Deleted Added
sdiff udiff text old ( 7385:493aea5e1006 ) new ( 7386:23065556d48e )
full compact
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#ifndef __ARCH_ARM_INSTS_VFP_HH__
41#define __ARCH_ARM_INSTS_VFP_HH__
42
43#include "arch/arm/insts/misc.hh"
44#include "arch/arm/miscregs.hh"
45#include <fenv.h>
46#include <cmath>
47
48namespace ArmISA
49{
50
51enum VfpMicroMode {
52 VfpNotAMicroop,
53 VfpMicroop,
54 VfpFirstMicroop,
55 VfpLastMicroop
56};
57
58template<class T>
59static inline void
60setVfpMicroFlags(VfpMicroMode mode, T &flags)
61{
62 switch (mode) {
63 case VfpMicroop:
64 flags[StaticInst::IsMicroop] = true;
65 break;
66 case VfpFirstMicroop:
67 flags[StaticInst::IsMicroop] =
68 flags[StaticInst::IsFirstMicroop] = true;
69 break;
70 case VfpLastMicroop:
71 flags[StaticInst::IsMicroop] =
72 flags[StaticInst::IsLastMicroop] = true;
73 break;
74 case VfpNotAMicroop:
75 break;
76 }
77 if (mode == VfpMicroop || mode == VfpFirstMicroop) {
78 flags[StaticInst::IsDelayedCommit] = true;
79 }
80}
81
82enum FeExceptionBit
83{
84 FeDivByZero = FE_DIVBYZERO,
85 FeInexact = FE_INEXACT,
86 FeInvalid = FE_INVALID,
87 FeOverflow = FE_OVERFLOW,
88 FeUnderflow = FE_UNDERFLOW,
89 FeAllExceptions = FE_ALL_EXCEPT
90};
91
92enum FeRoundingMode
93{
94 FeRoundDown = FE_DOWNWARD,
95 FeRoundNearest = FE_TONEAREST,
96 FeRoundZero = FE_TOWARDZERO,
97 FeRoundUpward = FE_UPWARD
98};
99
100enum VfpRoundingMode
101{
102 VfpRoundNearest = 0,
103 VfpRoundUpward = 1,
104 VfpRoundDown = 2,
105 VfpRoundZero = 3
106};
107
108template <class fpType>
109static inline void
110vfpFlushToZero(uint32_t &_fpscr, fpType &op)
111{
112 FPSCR fpscr = _fpscr;
113 if (fpscr.fz == 1 && (std::fpclassify(op) == FP_SUBNORMAL)) {
114 fpscr.idc = 1;
115 op = 0;
116 }
117 _fpscr = fpscr;
118}
119
120template <class fpType>
121static inline void
122vfpFlushToZero(uint32_t &fpscr, fpType &op1, fpType &op2)
123{
124 vfpFlushToZero(fpscr, op1);
125 vfpFlushToZero(fpscr, op2);
126}
127
128static inline uint32_t
129fpToBits(float fp)
130{
131 union
132 {
133 float fp;
134 uint32_t bits;
135 } val;
136 val.fp = fp;
137 return val.bits;
138}
139
140static inline uint64_t
141fpToBits(double fp)
142{
143 union
144 {
145 double fp;
146 uint64_t bits;
147 } val;
148 val.fp = fp;
149 return val.bits;
150}
151
152static inline float
153bitsToFp(uint64_t bits, float junk)
154{
155 union
156 {
157 float fp;
158 uint32_t bits;
159 } val;
160 val.bits = bits;
161 return val.fp;
162}
163
164static inline double
165bitsToFp(uint64_t bits, double junk)
166{
167 union
168 {
169 double fp;
170 uint64_t bits;
171 } val;
172 val.bits = bits;
173 return val.fp;
174}
175
176template <class fpType>
177static inline fpType
178fixDest(FPSCR fpscr, fpType val, fpType op1)
179{
180 int fpClass = std::fpclassify(val);
181 fpType junk = 0.0;
182 if (fpClass == FP_NAN) {
183 const bool single = (sizeof(val) == sizeof(float));
184 const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
185 const bool nan = std::isnan(op1);
186 if (!nan || (fpscr.dn == 1)) {
187 val = bitsToFp(qnan, junk);
188 } else if (nan) {
189 val = bitsToFp(fpToBits(op1) | qnan, junk);
190 }
191 } else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
