macromem.cc (10180:e40b35147270) macromem.cc (10199:6cf40d777682)
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 */
42
43#include <sstream>
44
45#include "arch/arm/insts/macromem.hh"
46
47#include "arch/arm/generated/decoder.hh"
48#include "arch/arm/insts/neon64_mem.hh"
49
50using namespace std;
51using namespace ArmISAInst;
52
53namespace ArmISA
54{
55
56MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
57 OpClass __opClass, IntRegIndex rn,
58 bool index, bool up, bool user, bool writeback,
59 bool load, uint32_t reglist) :
60 PredMacroOp(mnem, machInst, __opClass)
61{
62 uint32_t regs = reglist;
63 uint32_t ones = number_of_ones(reglist);
64 // Remember that writeback adds a uop or two and the temp register adds one
65 numMicroops = ones + (writeback ? (load ? 2 : 1) : 0) + 1;
66
67 // It's technically legal to do a lot of nothing
68 if (!ones)
69 numMicroops = 1;
70
71 microOps = new StaticInstPtr[numMicroops];
72 uint32_t addr = 0;
73
74 if (!up)
75 addr = (ones << 2) - 4;
76
77 if (!index)
78 addr += 4;
79
80 StaticInstPtr *uop = microOps;
81
82 // Add 0 to Rn and stick it in ureg0.
83 // This is equivalent to a move.
84 *uop = new MicroAddiUop(machInst, INTREG_UREG0, rn, 0);
85
86 unsigned reg = 0;
87 unsigned regIdx = 0;
88 bool force_user = user & !bits(reglist, 15);
89 bool exception_ret = user & bits(reglist, 15);
90
91 for (int i = 0; i < ones; i++) {
92 // Find the next register.
93 while (!bits(regs, reg))
94 reg++;
95 replaceBits(regs, reg, 0);
96
97 regIdx = reg;
98 if (force_user) {
99 regIdx = intRegInMode(MODE_USER, regIdx);
100 }
101
102 if (load) {
103 if (writeback && i == ones - 1) {
104 // If it's a writeback and this is the last register
105 // do the load into a temporary register which we'll move
106 // into the final one later
107 *++uop = new MicroLdrUop(machInst, INTREG_UREG1, INTREG_UREG0,
108 up, addr);
109 } else {
110 // Otherwise just do it normally
111 if (reg == INTREG_PC && exception_ret) {
112 // This must be the exception return form of ldm.
113 *++uop = new MicroLdrRetUop(machInst, regIdx,
114 INTREG_UREG0, up, addr);
115 if (!(condCode == COND_AL || condCode == COND_UC))
116 (*uop)->setFlag(StaticInst::IsCondControl);
117 else
118 (*uop)->setFlag(StaticInst::IsUncondControl);
119 } else {
120 *++uop = new MicroLdrUop(machInst, regIdx,
121 INTREG_UREG0, up, addr);
122 if (reg == INTREG_PC) {
123 (*uop)->setFlag(StaticInst::IsControl);
124 if (!(condCode == COND_AL || condCode == COND_UC))
125 (*uop)->setFlag(StaticInst::IsCondControl);
126 else
127 (*uop)->setFlag(StaticInst::IsUncondControl);
128 (*uop)->setFlag(StaticInst::IsIndirectControl);
129 }
130 }
131 }
132 } else {
133 *++uop = new MicroStrUop(machInst, regIdx, INTREG_UREG0, up, addr);
134 }
135
136 if (up)
137 addr += 4;
138 else
139 addr -= 4;
140 }
141
142 if (writeback && ones) {
143 // put the register update after we're done all loading
144 if (up)
145 *++uop = new MicroAddiUop(machInst, rn, rn, ones * 4);
146 else
147 *++uop = new MicroSubiUop(machInst, rn, rn, ones * 4);
148
149 // If this was a load move the last temporary value into place
150 // this way we can't take an exception after we update the base
151 // register.
152 if (load && reg == INTREG_PC && exception_ret) {
153 *++uop = new MicroUopRegMovRet(machInst, 0, INTREG_UREG1);
154 if (!(condCode == COND_AL || condCode == COND_UC))
155 (*uop)->setFlag(StaticInst::IsCondControl);
156 else
157 (*uop)->setFlag(StaticInst::IsUncondControl);
158 } else if (load) {
159 *++uop = new MicroUopRegMov(machInst, regIdx, INTREG_UREG1);
160 if (reg == INTREG_PC) {
161 (*uop)->setFlag(StaticInst::IsControl);
162 (*uop)->setFlag(StaticInst::IsCondControl);
163 (*uop)->setFlag(StaticInst::IsIndirectControl);
164 // This is created as a RAS POP
165 if (rn == INTREG_SP)
166 (*uop)->setFlag(StaticInst::IsReturn);
167
168 }
169 }
170 }
171
172 (*uop)->setLastMicroop();
173
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 */
42
43#include <sstream>
44
45#include "arch/arm/insts/macromem.hh"
46
47#include "arch/arm/generated/decoder.hh"
48#include "arch/arm/insts/neon64_mem.hh"
49
50using namespace std;
51using namespace ArmISAInst;
52
53namespace ArmISA
54{
55
56MacroMemOp::MacroMemOp(const char *mnem, ExtMachInst machInst,
57 OpClass __opClass, IntRegIndex rn,
58 bool index, bool up, bool user, bool writeback,
59 bool load, uint32_t reglist) :
60 PredMacroOp(mnem, machInst, __opClass)
61{
62 uint32_t regs = reglist;
63 uint32_t ones = number_of_ones(reglist);
64 // Remember that writeback adds a uop or two and the temp register adds one
65 numMicroops = ones + (writeback ? (load ? 2 : 1) : 0) + 1;
66
67 // It's technically legal to do a lot of nothing
68 if (!ones)
69 numMicroops = 1;
70
71 microOps = new StaticInstPtr[numMicroops];
72 uint32_t addr = 0;
73
74 if (!up)
75 addr = (ones << 2) - 4;
76
77 if (!index)
78 addr += 4;
79
80 StaticInstPtr *uop = microOps;
81
82 // Add 0 to Rn and stick it in ureg0.
83 // This is equivalent to a move.
84 *uop = new MicroAddiUop(machInst, INTREG_UREG0, rn, 0);
85
86 unsigned reg = 0;
87 unsigned regIdx = 0;
88 bool force_user = user & !bits(reglist, 15);
89 bool exception_ret = user & bits(reglist, 15);
90
91 for (int i = 0; i < ones; i++) {
92 // Find the next register.
93 while (!bits(regs, reg))
94 reg++;
95 replaceBits(regs, reg, 0);
96
97 regIdx = reg;
98 if (force_user) {
99 regIdx = intRegInMode(MODE_USER, regIdx);
100 }
101
102 if (load) {
103 if (writeback && i == ones - 1) {
104 // If it's a writeback and this is the last register
105 // do the load into a temporary register which we'll move
106 // into the final one later
107 *++uop = new MicroLdrUop(machInst, INTREG_UREG1, INTREG_UREG0,
108 up, addr);
109 } else {
110 // Otherwise just do it normally
111 if (reg == INTREG_PC && exception_ret) {
112 // This must be the exception return form of ldm.
113 *++uop = new MicroLdrRetUop(machInst, regIdx,
114 INTREG_UREG0, up, addr);
115 if (!(condCode == COND_AL || condCode == COND_UC))
116 (*uop)->setFlag(StaticInst::IsCondControl);
117 else
118 (*uop)->setFlag(StaticInst::IsUncondControl);
119 } else {
120 *++uop = new MicroLdrUop(machInst, regIdx,
121 INTREG_UREG0, up, addr);
122 if (reg == INTREG_PC) {
123 (*uop)->setFlag(StaticInst::IsControl);
124 if (!(condCode == COND_AL || condCode == COND_UC))
125 (*uop)->setFlag(StaticInst::IsCondControl);
126 else
127 (*uop)->setFlag(StaticInst::IsUncondControl);
128 (*uop)->setFlag(StaticInst::IsIndirectControl);
129 }
130 }
131 }
132 } else {
133 *++uop = new MicroStrUop(machInst, regIdx, INTREG_UREG0, up, addr);
134 }
135
136 if (up)
137 addr += 4;
138 else
139 addr -= 4;
140 }
141
142 if (writeback && ones) {
143 // put the register update after we're done all loading
144 if (up)
145 *++uop = new MicroAddiUop(machInst, rn, rn, ones * 4);
146 else
147 *++uop = new MicroSubiUop(machInst, rn, rn, ones * 4);
148
149 // If this was a load move the last temporary value into place
150 // this way we can't take an exception after we update the base
151 // register.
