49 VfpMicroop,
50 VfpFirstMicroop,
51 VfpLastMicroop
52};
53
54template<class T>
55static inline void
56setVfpMicroFlags(VfpMicroMode mode, T &flags)
57{
58 switch (mode) {
59 case VfpMicroop:
60 flags[StaticInst::IsMicroop] = true;
61 break;
62 case VfpFirstMicroop:
63 flags[StaticInst::IsMicroop] =
64 flags[StaticInst::IsFirstMicroop] = true;
65 break;
66 case VfpLastMicroop:
67 flags[StaticInst::IsMicroop] =
68 flags[StaticInst::IsLastMicroop] = true;
69 break;
70 case VfpNotAMicroop:
71 break;
72 }
73 if (mode == VfpMicroop || mode == VfpFirstMicroop) {
74 flags[StaticInst::IsDelayedCommit] = true;
75 }
76}
77
78enum FeExceptionBit
79{
80 FeDivByZero = FE_DIVBYZERO,
81 FeInexact = FE_INEXACT,
82 FeInvalid = FE_INVALID,
83 FeOverflow = FE_OVERFLOW,
84 FeUnderflow = FE_UNDERFLOW,
85 FeAllExceptions = FE_ALL_EXCEPT
86};
87
88enum FeRoundingMode
89{
90 FeRoundDown = FE_DOWNWARD,
91 FeRoundNearest = FE_TONEAREST,
92 FeRoundZero = FE_TOWARDZERO,
93 FeRoundUpward = FE_UPWARD
94};
95
96enum VfpRoundingMode
97{
98 VfpRoundNearest = 0,
99 VfpRoundUpward = 1,
100 VfpRoundDown = 2,
101 VfpRoundZero = 3
102};
103
47
48enum VfpMicroMode {
49 VfpNotAMicroop,
50 VfpMicroop,
51 VfpFirstMicroop,
52 VfpLastMicroop
53};
54
55template<class T>
56static inline void
57setVfpMicroFlags(VfpMicroMode mode, T &flags)
58{
59 switch (mode) {
60 case VfpMicroop:
61 flags[StaticInst::IsMicroop] = true;
62 break;
63 case VfpFirstMicroop:
64 flags[StaticInst::IsMicroop] =
65 flags[StaticInst::IsFirstMicroop] = true;
66 break;
67 case VfpLastMicroop:
68 flags[StaticInst::IsMicroop] =
69 flags[StaticInst::IsLastMicroop] = true;
70 break;
71 case VfpNotAMicroop:
72 break;
73 }
74 if (mode == VfpMicroop || mode == VfpFirstMicroop) {
75 flags[StaticInst::IsDelayedCommit] = true;
76 }
77}
78
79enum FeExceptionBit
80{
81 FeDivByZero = FE_DIVBYZERO,
82 FeInexact = FE_INEXACT,
83 FeInvalid = FE_INVALID,
84 FeOverflow = FE_OVERFLOW,
85 FeUnderflow = FE_UNDERFLOW,
86 FeAllExceptions = FE_ALL_EXCEPT
87};
88
89enum FeRoundingMode
90{
91 FeRoundDown = FE_DOWNWARD,
92 FeRoundNearest = FE_TONEAREST,
93 FeRoundZero = FE_TOWARDZERO,
94 FeRoundUpward = FE_UPWARD
95};
96
97enum VfpRoundingMode
98{
99 VfpRoundNearest = 0,
100 VfpRoundUpward = 1,
101 VfpRoundDown = 2,
102 VfpRoundZero = 3
103};
104
105template <class fpType>
106static inline void
107vfpFlushToZero(uint32_t &_fpscr, fpType &op)
108{
109 FPSCR fpscr = _fpscr;
110 if (fpscr.fz == 1 && (std::fpclassify(op) == FP_SUBNORMAL)) {
111 fpscr.idc = 1;
112 op = 0;
113 }
114 _fpscr = fpscr;
115}
116
117template <class fpType>
118static inline void
119vfpFlushToZero(uint32_t &fpscr, fpType &op1, fpType &op2)
120{
121 vfpFlushToZero(fpscr, op1);
122 vfpFlushToZero(fpscr, op2);
123}
124
104static inline uint64_t
105vfpFpSToFixed(float val, bool isSigned, bool half, uint8_t imm)
106{
107 fesetround(FeRoundZero);
108 val = val * powf(2.0, imm);
109 __asm__ __volatile__("" : "=m" (val) : "m" (val));
110 feclearexcept(FeAllExceptions);
125static inline uint64_t
126vfpFpSToFixed(float val, bool isSigned, bool half, uint8_t imm)
127{
128 fesetround(FeRoundZero);