192 // Turn val into a zero with the correct sign;
193 uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
194 val = bitsToFp(fpToBits(val) & bitMask, junk);
195 feraiseexcept(FeUnderflow);
196 }
197 return val;
198}
199
200template <class fpType>
201static inline fpType
202fixDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
203{
204 int fpClass = std::fpclassify(val);
205 fpType junk = 0.0;
206 if (fpClass == FP_NAN) {
207 const bool single = (sizeof(val) == sizeof(float));
208 const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
209 const bool nan1 = std::isnan(op1);
210 const bool nan2 = std::isnan(op2);
211 const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
212 const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
213 if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
214 val = bitsToFp(qnan, junk);
215 } else if (signal1) {
216 val = bitsToFp(fpToBits(op1) | qnan, junk);
217 } else if (signal2) {
218 val = bitsToFp(fpToBits(op2) | qnan, junk);
219 } else if (nan1) {
220 val = op1;
221 } else if (nan2) {
222 val = op2;
223 }
224 } else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
225 // Turn val into a zero with the correct sign;
226 uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
227 val = bitsToFp(fpToBits(val) & bitMask, junk);
228 feraiseexcept(FeUnderflow);
229 }
230 return val;
231}
232
233template <class fpType>
234static inline fpType
235fixMultDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
236{
237 fpType mid = fixDest(fpscr, val, op1, op2);
238 const bool single = (sizeof(fpType) == sizeof(float));
239 const fpType junk = 0.0;
240 if ((single && (val == bitsToFp(0x00800000, junk) ||
241 val == bitsToFp(0x80800000, junk))) ||
242 (!single && (val == bitsToFp(ULL(0x0010000000000000), junk) ||
243 val == bitsToFp(ULL(0x8010000000000000), junk)))
244 ) {
245 __asm__ __volatile__("" : "=m" (op1) : "m" (op1));
246 fesetround(FeRoundZero);
247 fpType temp = 0.0;
248 __asm__ __volatile__("" : "=m" (temp) : "m" (temp));
249 temp = op1 * op2;
250 if (!std::isnormal(temp)) {
251 feraiseexcept(FeUnderflow);
252 }
253 __asm__ __volatile__("" :: "m" (temp));
254 }
255 return mid;
256}
257
258template <class fpType>
259static inline fpType
260fixDivDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
261{
262 fpType mid = fixDest(fpscr, val, op1, op2);
263 const bool single = (sizeof(fpType) == sizeof(float));
264 const fpType junk = 0.0;
265 if ((single && (val == bitsToFp(0x00800000, junk) ||
266 val == bitsToFp(0x80800000, junk))) ||
267 (!single && (val == bitsToFp(ULL(0x0010000000000000), junk) ||
268 val == bitsToFp(ULL(0x8010000000000000), junk)))
269 ) {
270 __asm__ __volatile__("" : "=m" (op1) : "m" (op1));
271 fesetround(FeRoundZero);
272 fpType temp = 0.0;
273 __asm__ __volatile__("" : "=m" (temp) : "m" (temp));
274 temp = op1 / op2;
275 if (!std::isnormal(temp)) {
276 feraiseexcept(FeUnderflow);
277 }
278 __asm__ __volatile__("" :: "m" (temp));
279 }
280 return mid;
281}
282
283static inline float
284fixFpDFpSDest(FPSCR fpscr, double val)
285{
286 const float junk = 0.0;
287 float op1 = 0.0;
288 if (std::isnan(val)) {
289 uint64_t valBits = fpToBits(val);
290 uint32_t op1Bits = bits(valBits, 50, 29) |
291 (mask(9) << 22) |