152 if (load && reg == INTREG_PC && exception_ret) {
153 *++uop = new MicroUopRegMovRet(machInst, 0, INTREG_UREG1);
154 if (!(condCode == COND_AL || condCode == COND_UC))
155 (*uop)->setFlag(StaticInst::IsCondControl);
156 else
157 (*uop)->setFlag(StaticInst::IsUncondControl);
158 } else if (load) {
159 *++uop = new MicroUopRegMov(machInst, regIdx, INTREG_UREG1);
160 if (reg == INTREG_PC) {
161 (*uop)->setFlag(StaticInst::IsControl);
162 (*uop)->setFlag(StaticInst::IsCondControl);
163 (*uop)->setFlag(StaticInst::IsIndirectControl);
164 // This is created as a RAS POP
165 if (rn == INTREG_SP)
166 (*uop)->setFlag(StaticInst::IsReturn);
167
168 }
169 }
170 }
171
172 (*uop)->setLastMicroop();
173
174 /* Take the control flags from the last microop for the macroop */
175 if ((*uop)->isControl())
176 setFlag(StaticInst::IsControl);
177 if ((*uop)->isCondCtrl())
178 setFlag(StaticInst::IsCondControl);
179 if ((*uop)->isIndirectCtrl())
180 setFlag(StaticInst::IsIndirectControl);
181 if ((*uop)->isReturn())
182 setFlag(StaticInst::IsReturn);
183
174 for (StaticInstPtr *curUop = microOps;
175 !(*curUop)->isLastMicroop(); curUop++) {
176 MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
177 assert(uopPtr);
178 uopPtr->setDelayedCommit();
179 }
180}
181
182PairMemOp::PairMemOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
183 uint32_t size, bool fp, bool load, bool noAlloc,
184 bool signExt, bool exclusive, bool acrel,
185 int64_t imm, AddrMode mode,
186 IntRegIndex rn, IntRegIndex rt, IntRegIndex rt2) :
187 PredMacroOp(mnem, machInst, __opClass)
188{
189 bool writeback = (mode != AddrMd_Offset);
190 numMicroops = 1 + (size / 4) + (writeback ? 1 : 0);
191 microOps = new StaticInstPtr[numMicroops];
192
193 StaticInstPtr *uop = microOps;
194
195 bool post = (mode == AddrMd_PostIndex);
196
197 rn = makeSP(rn);
198
199 *uop = new MicroAddXiSpAlignUop(machInst, INTREG_UREG0, rn, post ? 0 : imm);
200
201 if (fp) {
202 if (size == 16) {
203 if (load) {
204 *++uop = new MicroLdrQBFpXImmUop(machInst, rt,
205 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
206 *++uop = new MicroLdrQTFpXImmUop(machInst, rt,
207 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
208 *++uop = new MicroLdrQBFpXImmUop(machInst, rt2,
209 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
210 *++uop = new MicroLdrQTFpXImmUop(machInst, rt2,
211 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
212 } else {
213 *++uop = new MicroStrQBFpXImmUop(machInst, rt,
214 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
215 *++uop = new MicroStrQTFpXImmUop(machInst, rt,
216 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
217 *++uop = new MicroStrQBFpXImmUop(machInst, rt2,
218 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
219 *++uop = new MicroStrQTFpXImmUop(machInst, rt2,
220 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
221 }
222 } else if (size == 8) {
223 if (load) {
224 *++uop = new MicroLdrFpXImmUop(machInst, rt,
225 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
226 *++uop = new MicroLdrFpXImmUop(machInst, rt2,
227 INTREG_UREG0, 8, noAlloc, exclusive, acrel);
228 } else {
229 *++uop = new MicroStrFpXImmUop(machInst, rt,
230 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
231 *++uop = new MicroStrFpXImmUop(machInst, rt2,
232 INTREG_UREG0, 8, noAlloc, exclusive, acrel);
233 }
234 } else if (size == 4) {
235 if (load) {
236 *++uop = new MicroLdrDFpXImmUop(machInst, rt, rt2,
237 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
238 } else {
239 *++uop = new MicroStrDFpXImmUop(machInst, rt, rt2,
240 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
241 }
242 }
243 } else {
244 if (size == 8) {
245 if (load) {
246 *++uop = new MicroLdrXImmUop(machInst, rt, INTREG_UREG0,
247 0, noAlloc, exclusive, acrel);
248 *++uop = new MicroLdrXImmUop(machInst, rt2, INTREG_UREG0,
249 size, noAlloc, exclusive, acrel);
250 } else {
251 *++uop = new MicroStrXImmUop(machInst, rt, INTREG_UREG0,
252 0, noAlloc, exclusive, acrel);
253 *++uop = new MicroStrXImmUop(machInst, rt2, INTREG_UREG0,
254 size, noAlloc, exclusive, acrel);
255 }
256 } else if (size == 4) {
257 if (load) {
258 if (signExt) {
259 *++uop = new MicroLdrDSXImmUop(machInst, rt, rt2,
260 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
261 } else {
262 *++uop = new MicroLdrDUXImmUop(machInst, rt, rt2,
263 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
264 }
265 } else {
266 *++uop = new MicroStrDXImmUop(machInst, rt, rt2,
267 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
268 }
269 }
270 }
271
272 if (writeback) {
273 *++uop = new MicroAddXiUop(machInst, rn, INTREG_UREG0,
274 post ? imm : 0);
275 }
276
277 (*uop)->setLastMicroop();
278
279 for (StaticInstPtr *curUop = microOps;
280 !(*curUop)->isLastMicroop(); curUop++) {
281 (*curUop)->setDelayedCommit();
282 }
283}
284
285BigFpMemImmOp::BigFpMemImmOp(const char *mnem, ExtMachInst machInst,
286 OpClass __opClass, bool load, IntRegIndex dest,
287 IntRegIndex base, int64_t imm) :
288 PredMacroOp(mnem, machInst, __opClass)
289{
290 numMicroops = 2;
291 microOps = new StaticInstPtr[numMicroops];
292
293 if (load) {
294 microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, imm);
295 microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, imm);
296 } else {
297 microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
298 microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
299 }
300 microOps[0]->setDelayedCommit();
301 microOps[1]->setLastMicroop();
302}
303
304BigFpMemPostOp::BigFpMemPostOp(const char *mnem, ExtMachInst machInst,
305 OpClass __opClass, bool load, IntRegIndex dest,
306 IntRegIndex base, int64_t imm) :
307 PredMacroOp(mnem, machInst, __opClass)
308{
309 numMicroops = 3;
310 microOps = new StaticInstPtr[numMicroops];
311
312 if (load) {
313 microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, 0);
314 microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, 0);
315 } else {
316 microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, 0);
317 microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, 0);
318 }
319 microOps[2] = new MicroAddXiUop(machInst, base, base, imm);
320
321 microOps[0]->setDelayedCommit();
322 microOps[1]->setDelayedCommit();
323 microOps[2]->setLastMicroop();
324}
325
326BigFpMemPreOp::BigFpMemPreOp(const char *mnem, ExtMachInst machInst,
327 OpClass __opClass, bool load, IntRegIndex dest,
328 IntRegIndex base, int64_t imm) :
329 PredMacroOp(mnem, machInst, __opClass)
330{
331 numMicroops = 3;
332 microOps = new StaticInstPtr[numMicroops];
333
334 if (load) {
335 microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, imm);
336 microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, imm);
337 } else {
338 microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
339 microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
340 }
341 microOps[2] = new MicroAddXiUop(machInst, base, base, imm);
342
343 microOps[0]->setDelayedCommit();
344 microOps[1]->setDelayedCommit();
345 microOps[2]->setLastMicroop();
346}
347
348BigFpMemRegOp::BigFpMemRegOp(const char *mnem, ExtMachInst machInst,
349 OpClass __opClass, bool load, IntRegIndex dest,
350 IntRegIndex base, IntRegIndex offset,
351 ArmExtendType type, int64_t imm) :
352 PredMacroOp(mnem, machInst, __opClass)
353{
354 numMicroops = 2;
355 microOps = new StaticInstPtr[numMicroops];
356
357 if (load) {