129 val = val * powf(2.0, imm);
130 __asm__ __volatile__("" : "=m" (val) : "m" (val));
131 feclearexcept(FeAllExceptions);
132 __asm__ __volatile__("" : "=m" (val) : "m" (val));
133 float origVal = val;
134 val = rintf(val);
135 int fpType = std::fpclassify(val);
136 if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
137 if (fpType == FP_NAN) {
138 feraiseexcept(FeInvalid);
139 }
140 val = 0.0;
141 } else if (origVal != val) {
142 feraiseexcept(FeInexact);
143 }
144
111 if (isSigned) {
112 if (half) {
113 if ((double)val < (int16_t)(1 << 15)) {
114 feraiseexcept(FeInvalid);
145 if (isSigned) {
146 if (half) {
147 if ((double)val < (int16_t)(1 << 15)) {
148 feraiseexcept(FeInvalid);
149 feclearexcept(FeInexact);
115 return (int16_t)(1 << 15);
116 }
117 if ((double)val > (int16_t)mask(15)) {
118 feraiseexcept(FeInvalid);
150 return (int16_t)(1 << 15);
151 }
152 if ((double)val > (int16_t)mask(15)) {
153 feraiseexcept(FeInvalid);
154 feclearexcept(FeInexact);
119 return (int16_t)mask(15);
120 }
121 return (int16_t)val;
122 } else {
123 if ((double)val < (int32_t)(1 << 31)) {
124 feraiseexcept(FeInvalid);
155 return (int16_t)mask(15);
156 }
157 return (int16_t)val;
158 } else {
159 if ((double)val < (int32_t)(1 << 31)) {
160 feraiseexcept(FeInvalid);
161 feclearexcept(FeInexact);
125 return (int32_t)(1 << 31);
126 }
127 if ((double)val > (int32_t)mask(31)) {
128 feraiseexcept(FeInvalid);
162 return (int32_t)(1 << 31);
163 }
164 if ((double)val > (int32_t)mask(31)) {
165 feraiseexcept(FeInvalid);
166 feclearexcept(FeInexact);
129 return (int32_t)mask(31);
130 }
131 return (int32_t)val;
132 }
133 } else {
134 if (half) {
135 if ((double)val < 0) {
136 feraiseexcept(FeInvalid);
167 return (int32_t)mask(31);
168 }
169 return (int32_t)val;
170 }
171 } else {
172 if (half) {
173 if ((double)val < 0) {
174 feraiseexcept(FeInvalid);
175 feclearexcept(FeInexact);
137 return 0;
138 }
139 if ((double)val > (mask(16))) {
140 feraiseexcept(FeInvalid);
176 return 0;
177 }
178 if ((double)val > (mask(16))) {
179 feraiseexcept(FeInvalid);
180 feclearexcept(FeInexact);
141 return mask(16);
142 }
143 return (uint16_t)val;
144 } else {
145 if ((double)val < 0) {
146 feraiseexcept(FeInvalid);
181 return mask(16);
182 }
183 return (uint16_t)val;
184 } else {
185 if ((double)val < 0) {
186 feraiseexcept(FeInvalid);
187 feclearexcept(FeInexact);
147 return 0;
148 }
149 if ((double)val > (mask(32))) {
150 feraiseexcept(FeInvalid);
188 return 0;
189 }
190 if ((double)val > (mask(32))) {
191 feraiseexcept(FeInvalid);
192 feclearexcept(FeInexact);
151 return mask(32);
152 }
153 return (uint32_t)val;
154 }
155 }
156}
157
158static inline float
159vfpUFixedToFpS(uint32_t val, bool half, uint8_t imm)
160{
161 fesetround(FeRoundNearest);
162 if (half)
163 val = (uint16_t)val;
193 return mask(32);
194 }
195 return (uint32_t)val;
196 }
197 }
198}
199
200static inline float
201vfpUFixedToFpS(uint32_t val, bool half, uint8_t imm)
202{
203 fesetround(FeRoundNearest);
204 if (half)
205 val = (uint16_t)val;
164 return val / powf(2.0, imm);
206 float scale = powf(2.0, imm);