292 (bits(valBits, 63) << 31);
293 op1 = bitsToFp(op1Bits, junk);
294 }
295 float mid = fixDest(fpscr, (float)val, op1);
296 if (mid == bitsToFp(0x00800000, junk) ||
297 mid == bitsToFp(0x80800000, junk)) {
298 __asm__ __volatile__("" : "=m" (val) : "m" (val));
299 fesetround(FeRoundZero);
300 float temp = 0.0;
301 __asm__ __volatile__("" : "=m" (temp) : "m" (temp));
302 temp = val;
303 if (!std::isnormal(temp)) {
304 feraiseexcept(FeUnderflow);
305 }
306 __asm__ __volatile__("" :: "m" (temp));
307 }
308 return mid;
309}
310
311static inline uint64_t
312vfpFpSToFixed(float val, bool isSigned, bool half, uint8_t imm)
313{
314 fesetround(FeRoundZero);
315 val = val * powf(2.0, imm);
316 __asm__ __volatile__("" : "=m" (val) : "m" (val));
317 feclearexcept(FeAllExceptions);
318 __asm__ __volatile__("" : "=m" (val) : "m" (val));
319 float origVal = val;
320 val = rintf(val);
321 int fpType = std::fpclassify(val);
322 if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
323 if (fpType == FP_NAN) {
324 feraiseexcept(FeInvalid);
325 }
326 val = 0.0;
327 } else if (origVal != val) {
328 feraiseexcept(FeInexact);
329 }
330
331 if (isSigned) {
332 if (half) {
333 if ((double)val < (int16_t)(1 << 15)) {
334 feraiseexcept(FeInvalid);
335 feclearexcept(FeInexact);
336 return (int16_t)(1 << 15);
337 }
338 if ((double)val > (int16_t)mask(15)) {
339 feraiseexcept(FeInvalid);
340 feclearexcept(FeInexact);
341 return (int16_t)mask(15);
342 }
343 return (int16_t)val;
344 } else {
345 if ((double)val < (int32_t)(1 << 31)) {
346 feraiseexcept(FeInvalid);
347 feclearexcept(FeInexact);
348 return (int32_t)(1 << 31);
349 }
350 if ((double)val > (int32_t)mask(31)) {
351 feraiseexcept(FeInvalid);
352 feclearexcept(FeInexact);
353 return (int32_t)mask(31);
354 }
355 return (int32_t)val;
356 }
357 } else {
358 if (half) {
359 if ((double)val < 0) {
360 feraiseexcept(FeInvalid);
361 feclearexcept(FeInexact);
362 return 0;
363 }
364 if ((double)val > (mask(16))) {
365 feraiseexcept(FeInvalid);
366 feclearexcept(FeInexact);
367 return mask(16);
368 }
369 return (uint16_t)val;
370 } else {
371 if ((double)val < 0) {
372 feraiseexcept(FeInvalid);
373 feclearexcept(FeInexact);
374 return 0;
375 }
376 if ((double)val > (mask(32))) {
377 feraiseexcept(FeInvalid);
378 feclearexcept(FeInexact);
379 return mask(32);
380 }
381 return (uint32_t)val;
382 }
383 }
384}
385
386static inline float
387vfpUFixedToFpS(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
388{
389 fesetround(FeRoundNearest);
390 if (half)
391 val = (uint16_t)val;
392 float scale = powf(2.0, imm);
393 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
394 feclearexcept(FeAllExceptions);
395 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
396 return fixDivDest(fpscr, val / scale, (float)val, scale);
397}
398
399static inline float
400vfpSFixedToFpS(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
401{
402 fesetround(FeRoundNearest);
403 if (half)
404 val = sext<16>(val & mask(16));
405 float scale = powf(2.0, imm);
406 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
407 feclearexcept(FeAllExceptions);
408 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
409 return fixDivDest(fpscr, val / scale, (float)val, scale);