358 microOps[0] = new MicroLdrQBFpXRegUop(machInst, dest, base,
359 offset, type, imm);
360 microOps[1] = new MicroLdrQTFpXRegUop(machInst, dest, base,
361 offset, type, imm);
362 } else {
363 microOps[0] = new MicroStrQBFpXRegUop(machInst, dest, base,
364 offset, type, imm);
365 microOps[1] = new MicroStrQTFpXRegUop(machInst, dest, base,
366 offset, type, imm);
367 }
368
369 microOps[0]->setDelayedCommit();
370 microOps[1]->setLastMicroop();
371}
372
373BigFpMemLitOp::BigFpMemLitOp(const char *mnem, ExtMachInst machInst,
374 OpClass __opClass, IntRegIndex dest,
375 int64_t imm) :
376 PredMacroOp(mnem, machInst, __opClass)
377{
378 numMicroops = 2;
379 microOps = new StaticInstPtr[numMicroops];
380
381 microOps[0] = new MicroLdrQBFpXLitUop(machInst, dest, imm);
382 microOps[1] = new MicroLdrQTFpXLitUop(machInst, dest, imm);
383
384 microOps[0]->setDelayedCommit();
385 microOps[1]->setLastMicroop();
386}
387
388VldMultOp::VldMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
389 unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
390 unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
391 PredMacroOp(mnem, machInst, __opClass)
392{
393 assert(regs > 0 && regs <= 4);
394 assert(regs % elems == 0);
395
396 numMicroops = (regs > 2) ? 2 : 1;
397 bool wb = (rm != 15);
398 bool deinterleave = (elems > 1);
399
400 if (wb) numMicroops++;
401 if (deinterleave) numMicroops += (regs / elems);
402 microOps = new StaticInstPtr[numMicroops];
403
404 RegIndex rMid = deinterleave ? NumFloatV7ArchRegs : vd * 2;
405
406 uint32_t noAlign = TLB::MustBeOne;
407
408 unsigned uopIdx = 0;
409 switch (regs) {
410 case 4:
411 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
412 size, machInst, rMid, rn, 0, align);
413 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
414 size, machInst, rMid + 4, rn, 16, noAlign);
415 break;
416 case 3:
417 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
418 size, machInst, rMid, rn, 0, align);
419 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
420 size, machInst, rMid + 4, rn, 16, noAlign);
421 break;
422 case 2:
423 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
424 size, machInst, rMid, rn, 0, align);
425 break;
426 case 1:
427 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
428 size, machInst, rMid, rn, 0, align);
429 break;
430 default:
431 // Unknown number of registers
432 microOps[uopIdx++] = new Unknown(machInst);
433 }
434 if (wb) {
435 if (rm != 15 && rm != 13) {
436 microOps[uopIdx++] =
437 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
438 } else {
439 microOps[uopIdx++] =
440 new MicroAddiUop(machInst, rn, rn, regs * 8);
441 }
442 }
443 if (deinterleave) {
444 switch (elems) {
445 case 4:
446 assert(regs == 4);
447 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon8Uop>(
448 size, machInst, vd * 2, rMid, inc * 2);
449 break;
450 case 3:
451 assert(regs == 3);
452 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon6Uop>(
453 size, machInst, vd * 2, rMid, inc * 2);
454 break;
455 case 2:
456 assert(regs == 4 || regs == 2);
457 if (regs == 4) {
458 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
459 size, machInst, vd * 2, rMid, inc * 2);
460 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
461 size, machInst, vd * 2 + 2, rMid + 4, inc * 2);
462 } else {
463 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
464 size, machInst, vd * 2, rMid, inc * 2);
465 }
466 break;
467 default:
468 // Bad number of elements to deinterleave
469 microOps[uopIdx++] = new Unknown(machInst);
470 }
471 }
472 assert(uopIdx == numMicroops);
473
474 for (unsigned i = 0; i < numMicroops - 1; i++) {
475 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
476 assert(uopPtr);
477 uopPtr->setDelayedCommit();
478 }
479 microOps[numMicroops - 1]->setLastMicroop();
480}
481
482VldSingleOp::VldSingleOp(const char *mnem, ExtMachInst machInst,
483 OpClass __opClass, bool all, unsigned elems,
484 RegIndex rn, RegIndex vd, unsigned regs,
485 unsigned inc, uint32_t size, uint32_t align,
486 RegIndex rm, unsigned lane) :
487 PredMacroOp(mnem, machInst, __opClass)
488{
489 assert(regs > 0 && regs <= 4);
490 assert(regs % elems == 0);
491
492 unsigned eBytes = (1 << size);
493 unsigned loadSize = eBytes * elems;
494 unsigned loadRegs M5_VAR_USED = (loadSize + sizeof(FloatRegBits) - 1) /
495 sizeof(FloatRegBits);
496
497 assert(loadRegs > 0 && loadRegs <= 4);
498
499 numMicroops = 1;
500 bool wb = (rm != 15);
501
502 if (wb) numMicroops++;
503 numMicroops += (regs / elems);
504 microOps = new StaticInstPtr[numMicroops];
505
506 RegIndex ufp0 = NumFloatV7ArchRegs;
507
508 unsigned uopIdx = 0;
509 switch (loadSize) {
510 case 1:
511 microOps[uopIdx++] = new MicroLdrNeon1Uop<uint8_t>(
512 machInst, ufp0, rn, 0, align);
513 break;
514 case 2:
515 if (eBytes == 2) {
516 microOps[uopIdx++] = new MicroLdrNeon2Uop<uint16_t>(
517 machInst, ufp0, rn, 0, align);
518 } else {
519 microOps[uopIdx++] = new MicroLdrNeon2Uop<uint8_t>(
520 machInst, ufp0, rn, 0, align);
521 }
522 break;
523 case 3:
524 microOps[uopIdx++] = new MicroLdrNeon3Uop<uint8_t>(
525 machInst, ufp0, rn, 0, align);
526 break;
527 case 4:
528 switch (eBytes) {
529 case 1:
530 microOps[uopIdx++] = new MicroLdrNeon4Uop<uint8_t>(
531 machInst, ufp0, rn, 0, align);
532 break;
533 case 2:
534 microOps[uopIdx++] = new MicroLdrNeon4Uop<uint16_t>(
535 machInst, ufp0, rn, 0, align);
536 break;
537 case 4:
538 microOps[uopIdx++] = new MicroLdrNeon4Uop<uint32_t>(
539 machInst, ufp0, rn, 0, align);
540 break;
541 }
542 break;
543 case 6:
544 microOps[uopIdx++] = new MicroLdrNeon6Uop<uint16_t>(
545 machInst, ufp0, rn, 0, align);
546 break;
547 case 8:
548 switch (eBytes) {
549 case 2:
550 microOps[uopIdx++] = new MicroLdrNeon8Uop<uint16_t>(
551 machInst, ufp0, rn, 0, align);
552 break;
553 case 4:
554 microOps[uopIdx++] = new MicroLdrNeon8Uop<uint32_t>(
555 machInst, ufp0, rn, 0, align);
556 break;
557 }
558 break;
559 case 12:
560 microOps[uopIdx++] = new MicroLdrNeon12Uop<uint32_t>(
561 machInst, ufp0, rn, 0, align);
562 break;
563 case 16:
564 microOps[uopIdx++] = new MicroLdrNeon16Uop<uint32_t>(
565 machInst, ufp0, rn, 0, align);
566 break;
567 default:
568 // Unrecognized load size
569 microOps[uopIdx++] = new Unknown(machInst);
570 }
571 if (wb) {
572 if (rm != 15 && rm != 13) {
573 microOps[uopIdx++] =
574 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
575 } else {
576 microOps[uopIdx++] =
577 new MicroAddiUop(machInst, rn, rn, loadSize);
578 }
579 }
580 switch (elems) {
581 case 4:
582 assert(regs == 4);
583 switch (size) {
584 case 0:
585 if (all) {
586 microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint8_t>(
587 machInst, vd * 2, ufp0, inc * 2);
588 } else {
589 microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint8_t>(
590 machInst, vd * 2, ufp0, inc * 2, lane);
591 }
592 break;
593 case 1:
594 if (all) {
595 microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint16_t>(
596 machInst, vd * 2, ufp0, inc * 2);
597 } else {
598 microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint16_t>(
599 machInst, vd * 2, ufp0, inc * 2, lane);
600 }
601 break;
602 case 2:
603 if (all) {
604 microOps[uopIdx++] = new MicroUnpackAllNeon4to8Uop<uint32_t>(
605 machInst, vd * 2, ufp0, inc * 2);
606 } else {
607 microOps[uopIdx++] = new MicroUnpackNeon4to8Uop<uint32_t>(
608 machInst, vd * 2, ufp0, inc * 2, lane);
609 }
610 break;