207 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
208 feclearexcept(FeAllExceptions);
209 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
210 return val / scale;
165}
166
167static inline float
168vfpSFixedToFpS(int32_t val, bool half, uint8_t imm)
169{
170 fesetround(FeRoundNearest);
171 if (half)
172 val = sext<16>(val & mask(16));
211}
212
213static inline float
214vfpSFixedToFpS(int32_t val, bool half, uint8_t imm)
215{
216 fesetround(FeRoundNearest);
217 if (half)
218 val = sext<16>(val & mask(16));
173 return val / powf(2.0, imm);
219 float scale = powf(2.0, imm);
220 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
221 feclearexcept(FeAllExceptions);
222 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
223 return val / scale;
174}
175
176static inline uint64_t
177vfpFpDToFixed(double val, bool isSigned, bool half, uint8_t imm)
178{
224}
225
226static inline uint64_t
227vfpFpDToFixed(double val, bool isSigned, bool half, uint8_t imm)
228{
179 fesetround(FeRoundZero);
229 fesetround(FeRoundNearest);
180 val = val * pow(2.0, imm);
181 __asm__ __volatile__("" : "=m" (val) : "m" (val));
230 val = val * pow(2.0, imm);
231 __asm__ __volatile__("" : "=m" (val) : "m" (val));
232 fesetround(FeRoundZero);
182 feclearexcept(FeAllExceptions);
233 feclearexcept(FeAllExceptions);
234 __asm__ __volatile__("" : "=m" (val) : "m" (val));
235 double origVal = val;
236 val = rint(val);
237 int fpType = std::fpclassify(val);
238 if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
239 if (fpType == FP_NAN) {
240 feraiseexcept(FeInvalid);
241 }
242 val = 0.0;
243 } else if (origVal != val) {
244 feraiseexcept(FeInexact);
245 }
183 if (isSigned) {
184 if (half) {
185 if (val < (int16_t)(1 << 15)) {
186 feraiseexcept(FeInvalid);
246 if (isSigned) {
247 if (half) {
248 if (val < (int16_t)(1 << 15)) {
249 feraiseexcept(FeInvalid);
250 feclearexcept(FeInexact);
187 return (int16_t)(1 << 15);
188 }
189 if (val > (int16_t)mask(15)) {
190 feraiseexcept(FeInvalid);
251 return (int16_t)(1 << 15);
252 }
253 if (val > (int16_t)mask(15)) {
254 feraiseexcept(FeInvalid);
255 feclearexcept(FeInexact);
191 return (int16_t)mask(15);
192 }
193 return (int16_t)val;
194 } else {
195 if (val < (int32_t)(1 << 31)) {
196 feraiseexcept(FeInvalid);
256 return (int16_t)mask(15);
257 }
258 return (int16_t)val;
259 } else {
260 if (val < (int32_t)(1 << 31)) {
261 feraiseexcept(FeInvalid);
262 feclearexcept(FeInexact);
197 return (int32_t)(1 << 31);
198 }
199 if (val > (int32_t)mask(31)) {
200 feraiseexcept(FeInvalid);
263 return (int32_t)(1 << 31);
264 }
265 if (val > (int32_t)mask(31)) {
266 feraiseexcept(FeInvalid);
267 feclearexcept(FeInexact);
201 return (int32_t)mask(31);
202 }
203 return (int32_t)val;
204 }
205 } else {
206 if (half) {
207 if (val < 0) {
208 feraiseexcept(FeInvalid);
268 return (int32_t)mask(31);
269 }
270 return (int32_t)val;
271 }
272 } else {
273 if (half) {
274 if (val < 0) {
275 feraiseexcept(FeInvalid);
276 feclearexcept(FeInexact);
209 return 0;
210 }
211 if (val > mask(16)) {
212 feraiseexcept(FeInvalid);
277 return 0;
278 }
279 if (val > mask(16)) {