410}
411
412static inline uint64_t
413vfpFpDToFixed(double val, bool isSigned, bool half, uint8_t imm)
414{
415 fesetround(FeRoundNearest);
416 val = val * pow(2.0, imm);
417 __asm__ __volatile__("" : "=m" (val) : "m" (val));
418 fesetround(FeRoundZero);
419 feclearexcept(FeAllExceptions);
420 __asm__ __volatile__("" : "=m" (val) : "m" (val));
421 double origVal = val;
422 val = rint(val);
423 int fpType = std::fpclassify(val);
424 if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
425 if (fpType == FP_NAN) {
426 feraiseexcept(FeInvalid);
427 }
428 val = 0.0;
429 } else if (origVal != val) {
430 feraiseexcept(FeInexact);
431 }
432 if (isSigned) {
433 if (half) {
434 if (val < (int16_t)(1 << 15)) {
435 feraiseexcept(FeInvalid);
436 feclearexcept(FeInexact);
437 return (int16_t)(1 << 15);
438 }
439 if (val > (int16_t)mask(15)) {
440 feraiseexcept(FeInvalid);
441 feclearexcept(FeInexact);
442 return (int16_t)mask(15);
443 }
444 return (int16_t)val;
445 } else {
446 if (val < (int32_t)(1 << 31)) {
447 feraiseexcept(FeInvalid);
448 feclearexcept(FeInexact);
449 return (int32_t)(1 << 31);
450 }
451 if (val > (int32_t)mask(31)) {
452 feraiseexcept(FeInvalid);
453 feclearexcept(FeInexact);
454 return (int32_t)mask(31);
455 }
456 return (int32_t)val;
457 }
458 } else {
459 if (half) {
460 if (val < 0) {
461 feraiseexcept(FeInvalid);
462 feclearexcept(FeInexact);
463 return 0;
464 }
465 if (val > mask(16)) {
466 feraiseexcept(FeInvalid);
467 feclearexcept(FeInexact);
468 return mask(16);
469 }
470 return (uint16_t)val;
471 } else {
472 if (val < 0) {
473 feraiseexcept(FeInvalid);
474 feclearexcept(FeInexact);
475 return 0;
476 }
477 if (val > mask(32)) {
478 feraiseexcept(FeInvalid);
479 feclearexcept(FeInexact);
480 return mask(32);
481 }
482 return (uint32_t)val;
483 }
484 }
485}
486
487static inline double
488vfpUFixedToFpD(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
489{
490 fesetround(FeRoundNearest);
491 if (half)
492 val = (uint16_t)val;
493 double scale = pow(2.0, imm);
494 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
495 feclearexcept(FeAllExceptions);
496 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
497 return fixDivDest(fpscr, val / scale, (double)val, scale);
498}
499
500static inline double
501vfpSFixedToFpD(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
502{
503 fesetround(FeRoundNearest);
504 if (half)
505 val = sext<16>(val & mask(16));
506 double scale = pow(2.0, imm);
507 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
508 feclearexcept(FeAllExceptions);
509 __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
510 return fixDivDest(fpscr, val / scale, (double)val, scale);
511}
512
513typedef int VfpSavedState;
514
515static inline VfpSavedState
516prepVfpFpscr(FPSCR fpscr)
517{
518 int roundingMode = fegetround();
519 feclearexcept(FeAllExceptions);
520 switch (fpscr.rMode) {
521 case VfpRoundNearest:
522 fesetround(FeRoundNearest);
523 break;
524 case VfpRoundUpward:
525 fesetround(FeRoundUpward);
526 break;
527 case VfpRoundDown:
528 fesetround(FeRoundDown);
529 break;
530 case VfpRoundZero:
531 fesetround(FeRoundZero);
532 break;
533 }
534 return roundingMode;
535}
536
537static inline FPSCR