611 default:
612 // Bad size
613 microOps[uopIdx++] = new Unknown(machInst);
614 break;
615 }
616 break;
617 case 3:
618 assert(regs == 3);
619 switch (size) {
620 case 0:
621 if (all) {
622 microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint8_t>(
623 machInst, vd * 2, ufp0, inc * 2);
624 } else {
625 microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint8_t>(
626 machInst, vd * 2, ufp0, inc * 2, lane);
627 }
628 break;
629 case 1:
630 if (all) {
631 microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint16_t>(
632 machInst, vd * 2, ufp0, inc * 2);
633 } else {
634 microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint16_t>(
635 machInst, vd * 2, ufp0, inc * 2, lane);
636 }
637 break;
638 case 2:
639 if (all) {
640 microOps[uopIdx++] = new MicroUnpackAllNeon4to6Uop<uint32_t>(
641 machInst, vd * 2, ufp0, inc * 2);
642 } else {
643 microOps[uopIdx++] = new MicroUnpackNeon4to6Uop<uint32_t>(
644 machInst, vd * 2, ufp0, inc * 2, lane);
645 }
646 break;
647 default:
648 // Bad size
649 microOps[uopIdx++] = new Unknown(machInst);
650 break;
651 }
652 break;
653 case 2:
654 assert(regs == 2);
655 assert(loadRegs <= 2);
656 switch (size) {
657 case 0:
658 if (all) {
659 microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint8_t>(
660 machInst, vd * 2, ufp0, inc * 2);
661 } else {
662 microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint8_t>(
663 machInst, vd * 2, ufp0, inc * 2, lane);
664 }
665 break;
666 case 1:
667 if (all) {
668 microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint16_t>(
669 machInst, vd * 2, ufp0, inc * 2);
670 } else {
671 microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint16_t>(
672 machInst, vd * 2, ufp0, inc * 2, lane);
673 }
674 break;
675 case 2:
676 if (all) {
677 microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint32_t>(
678 machInst, vd * 2, ufp0, inc * 2);
679 } else {
680 microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint32_t>(
681 machInst, vd * 2, ufp0, inc * 2, lane);
682 }
683 break;
684 default:
685 // Bad size
686 microOps[uopIdx++] = new Unknown(machInst);
687 break;
688 }
689 break;
690 case 1:
691 assert(regs == 1 || (all && regs == 2));
692 assert(loadRegs <= 2);
693 for (unsigned offset = 0; offset < regs; offset++) {
694 switch (size) {
695 case 0:
696 if (all) {
697 microOps[uopIdx++] =
698 new MicroUnpackAllNeon2to2Uop<uint8_t>(
699 machInst, (vd + offset) * 2, ufp0, inc * 2);
700 } else {
701 microOps[uopIdx++] =
702 new MicroUnpackNeon2to2Uop<uint8_t>(
703 machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
704 }
705 break;
706 case 1:
707 if (all) {
708 microOps[uopIdx++] =
709 new MicroUnpackAllNeon2to2Uop<uint16_t>(
710 machInst, (vd + offset) * 2, ufp0, inc * 2);
711 } else {
712 microOps[uopIdx++] =
713 new MicroUnpackNeon2to2Uop<uint16_t>(
714 machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
715 }
716 break;
717 case 2:
718 if (all) {
719 microOps[uopIdx++] =
720 new MicroUnpackAllNeon2to2Uop<uint32_t>(
721 machInst, (vd + offset) * 2, ufp0, inc * 2);
722 } else {
723 microOps[uopIdx++] =
724 new MicroUnpackNeon2to2Uop<uint32_t>(
725 machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
726 }
727 break;
728 default:
729 // Bad size
730 microOps[uopIdx++] = new Unknown(machInst);
731 break;
732 }
733 }
734 break;
735 default:
736 // Bad number of elements to unpack
737 microOps[uopIdx++] = new Unknown(machInst);
738 }
739 assert(uopIdx == numMicroops);
740
741 for (unsigned i = 0; i < numMicroops - 1; i++) {
742 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
743 assert(uopPtr);
744 uopPtr->setDelayedCommit();
745 }
746 microOps[numMicroops - 1]->setLastMicroop();
747}
748
749VstMultOp::VstMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
750 unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
751 unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
752 PredMacroOp(mnem, machInst, __opClass)
753{
754 assert(regs > 0 && regs <= 4);
755 assert(regs % elems == 0);
756
757 numMicroops = (regs > 2) ? 2 : 1;
758 bool wb = (rm != 15);
759 bool interleave = (elems > 1);
760
761 if (wb) numMicroops++;
762 if (interleave) numMicroops += (regs / elems);
763 microOps = new StaticInstPtr[numMicroops];
764
765 uint32_t noAlign = TLB::MustBeOne;
766
767 RegIndex rMid = interleave ? NumFloatV7ArchRegs : vd * 2;
768
769 unsigned uopIdx = 0;
770 if (interleave) {
771 switch (elems) {
772 case 4:
773 assert(regs == 4);
774 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon8Uop>(
775 size, machInst, rMid, vd * 2, inc * 2);
776 break;
777 case 3:
778 assert(regs == 3);
779 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon6Uop>(
780 size, machInst, rMid, vd * 2, inc * 2);
781 break;
782 case 2:
783 assert(regs == 4 || regs == 2);
784 if (regs == 4) {
785 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
786 size, machInst, rMid, vd * 2, inc * 2);
787 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
788 size, machInst, rMid + 4, vd * 2 + 2, inc * 2);
789 } else {
790 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
791 size, machInst, rMid, vd * 2, inc * 2);
792 }
793 break;
794 default:
795 // Bad number of elements to interleave
796 microOps[uopIdx++] = new Unknown(machInst);
797 }
798 }
799 switch (regs) {
800 case 4:
801 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
802 size, machInst, rMid, rn, 0, align);
803 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
804 size, machInst, rMid + 4, rn, 16, noAlign);
805 break;
806 case 3:
807 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
808 size, machInst, rMid, rn, 0, align);
809 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
810 size, machInst, rMid + 4, rn, 16, noAlign);
811 break;
812 case 2:
813 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
814 size, machInst, rMid, rn, 0, align);
815 break;
816 case 1:
817 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
818 size, machInst, rMid, rn, 0, align);
819 break;
820 default:
821 // Unknown number of registers
822 microOps[uopIdx++] = new Unknown(machInst);
823 }
824 if (wb) {
825 if (rm != 15 && rm != 13) {
826 microOps[uopIdx++] =
827 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
828 } else {
829 microOps[uopIdx++] =
830 new MicroAddiUop(machInst, rn, rn, regs * 8);
831 }
832 }
833 assert(uopIdx == numMicroops);
834
835 for (unsigned i = 0; i < numMicroops - 1; i++) {
836 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
837 assert(uopPtr);
838 uopPtr->setDelayedCommit();
839 }
840 microOps[numMicroops - 1]->setLastMicroop();
841}
842
843VstSingleOp::VstSingleOp(const char *mnem, ExtMachInst machInst,
844 OpClass __opClass, bool all, unsigned elems,
845 RegIndex rn, RegIndex vd, unsigned regs,
846 unsigned inc, uint32_t size, uint32_t align,
847 RegIndex rm, unsigned lane) :
848 PredMacroOp(mnem, machInst, __opClass)
849{
850 assert(!all);
851 assert(regs > 0 && regs <= 4);
852 assert(regs % elems == 0);
853
854 unsigned eBytes = (1 << size);
855 unsigned storeSize = eBytes * elems;
856 unsigned storeRegs M5_VAR_USED = (storeSize + sizeof(FloatRegBits) - 1) /
857 sizeof(FloatRegBits);
858
859 assert(storeRegs > 0 && storeRegs <= 4);
860
861 numMicroops = 1;
862 bool wb = (rm != 15);
863
864 if (wb) numMicroops++;
865 numMicroops += (regs / elems);
866 microOps = new StaticInstPtr[numMicroops];
867
868 RegIndex ufp0 = NumFloatV7ArchRegs;
869