280 feraiseexcept(FeInvalid);
281 feclearexcept(FeInexact);
213 return mask(16);
214 }
215 return (uint16_t)val;
216 } else {
217 if (val < 0) {
218 feraiseexcept(FeInvalid);
282 return mask(16);
283 }
284 return (uint16_t)val;
285 } else {
286 if (val < 0) {
287 feraiseexcept(FeInvalid);
288 feclearexcept(FeInexact);
219 return 0;
220 }
221 if (val > mask(32)) {
222 feraiseexcept(FeInvalid);
289 return 0;
290 }
291 if (val > mask(32)) {
292 feraiseexcept(FeInvalid);
293 feclearexcept(FeInexact);
223 return mask(32);
224 }
225 return (uint32_t)val;
226 }
227 }
228}
229
230static inline double
231vfpUFixedToFpD(uint32_t val, bool half, uint8_t imm)
232{
233 fesetround(FeRoundNearest);
234 if (half)
235 val = (uint16_t)val;
294 return mask(32);
295 }
296 return (uint32_t)val;
297 }
298 }
299}
300
301static inline double
302vfpUFixedToFpD(uint32_t val, bool half, uint8_t imm)
303{
304 fesetround(FeRoundNearest);
305 if (half)
306 val = (uint16_t)val;
236 return val / pow(2.0, imm);
307 double scale = pow(2.0, imm);
308 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
309 feclearexcept(FeAllExceptions);
310 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
311 return val / scale;
237}
238
239static inline double
240vfpSFixedToFpD(int32_t val, bool half, uint8_t imm)
241{
242 fesetround(FeRoundNearest);
243 if (half)
244 val = sext<16>(val & mask(16));
312}
313
314static inline double
315vfpSFixedToFpD(int32_t val, bool half, uint8_t imm)
316{
317 fesetround(FeRoundNearest);
318 if (half)
319 val = sext<16>(val & mask(16));
245 return val / pow(2.0, imm);
320 double scale = pow(2.0, imm);
321 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
322 feclearexcept(FeAllExceptions);
323 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
324 return val / scale;
246}
247
248typedef int VfpSavedState;
249
250static inline VfpSavedState
251prepVfpFpscr(FPSCR fpscr)
252{
253 int roundingMode = fegetround();
254 feclearexcept(FeAllExceptions);
255 switch (fpscr.rMode) {
256 case VfpRoundNearest:
257 fesetround(FeRoundNearest);
258 break;
259 case VfpRoundUpward:
260 fesetround(FeRoundUpward);
261 break;
262 case VfpRoundDown:
263 fesetround(FeRoundDown);
264 break;
265 case VfpRoundZero:
266 fesetround(FeRoundZero);
267 break;
268 }
269 return roundingMode;
270}
271
272static inline FPSCR
273setVfpFpscr(FPSCR fpscr, VfpSavedState state)
274{
275 int exceptions = fetestexcept(FeAllExceptions);
276 if (exceptions & FeInvalid) {
277 fpscr.ioc = 1;
278 }
279 if (exceptions & FeDivByZero) {
280 fpscr.dzc = 1;
281 }
282 if (exceptions & FeOverflow) {
283 fpscr.ofc = 1;
284 }
285 if (exceptions & FeUnderflow) {
286 fpscr.ufc = 1;
287 }
288 if (exceptions & FeInexact) {
289 fpscr.ixc = 1;
290 }
291 fesetround(state);
292 return fpscr;
293}
294
295class VfpMacroOp : public PredMacroOp
296{
297 public:
298 static bool
299 inScalarBank(IntRegIndex idx)
300 {
301 return (idx % 32) < 8;
302 }
303
304 protected:
305 bool wide;
306
307 VfpMacroOp(const char *mnem, ExtMachInst _machInst,
308 OpClass __opClass, bool _wide) :
309 PredMacroOp(mnem, _machInst, __opClass), wide(_wide)