538setVfpFpscr(FPSCR fpscr, VfpSavedState state)
539{
540 int exceptions = fetestexcept(FeAllExceptions);
541 if (exceptions & FeInvalid) {
542 fpscr.ioc = 1;
543 }
544 if (exceptions & FeDivByZero) {
545 fpscr.dzc = 1;
546 }
547 if (exceptions & FeOverflow) {
548 fpscr.ofc = 1;
549 }
550 if (exceptions & FeUnderflow) {
551 fpscr.ufc = 1;
552 }
553 if (exceptions & FeInexact) {
554 fpscr.ixc = 1;
555 }
556 fesetround(state);
557 return fpscr;
558}
559
560class VfpMacroOp : public PredMacroOp
561{
562 public:
563 static bool
564 inScalarBank(IntRegIndex idx)
565 {
566 return (idx % 32) < 8;
567 }
568
569 protected:
570 bool wide;
571
572 VfpMacroOp(const char *mnem, ExtMachInst _machInst,
573 OpClass __opClass, bool _wide) :
574 PredMacroOp(mnem, _machInst, __opClass), wide(_wide)
575 {}
576
577 IntRegIndex
578 addStride(IntRegIndex idx, unsigned stride)
579 {
580 if (wide) {
581 stride *= 2;
582 }
583 unsigned offset = idx % 8;
584 idx = (IntRegIndex)(idx - offset);
585 offset += stride;
586 idx = (IntRegIndex)(idx + (offset % 8));
587 return idx;
588 }
589
590 void
591 nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
592 {
593 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
594 assert(!inScalarBank(dest));
595 dest = addStride(dest, stride);
596 op1 = addStride(op1, stride);
597 if (!inScalarBank(op2)) {
598 op2 = addStride(op2, stride);
599 }
600 }
601
602 void
603 nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
604 {
605 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
606 assert(!inScalarBank(dest));
607 dest = addStride(dest, stride);
608 if (!inScalarBank(op1)) {
609 op1 = addStride(op1, stride);
610 }
611 }
612
613 void
614 nextIdxs(IntRegIndex &dest)
615 {
616 unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
617 assert(!inScalarBank(dest));
618 dest = addStride(dest, stride);
619 }
620};
621
622class VfpRegRegOp : public RegRegOp
623{
624 protected:
625 VfpRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
626 IntRegIndex _dest, IntRegIndex _op1,
627 VfpMicroMode mode = VfpNotAMicroop) :
628 RegRegOp(mnem, _machInst, __opClass, _dest, _op1)
629 {
630 setVfpMicroFlags(mode, flags);
631 }
632};
633
634class VfpRegImmOp : public RegImmOp
635{
636 protected:
637 VfpRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
638 IntRegIndex _dest, uint64_t _imm,
639 VfpMicroMode mode = VfpNotAMicroop) :
640 RegImmOp(mnem, _machInst, __opClass, _dest, _imm)
641 {
642 setVfpMicroFlags(mode, flags);
643 }
644};
645
646class VfpRegRegImmOp : public RegRegImmOp
647{
648 protected:
649 VfpRegRegImmOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
650 IntRegIndex _dest, IntRegIndex _op1,
651 uint64_t _imm, VfpMicroMode mode = VfpNotAMicroop) :
652 RegRegImmOp(mnem, _machInst, __opClass, _dest, _op1, _imm)
653 {
654 setVfpMicroFlags(mode, flags);
655 }
656};
657
658class VfpRegRegRegOp : public RegRegRegOp
659{
660 protected:
661 VfpRegRegRegOp(const char *mnem, ExtMachInst _machInst, OpClass __opClass,
662 IntRegIndex _dest, IntRegIndex _op1, IntRegIndex _op2,
663 VfpMicroMode mode = VfpNotAMicroop) :
664 RegRegRegOp(mnem, _machInst, __opClass, _dest, _op1, _op2)
665 {
666 setVfpMicroFlags(mode, flags);
667 }
668};
669
670}
671
672#endif //__ARCH_ARM_INSTS_VFP_HH__