870 unsigned uopIdx = 0;
871 switch (elems) {
872 case 4:
873 assert(regs == 4);
874 switch (size) {
875 case 0:
876 microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint8_t>(
877 machInst, ufp0, vd * 2, inc * 2, lane);
878 break;
879 case 1:
880 microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint16_t>(
881 machInst, ufp0, vd * 2, inc * 2, lane);
882 break;
883 case 2:
884 microOps[uopIdx++] = new MicroPackNeon8to4Uop<uint32_t>(
885 machInst, ufp0, vd * 2, inc * 2, lane);
886 break;
887 default:
888 // Bad size
889 microOps[uopIdx++] = new Unknown(machInst);
890 break;
891 }
892 break;
893 case 3:
894 assert(regs == 3);
895 switch (size) {
896 case 0:
897 microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint8_t>(
898 machInst, ufp0, vd * 2, inc * 2, lane);
899 break;
900 case 1:
901 microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint16_t>(
902 machInst, ufp0, vd * 2, inc * 2, lane);
903 break;
904 case 2:
905 microOps[uopIdx++] = new MicroPackNeon6to4Uop<uint32_t>(
906 machInst, ufp0, vd * 2, inc * 2, lane);
907 break;
908 default:
909 // Bad size
910 microOps[uopIdx++] = new Unknown(machInst);
911 break;
912 }
913 break;
914 case 2:
915 assert(regs == 2);
916 assert(storeRegs <= 2);
917 switch (size) {
918 case 0:
919 microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint8_t>(
920 machInst, ufp0, vd * 2, inc * 2, lane);
921 break;
922 case 1:
923 microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint16_t>(
924 machInst, ufp0, vd * 2, inc * 2, lane);
925 break;
926 case 2:
927 microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint32_t>(
928 machInst, ufp0, vd * 2, inc * 2, lane);
929 break;
930 default:
931 // Bad size
932 microOps[uopIdx++] = new Unknown(machInst);
933 break;
934 }
935 break;
936 case 1:
937 assert(regs == 1 || (all && regs == 2));
938 assert(storeRegs <= 2);
939 for (unsigned offset = 0; offset < regs; offset++) {
940 switch (size) {
941 case 0:
942 microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint8_t>(
943 machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
944 break;
945 case 1:
946 microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint16_t>(
947 machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
948 break;
949 case 2:
950 microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint32_t>(
951 machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
952 break;
953 default:
954 // Bad size
955 microOps[uopIdx++] = new Unknown(machInst);
956 break;
957 }
958 }
959 break;
960 default:
961 // Bad number of elements to unpack
962 microOps[uopIdx++] = new Unknown(machInst);
963 }
964 switch (storeSize) {
965 case 1:
966 microOps[uopIdx++] = new MicroStrNeon1Uop<uint8_t>(
967 machInst, ufp0, rn, 0, align);
968 break;
969 case 2:
970 if (eBytes == 2) {
971 microOps[uopIdx++] = new MicroStrNeon2Uop<uint16_t>(
972 machInst, ufp0, rn, 0, align);
973 } else {
974 microOps[uopIdx++] = new MicroStrNeon2Uop<uint8_t>(
975 machInst, ufp0, rn, 0, align);
976 }
977 break;
978 case 3:
979 microOps[uopIdx++] = new MicroStrNeon3Uop<uint8_t>(
980 machInst, ufp0, rn, 0, align);
981 break;
982 case 4:
983 switch (eBytes) {
984 case 1:
985 microOps[uopIdx++] = new MicroStrNeon4Uop<uint8_t>(
986 machInst, ufp0, rn, 0, align);
987 break;
988 case 2:
989 microOps[uopIdx++] = new MicroStrNeon4Uop<uint16_t>(
990 machInst, ufp0, rn, 0, align);
991 break;
992 case 4:
993 microOps[uopIdx++] = new MicroStrNeon4Uop<uint32_t>(
994 machInst, ufp0, rn, 0, align);
995 break;
996 }
997 break;
998 case 6:
999 microOps[uopIdx++] = new MicroStrNeon6Uop<uint16_t>(
1000 machInst, ufp0, rn, 0, align);
1001 break;
1002 case 8:
1003 switch (eBytes) {
1004 case 2:
1005 microOps[uopIdx++] = new MicroStrNeon8Uop<uint16_t>(
1006 machInst, ufp0, rn, 0, align);
1007 break;
1008 case 4:
1009 microOps[uopIdx++] = new MicroStrNeon8Uop<uint32_t>(
1010 machInst, ufp0, rn, 0, align);
1011 break;
1012 }
1013 break;
1014 case 12:
1015 microOps[uopIdx++] = new MicroStrNeon12Uop<uint32_t>(
1016 machInst, ufp0, rn, 0, align);
1017 break;
1018 case 16:
1019 microOps[uopIdx++] = new MicroStrNeon16Uop<uint32_t>(
1020 machInst, ufp0, rn, 0, align);
1021 break;
1022 default:
1023 // Bad store size
1024 microOps[uopIdx++] = new Unknown(machInst);
1025 }
1026 if (wb) {
1027 if (rm != 15 && rm != 13) {
1028 microOps[uopIdx++] =
1029 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
1030 } else {
1031 microOps[uopIdx++] =
1032 new MicroAddiUop(machInst, rn, rn, storeSize);
1033 }
1034 }
1035 assert(uopIdx == numMicroops);
1036
1037 for (unsigned i = 0; i < numMicroops - 1; i++) {
1038 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
1039 assert(uopPtr);
1040 uopPtr->setDelayedCommit();
1041 }
1042 microOps[numMicroops - 1]->setLastMicroop();
1043}
1044
1045VldMultOp64::VldMultOp64(const char *mnem, ExtMachInst machInst,
1046 OpClass __opClass, RegIndex rn, RegIndex vd,
1047 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1048 uint8_t numStructElems, uint8_t numRegs, bool wb) :
1049 PredMacroOp(mnem, machInst, __opClass)
1050{
1051 RegIndex vx = NumFloatV8ArchRegs / 4;
1052 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1053 bool baseIsSP = isSP((IntRegIndex) rnsp);
1054
1055 numMicroops = wb ? 1 : 0;
1056
1057 int totNumBytes = numRegs * dataSize / 8;
1058 assert(totNumBytes <= 64);
1059
1060 // The guiding principle here is that no more than 16 bytes can be
1061 // transferred at a time
1062 int numMemMicroops = totNumBytes / 16;
1063 int residuum = totNumBytes % 16;
1064 if (residuum)
1065 ++numMemMicroops;
1066 numMicroops += numMemMicroops;
1067
1068 int numMarshalMicroops = numRegs / 2 + (numRegs % 2 ? 1 : 0);
1069 numMicroops += numMarshalMicroops;
1070
1071 microOps = new StaticInstPtr[numMicroops];
1072 unsigned uopIdx = 0;
1073 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1074 TLB::AllowUnaligned;
1075
1076 int i = 0;
1077 for(; i < numMemMicroops - 1; ++i) {
1078 microOps[uopIdx++] = new MicroNeonLoad64(
1079 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1080 baseIsSP, 16 /* accSize */, eSize);
1081 }
1082 microOps[uopIdx++] = new MicroNeonLoad64(
1083 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1084 residuum ? residuum : 16 /* accSize */, eSize);
1085
1086 // Writeback microop: the post-increment amount is encoded in "Rm": a
1087 // 64-bit general register OR as '11111' for an immediate value equal to
1088 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1089 if (wb) {
1090 if (rm != ((RegIndex) INTREG_X31)) {
1091 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1092 UXTX, 0);
1093 } else {
1094 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1095 totNumBytes);
1096 }
1097 }
1098
1099 for (int i = 0; i < numMarshalMicroops; ++i) {
1100 microOps[uopIdx++] = new MicroDeintNeon64(
1101 machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
1102 numStructElems, numRegs, i /* step */);
1103 }
1104
1105 assert(uopIdx == numMicroops);
1106
1107 for (int i = 0; i < numMicroops - 1; ++i) {
1108 microOps[i]->setDelayedCommit();
1109 }
1110 microOps[numMicroops - 1]->setLastMicroop();
1111}
1112
1113VstMultOp64::VstMultOp64(const char *mnem, ExtMachInst machInst,
1114 OpClass __opClass, RegIndex rn, RegIndex vd,
1115 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1116 uint8_t numStructElems, uint8_t numRegs, bool wb) :
1117 PredMacroOp(mnem, machInst, __opClass)