310 {}
311
312 IntRegIndex
313 addStride(IntRegIndex idx, unsigned stride)
314 {
315 if (wide) {
316 stride *= 2;
317 }
318 unsigned offset = idx % 8;
319 idx = (IntRegIndex)(idx - offset);
320 offset += stride;
321 idx = (IntRegIndex)(idx + (offset % 8));
322 return idx;
323 }
324
325 void
326 nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
327 {
328 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
329 assert(!inScalarBank(dest));
330 dest = addStride(dest, stride);
331 op1 = addStride(op1, stride);
332 if (!inScalarBank(op2)) {
333 op2 = addStride(op2, stride);
334 }
335 }
336
337 void
338 nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
339 {
340 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
341 assert(!inScalarBank(dest));
342 dest = addStride(dest, stride);
343 if (!inScalarBank(op1)) {
344 op1 = addStride(op1, stride);
345 }
346 }
347
348 void
349 nextIdxs(IntRegIndex &dest)
350 {
351 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
352 assert(!inScalarBank(dest));
353 dest = addStride(dest, stride);
354 }
355};
356
357class VfpRegRegOp : public RegRegOp
358{
359 protected:
360 VfpRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
361 IntRegIndex _dest, IntRegIndex _op1,
362 VfpMicroMode mode = VfpNotAMicroop) :
363 RegRegOp(mnem, _machInst, __opClass, _dest, _op1)
364 {
365 setVfpMicroFlags(mode, flags);
366 }
367};
368
369class VfpRegImmOp : public RegImmOp
370{
371 protected:
372 VfpRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
373 IntRegIndex _dest, uint64_t _imm,
374 VfpMicroMode mode = VfpNotAMicroop) :
375 RegImmOp(mnem, _machInst, __opClass, _dest, _imm)
376 {
377 setVfpMicroFlags(mode, flags);
378 }
379};
380
381class VfpRegRegImmOp : public RegRegImmOp
382{
383 protected:
384 VfpRegRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
385 IntRegIndex _dest, IntRegIndex _op1,
386 uint64_t _imm, VfpMicroMode mode = VfpNotAMicroop) :
387 RegRegImmOp(mnem, _machInst, __opClass, _dest, _op1, _imm)
388 {
389 setVfpMicroFlags(mode, flags);
390 }
391};
392
393class VfpRegRegRegOp : public RegRegRegOp
394{
395 protected:
396 VfpRegRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
397 IntRegIndex _dest, IntRegIndex _op1, IntRegIndex _op2,
398 VfpMicroMode mode = VfpNotAMicroop) :
399 RegRegRegOp(mnem, _machInst, __opClass, _dest, _op1, _op2)
400 {
401 setVfpMicroFlags(mode, flags);
402 }
403};
404
405#endif //__ARCH_ARM_INSTS_VFP_HH__
325}
326
327typedef int VfpSavedState;
328
329static inline VfpSavedState
330prepVfpFpscr(FPSCR fpscr)
331{
332 int roundingMode = fegetround();
333 feclearexcept(FeAllExceptions);
334 switch (fpscr.rMode) {
335 case VfpRoundNearest:
336 fesetround(FeRoundNearest);
337 break;
338 case VfpRoundUpward:
339 fesetround(FeRoundUpward);
340 break;
341 case VfpRoundDown:
342 fesetround(FeRoundDown);
343 break;
344 case VfpRoundZero:
345 fesetround(FeRoundZero);
346 break;
347 }
348 return roundingMode;
349}
350
351static inline FPSCR
352setVfpFpscr(FPSCR fpscr, VfpSavedState state)
353{
354 int exceptions = fetestexcept(FeAllExceptions);
355 if (exceptions & FeInvalid) {
356 fpscr.ioc = 1;
357 }
358 if (exceptions & FeDivByZero) {
359 fpscr.dzc = 1;
360 }
361 if (exceptions & FeOverflow) {
362 fpscr.ofc = 1;
363 }
364 if (exceptions & FeUnderflow) {
365 fpscr.ufc = 1;
366 }
367 if (exceptions & FeInexact) {
368 fpscr.ixc = 1;
369 }
370 fesetround(state);
371 return fpscr;
372}
373
374class VfpMacroOp : public PredMacroOp
375{
376 public:
377 static bool
378 inScalarBank(IntRegIndex idx)
379 {
380 return (idx % 32) < 8;
381 }
382
383 protected:
384 bool wide;
385
386 VfpMacroOp(const char *mnem, ExtMachInst _machInst,
387 OpClass __opClass, bool _wide) :
388 PredMacroOp(mnem, _machInst, __opClass), wide(_wide)
389 {}
390
391 IntRegIndex
392 addStride(IntRegIndex idx, unsigned stride)
393 {
394 if (wide) {
395 stride *= 2;
396 }
397 unsigned offset = idx % 8;
398 idx = (IntRegIndex)(idx - offset);
399 offset += stride;
400 idx = (IntRegIndex)(idx + (offset % 8));
401 return idx;
402 }
403
404 void
405 nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
406 {
407 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
408 assert(!inScalarBank(dest));
409 dest = addStride(dest, stride);
410 op1 = addStride(op1, stride);
411 if (!inScalarBank(op2)) {
412 op2 = addStride(op2, stride);
413 }
414 }
415
416 void
417 nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
418 {
419 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
420 assert(!inScalarBank(dest));
421 dest = addStride(dest, stride);
422 if (!inScalarBank(op1)) {
423 op1 = addStride(op1, stride);
424 }
425 }
426
427 void
428 nextIdxs(IntRegIndex &dest)
429 {
430 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
431 assert(!inScalarBank(dest));
432 dest = addStride(dest, stride);
433 }
434};
435
436class VfpRegRegOp : public RegRegOp
437{
438 protected:
439 VfpRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
440 IntRegIndex _dest, IntRegIndex _op1,
441 VfpMicroMode mode = VfpNotAMicroop) :
442 RegRegOp(mnem, _machInst, __opClass, _dest, _op1)
443 {
444 setVfpMicroFlags(mode, flags);
445 }
446};
447
448class VfpRegImmOp : public RegImmOp
449{
450 protected:
451 VfpRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
452 IntRegIndex _dest, uint64_t _imm,
453 VfpMicroMode mode = VfpNotAMicroop) :
454 RegImmOp(mnem, _machInst, __opClass, _dest, _imm)
455 {
456 setVfpMicroFlags(mode, flags);
457 }
458};
459
460class VfpRegRegImmOp : public RegRegImmOp
461{
462 protected:
463 VfpRegRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
464 IntRegIndex _dest, IntRegIndex _op1,
465 uint64_t _imm, VfpMicroMode mode = VfpNotAMicroop) :
466 RegRegImmOp(mnem, _machInst, __opClass, _dest, _op1, _imm)
467 {
468 setVfpMicroFlags(mode, flags);
469 }
470};
471
472class VfpRegRegRegOp : public RegRegRegOp
473{
474 protected:
475 VfpRegRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
476 IntRegIndex _dest, IntRegIndex _op1, IntRegIndex _op2,
477 VfpMicroMode mode = VfpNotAMicroop) :
478 RegRegRegOp(mnem, _machInst, __opClass, _dest, _op1, _op2)
479 {
480 setVfpMicroFlags(mode, flags);
481 }
482};
483
484#endif //__ARCH_ARM_INSTS_VFP_HH__