1118{
1119 RegIndex vx = NumFloatV8ArchRegs / 4;
1120 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1121 bool baseIsSP = isSP((IntRegIndex) rnsp);
1122
1123 numMicroops = wb ? 1 : 0;
1124
1125 int totNumBytes = numRegs * dataSize / 8;
1126 assert(totNumBytes <= 64);
1127
1128 // The guiding principle here is that no more than 16 bytes can be
1129 // transferred at a time
1130 int numMemMicroops = totNumBytes / 16;
1131 int residuum = totNumBytes % 16;
1132 if (residuum)
1133 ++numMemMicroops;
1134 numMicroops += numMemMicroops;
1135
1136 int numMarshalMicroops = totNumBytes > 32 ? 2 : 1;
1137 numMicroops += numMarshalMicroops;
1138
1139 microOps = new StaticInstPtr[numMicroops];
1140 unsigned uopIdx = 0;
1141
1142 for(int i = 0; i < numMarshalMicroops; ++i) {
1143 microOps[uopIdx++] = new MicroIntNeon64(
1144 machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
1145 numStructElems, numRegs, i /* step */);
1146 }
1147
1148 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1149 TLB::AllowUnaligned;
1150
1151 int i = 0;
1152 for(; i < numMemMicroops - 1; ++i) {
1153 microOps[uopIdx++] = new MicroNeonStore64(
1154 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1155 baseIsSP, 16 /* accSize */, eSize);
1156 }
1157 microOps[uopIdx++] = new MicroNeonStore64(
1158 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1159 residuum ? residuum : 16 /* accSize */, eSize);
1160
1161 // Writeback microop: the post-increment amount is encoded in "Rm": a
1162 // 64-bit general register OR as '11111' for an immediate value equal to
1163 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1164 if (wb) {
1165 if (rm != ((RegIndex) INTREG_X31)) {
1166 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1167 UXTX, 0);
1168 } else {
1169 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1170 totNumBytes);
1171 }
1172 }
1173
1174 assert(uopIdx == numMicroops);
1175
1176 for (int i = 0; i < numMicroops - 1; i++) {
1177 microOps[i]->setDelayedCommit();
1178 }
1179 microOps[numMicroops - 1]->setLastMicroop();
1180}
1181
1182VldSingleOp64::VldSingleOp64(const char *mnem, ExtMachInst machInst,
1183 OpClass __opClass, RegIndex rn, RegIndex vd,
1184 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1185 uint8_t numStructElems, uint8_t index, bool wb,
1186 bool replicate) :
1187 PredMacroOp(mnem, machInst, __opClass)
1188{
1189 RegIndex vx = NumFloatV8ArchRegs / 4;
1190 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1191 bool baseIsSP = isSP((IntRegIndex) rnsp);
1192
1193 numMicroops = wb ? 1 : 0;
1194
1195 int eSizeBytes = 1 << eSize;
1196 int totNumBytes = numStructElems * eSizeBytes;
1197 assert(totNumBytes <= 64);
1198
1199 // The guiding principle here is that no more than 16 bytes can be
1200 // transferred at a time
1201 int numMemMicroops = totNumBytes / 16;
1202 int residuum = totNumBytes % 16;
1203 if (residuum)
1204 ++numMemMicroops;
1205 numMicroops += numMemMicroops;
1206
1207 int numMarshalMicroops = numStructElems / 2 + (numStructElems % 2 ? 1 : 0);
1208 numMicroops += numMarshalMicroops;
1209
1210 microOps = new StaticInstPtr[numMicroops];
1211 unsigned uopIdx = 0;
1212
1213 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1214 TLB::AllowUnaligned;
1215
1216 int i = 0;
1217 for (; i < numMemMicroops - 1; ++i) {
1218 microOps[uopIdx++] = new MicroNeonLoad64(
1219 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1220 baseIsSP, 16 /* accSize */, eSize);
1221 }
1222 microOps[uopIdx++] = new MicroNeonLoad64(
1223 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1224 residuum ? residuum : 16 /* accSize */, eSize);
1225
1226 // Writeback microop: the post-increment amount is encoded in "Rm": a
1227 // 64-bit general register OR as '11111' for an immediate value equal to
1228 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1229 if (wb) {
1230 if (rm != ((RegIndex) INTREG_X31)) {
1231 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1232 UXTX, 0);
1233 } else {
1234 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1235 totNumBytes);
1236 }
1237 }
1238
1239 for(int i = 0; i < numMarshalMicroops; ++i) {
1240 microOps[uopIdx++] = new MicroUnpackNeon64(
1241 machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
1242 numStructElems, index, i /* step */, replicate);
1243 }
1244
1245 assert(uopIdx == numMicroops);
1246
1247 for (int i = 0; i < numMicroops - 1; i++) {
1248 microOps[i]->setDelayedCommit();
1249 }
1250 microOps[numMicroops - 1]->setLastMicroop();
1251}
1252
1253VstSingleOp64::VstSingleOp64(const char *mnem, ExtMachInst machInst,
1254 OpClass __opClass, RegIndex rn, RegIndex vd,
1255 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1256 uint8_t numStructElems, uint8_t index, bool wb,
1257 bool replicate) :
1258 PredMacroOp(mnem, machInst, __opClass)
1259{
1260 RegIndex vx = NumFloatV8ArchRegs / 4;
1261 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1262 bool baseIsSP = isSP((IntRegIndex) rnsp);
1263
1264 numMicroops = wb ? 1 : 0;
1265
1266 int eSizeBytes = 1 << eSize;
1267 int totNumBytes = numStructElems * eSizeBytes;
1268 assert(totNumBytes <= 64);
1269
1270 // The guiding principle here is that no more than 16 bytes can be
1271 // transferred at a time
1272 int numMemMicroops = totNumBytes / 16;
1273 int residuum = totNumBytes % 16;
1274 if (residuum)
1275 ++numMemMicroops;
1276 numMicroops += numMemMicroops;
1277
1278 int numMarshalMicroops = totNumBytes > 32 ? 2 : 1;
1279 numMicroops += numMarshalMicroops;
1280
1281 microOps = new StaticInstPtr[numMicroops];
1282 unsigned uopIdx = 0;
1283
1284 for(int i = 0; i < numMarshalMicroops; ++i) {
1285 microOps[uopIdx++] = new MicroPackNeon64(
1286 machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
1287 numStructElems, index, i /* step */, replicate);
1288 }
1289
1290 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1291 TLB::AllowUnaligned;
1292
1293 int i = 0;
1294 for(; i < numMemMicroops - 1; ++i) {
1295 microOps[uopIdx++] = new MicroNeonStore64(
1296 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1297 baseIsSP, 16 /* accsize */, eSize);
1298 }
1299 microOps[uopIdx++] = new MicroNeonStore64(
1300 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1301 residuum ? residuum : 16 /* accSize */, eSize);
1302
1303 // Writeback microop: the post-increment amount is encoded in "Rm": a
1304 // 64-bit general register OR as '11111' for an immediate value equal to
1305 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1306 if (wb) {
1307 if (rm != ((RegIndex) INTREG_X31)) {
1308 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1309 UXTX, 0);
1310 } else {
1311 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1312 totNumBytes);
1313 }
1314 }
1315
1316 assert(uopIdx == numMicroops);
1317
1318 for (int i = 0; i < numMicroops - 1; i++) {
1319 microOps[i]->setDelayedCommit();
1320 }
1321 microOps[numMicroops - 1]->setLastMicroop();
1322}
1323
1324MacroVFPMemOp::MacroVFPMemOp(const char *mnem, ExtMachInst machInst,
1325 OpClass __opClass, IntRegIndex rn,
1326 RegIndex vd, bool single, bool up,
1327 bool writeback, bool load, uint32_t offset) :
1328 PredMacroOp(mnem, machInst, __opClass)
1329{
1330 int i = 0;
1331
1332 // The lowest order bit selects fldmx (set) or fldmd (clear). These seem
1333 // to be functionally identical except that fldmx is deprecated. For now
1334 // we'll assume they're otherwise interchangable.
1335 int count = (single ? offset : (offset / 2));
1336 if (count == 0 || count > NumFloatV7ArchRegs)
1337 warn_once("Bad offset field for VFP load/store multiple.\n");
1338 if (count == 0) {
1339 // Force there to be at least one microop so the macroop makes sense.
1340 writeback = true;
1341 }
1342 if (count > NumFloatV7ArchRegs)
1343 count = NumFloatV7ArchRegs;
1344
1345 numMicroops = count * (single ? 1 : 2) + (writeback ? 1 : 0);
1346 microOps = new StaticInstPtr[numMicroops];
1347
1348 int64_t addr = 0;
1349
1350 if (!up)
1351 addr = 4 * offset;
1352
1353 bool tempUp = up;
1354 for (int j = 0; j < count; j++) {
1355 if (load) {
1356 if (single) {
1357 microOps[i++] = new MicroLdrFpUop(machInst, vd++, rn,
1358 tempUp, addr);
1359 } else {
1360 microOps[i++] = new MicroLdrDBFpUop(machInst, vd++, rn,
1361 tempUp, addr);
1362 microOps[i++] = new MicroLdrDTFpUop(machInst, vd++, rn, tempUp,
1363 addr + (up ? 4 : -4));
1364 }
1365 } else {
1366 if (single) {
1367 microOps[i++] = new MicroStrFpUop(machInst, vd++, rn,
1368 tempUp, addr);
1369 } else {
1370 microOps[i++] = new MicroStrDBFpUop(machInst, vd++, rn,
1371 tempUp, addr);
1372 microOps[i++] = new MicroStrDTFpUop(machInst, vd++, rn, tempUp,
1373 addr + (up ? 4 : -4));
1374 }
1375 }
1376 if (!tempUp) {
1377 addr -= (single ? 4 : 8);
1378 // The microops don't handle negative displacement, so turn if we
1379 // hit zero, flip polarity and start adding.
1380 if (addr <= 0) {
1381 tempUp = true;
1382 addr = -addr;
1383 }
1384 } else {
1385 addr += (single ? 4 : 8);
1386 }
1387 }
1388
1389 if (writeback) {
1390 if (up) {
1391 microOps[i++] =
1392 new MicroAddiUop(machInst, rn, rn, 4 * offset);
1393 } else {
1394 microOps[i++] =
1395 new MicroSubiUop(machInst, rn, rn, 4 * offset);
1396 }
1397 }
1398
1399 assert(numMicroops == i);
1400 microOps[numMicroops - 1]->setLastMicroop();
1401
1402 for (StaticInstPtr *curUop = microOps;
1403 !(*curUop)->isLastMicroop(); curUop++) {
1404 MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
1405 assert(uopPtr);
1406 uopPtr->setDelayedCommit();
1407 }
1408}
1409
1410std::string
1411MicroIntImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1412{
1413 std::stringstream ss;
1414 printMnemonic(ss);
1415 printReg(ss, ura);
1416 ss << ", ";
1417 printReg(ss, urb);
1418 ss << ", ";
1419 ccprintf(ss, "#%d", imm);
1420 return ss.str();
1421}
1422
1423std::string
1424MicroIntImmXOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1425{
1426 std::stringstream ss;
1427 printMnemonic(ss);
1428 printReg(ss, ura);
1429 ss << ", ";
1430 printReg(ss, urb);
1431 ss << ", ";
1432 ccprintf(ss, "#%d", imm);
1433 return ss.str();
1434}
1435
1436std::string
1437MicroSetPCCPSR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1438{
1439 std::stringstream ss;
1440 printMnemonic(ss);
1441 ss << "[PC,CPSR]";
1442 return ss.str();
1443}
1444
1445std::string
1446MicroIntRegXOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1447{
1448 std::stringstream ss;
1449 printMnemonic(ss);
1450 printReg(ss, ura);
1451 ccprintf(ss, ", ");
1452 printReg(ss, urb);
1453 printExtendOperand(false, ss, (IntRegIndex)urc, type, shiftAmt);
1454 return ss.str();
1455}
1456
1457std::string
1458MicroIntMov::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1459{
1460 std::stringstream ss;
1461 printMnemonic(ss);
1462 printReg(ss, ura);
1463 ss << ", ";
1464 printReg(ss, urb);
1465 return ss.str();
1466}
1467
1468std::string
1469MicroIntOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1470{
1471 std::stringstream ss;
1472 printMnemonic(ss);
1473 printReg(ss, ura);
1474 ss << ", ";
1475 printReg(ss, urb);
1476 ss << ", ";
1477 printReg(ss, urc);
1478 return ss.str();
1479}
1480
1481std::string
1482MicroMemOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1483{
1484 std::stringstream ss;
1485 printMnemonic(ss);
1486 if (isFloating())
1487 printReg(ss, ura + FP_Reg_Base);
1488 else
1489 printReg(ss, ura);
1490 ss << ", [";
1491 printReg(ss, urb);
1492 ss << ", ";
1493 ccprintf(ss, "#%d", imm);
1494 ss << "]";
1495 return ss.str();
1496}
1497
1498}
184 for (StaticInstPtr *curUop = microOps;
185 !(*curUop)->isLastMicroop(); curUop++) {
186 MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
187 assert(uopPtr);
188 uopPtr->setDelayedCommit();
189 }
190}
191
192PairMemOp::PairMemOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
193 uint32_t size, bool fp, bool load, bool noAlloc,
194 bool signExt, bool exclusive, bool acrel,
195 int64_t imm, AddrMode mode,
196 IntRegIndex rn, IntRegIndex rt, IntRegIndex rt2) :
197 PredMacroOp(mnem, machInst, __opClass)
198{
199 bool writeback = (mode != AddrMd_Offset);
200 numMicroops = 1 + (size / 4) + (writeback ? 1 : 0);
201 microOps = new StaticInstPtr[numMicroops];
202
203 StaticInstPtr *uop = microOps;
204
205 bool post = (mode == AddrMd_PostIndex);
206
207 rn = makeSP(rn);
208
209 *uop = new MicroAddXiSpAlignUop(machInst, INTREG_UREG0, rn, post ? 0 : imm);
210
211 if (fp) {
212 if (size == 16) {
213 if (load) {
214 *++uop = new MicroLdrQBFpXImmUop(machInst, rt,
215 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
216 *++uop = new MicroLdrQTFpXImmUop(machInst, rt,
217 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
218 *++uop = new MicroLdrQBFpXImmUop(machInst, rt2,
219 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
220 *++uop = new MicroLdrQTFpXImmUop(machInst, rt2,
221 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
222 } else {
223 *++uop = new MicroStrQBFpXImmUop(machInst, rt,
224 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
225 *++uop = new MicroStrQTFpXImmUop(machInst, rt,
226 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
227 *++uop = new MicroStrQBFpXImmUop(machInst, rt2,
228 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
229 *++uop = new MicroStrQTFpXImmUop(machInst, rt2,
230 INTREG_UREG0, 16, noAlloc, exclusive, acrel);
231 }
232 } else if (size == 8) {
233 if (load) {
234 *++uop = new MicroLdrFpXImmUop(machInst, rt,
235 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
236 *++uop = new MicroLdrFpXImmUop(machInst, rt2,
237 INTREG_UREG0, 8, noAlloc, exclusive, acrel);
238 } else {
239 *++uop = new MicroStrFpXImmUop(machInst, rt,
240 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
241 *++uop = new MicroStrFpXImmUop(machInst, rt2,
242 INTREG_UREG0, 8, noAlloc, exclusive, acrel);
243 }
244 } else if (size == 4) {
245 if (load) {
246 *++uop = new MicroLdrDFpXImmUop(machInst, rt, rt2,
247 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
248 } else {
249 *++uop = new MicroStrDFpXImmUop(machInst, rt, rt2,
250 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
251 }
252 }
253 } else {
254 if (size == 8) {
255 if (load) {
256 *++uop = new MicroLdrXImmUop(machInst, rt, INTREG_UREG0,
257 0, noAlloc, exclusive, acrel);
258 *++uop = new MicroLdrXImmUop(machInst, rt2, INTREG_UREG0,
259 size, noAlloc, exclusive, acrel);
260 } else {
261 *++uop = new MicroStrXImmUop(machInst, rt, INTREG_UREG0,
262 0, noAlloc, exclusive, acrel);
263 *++uop = new MicroStrXImmUop(machInst, rt2, INTREG_UREG0,
264 size, noAlloc, exclusive, acrel);
265 }
266 } else if (size == 4) {
267 if (load) {
268 if (signExt) {
269 *++uop = new MicroLdrDSXImmUop(machInst, rt, rt2,
270 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
271 } else {
272 *++uop = new MicroLdrDUXImmUop(machInst, rt, rt2,
273 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
274 }
275 } else {
276 *++uop = new MicroStrDXImmUop(machInst, rt, rt2,
277 INTREG_UREG0, 0, noAlloc, exclusive, acrel);
278 }
279 }
280 }
281
282 if (writeback) {
283 *++uop = new MicroAddXiUop(machInst, rn, INTREG_UREG0,
284 post ? imm : 0);
285 }
286
287 (*uop)->setLastMicroop();
288
289 for (StaticInstPtr *curUop = microOps;
290 !(*curUop)->isLastMicroop(); curUop++) {
291 (*curUop)->setDelayedCommit();
292 }
293}
294
295BigFpMemImmOp::BigFpMemImmOp(const char *mnem, ExtMachInst machInst,
296 OpClass __opClass, bool load, IntRegIndex dest,
297 IntRegIndex base, int64_t imm) :
298 PredMacroOp(mnem, machInst, __opClass)
299{
300 numMicroops = 2;
301 microOps = new StaticInstPtr[numMicroops];
302
303 if (load) {
304 microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, imm);
305 microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, imm);
306 } else {
307 microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
308 microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
309 }
310 microOps[0]->setDelayedCommit();
311 microOps[1]->setLastMicroop();
312}
313
314BigFpMemPostOp::BigFpMemPostOp(const char *mnem, ExtMachInst machInst,
315 OpClass __opClass, bool load, IntRegIndex dest,
316 IntRegIndex base, int64_t imm) :
317 PredMacroOp(mnem, machInst, __opClass)
318{
319 numMicroops = 3;
320 microOps = new StaticInstPtr[numMicroops];
321
322 if (load) {
323 microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, 0);
324 microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, 0);
325 } else {
326 microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, 0);
327 microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, 0);
328 }
329 microOps[2] = new MicroAddXiUop(machInst, base, base, imm);
330
331 microOps[0]->setDelayedCommit();
332 microOps[1]->setDelayedCommit();
333 microOps[2]->setLastMicroop();
334}
335
336BigFpMemPreOp::BigFpMemPreOp(const char *mnem, ExtMachInst machInst,
337 OpClass __opClass, bool load, IntRegIndex dest,
338 IntRegIndex base, int64_t imm) :
339 PredMacroOp(mnem, machInst, __opClass)
340{
341 numMicroops = 3;
342 microOps = new StaticInstPtr[numMicroops];
343
344 if (load) {
345 microOps[0] = new MicroLdrQBFpXImmUop(machInst, dest, base, imm);
346 microOps[1] = new MicroLdrQTFpXImmUop(machInst, dest, base, imm);
347 } else {
348 microOps[0] = new MicroStrQBFpXImmUop(machInst, dest, base, imm);
349 microOps[1] = new MicroStrQTFpXImmUop(machInst, dest, base, imm);
350 }
351 microOps[2] = new MicroAddXiUop(machInst, base, base, imm);
352
353 microOps[0]->setDelayedCommit();
354 microOps[1]->setDelayedCommit();
355 microOps[2]->setLastMicroop();
356}
357
358BigFpMemRegOp::BigFpMemRegOp(const char *mnem, ExtMachInst machInst,
359 OpClass __opClass, bool load, IntRegIndex dest,
360 IntRegIndex base, IntRegIndex offset,
361 ArmExtendType type, int64_t imm) :
362 PredMacroOp(mnem, machInst, __opClass)
363{
364 numMicroops = 2;
365 microOps = new StaticInstPtr[numMicroops];
366
367 if (load) {
368 microOps[0] = new MicroLdrQBFpXRegUop(machInst, dest, base,
369 offset, type, imm);
370 microOps[1] = new MicroLdrQTFpXRegUop(machInst, dest, base,
371 offset, type, imm);
372 } else {
373 microOps[0] = new MicroStrQBFpXRegUop(machInst, dest, base,
374 offset, type, imm);
375 microOps[1] = new MicroStrQTFpXRegUop(machInst, dest, base,
376 offset, type, imm);
377 }
378
379 microOps[0]->setDelayedCommit();
380 microOps[1]->setLastMicroop();
381}
382
383BigFpMemLitOp::BigFpMemLitOp(const char *mnem, ExtMachInst machInst,
384 OpClass __opClass, IntRegIndex dest,
385 int64_t imm) :
386 PredMacroOp(mnem, machInst, __opClass)
387{
388 numMicroops = 2;
389 microOps = new StaticInstPtr[numMicroops];
390
391 microOps[0] = new MicroLdrQBFpXLitUop(machInst, dest, imm);
392 microOps[1] = new MicroLdrQTFpXLitUop(machInst, dest, imm);
393
394 microOps[0]->setDelayedCommit();
395 microOps[1]->setLastMicroop();
396}
397
398VldMultOp::VldMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
399 unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
400 unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
401 PredMacroOp(mnem, machInst, __opClass)
402{
403 assert(regs > 0 && regs <= 4);
404 assert(regs % elems == 0);
405
406 numMicroops = (regs > 2) ? 2 : 1;
407 bool wb = (rm != 15);
408 bool deinterleave = (elems > 1);
409
410 if (wb) numMicroops++;
411 if (deinterleave) numMicroops += (regs / elems);
412 microOps = new StaticInstPtr[numMicroops];
413
414 RegIndex rMid = deinterleave ? NumFloatV7ArchRegs : vd * 2;
415
416 uint32_t noAlign = TLB::MustBeOne;
417
418 unsigned uopIdx = 0;
419 switch (regs) {
420 case 4:
421 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
422 size, machInst, rMid, rn, 0, align);
423 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
424 size, machInst, rMid + 4, rn, 16, noAlign);
425 break;
426 case 3:
427 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
428 size, machInst, rMid, rn, 0, align);
429 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
430 size, machInst, rMid + 4, rn, 16, noAlign);
431 break;
432 case 2:
433 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon16Uop>(
434 size, machInst, rMid, rn, 0, align);
435 break;
436 case 1:
437 microOps[uopIdx++] = newNeonMemInst<MicroLdrNeon8Uop>(
438 size, machInst, rMid, rn, 0, align);
439 break;
440 default:
441 // Unknown number of registers
442 microOps[uopIdx++] = new Unknown(machInst);
443 }
444 if (wb) {
445 if (rm != 15 && rm != 13) {
446 microOps[uopIdx++] =
447 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
448 } else {
449 microOps[uopIdx++] =
450 new MicroAddiUop(machInst, rn, rn, regs * 8);
451 }
452 }
453 if (deinterleave) {
454 switch (elems) {
455 case 4:
456 assert(regs == 4);
457 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon8Uop>(
458 size, machInst, vd * 2, rMid, inc * 2);
459 break;
460 case 3:
461 assert(regs == 3);
462 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon6Uop>(
463 size, machInst, vd * 2, rMid, inc * 2);
464 break;
465 case 2:
466 assert(regs == 4 || regs == 2);
467 if (regs == 4) {
468 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
469 size, machInst, vd * 2, rMid, inc * 2);
470 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
471 size, machInst, vd * 2 + 2, rMid + 4, inc * 2);
472 } else {
473 microOps[uopIdx++] = newNeonMixInst<MicroDeintNeon4Uop>(
474 size, machInst, vd * 2, rMid, inc * 2);
475 }
476 break;
477 default:
478 // Bad number of elements to deinterleave
479 microOps[uopIdx++] = new Unknown(machInst);
480 }
481 }
482 assert(uopIdx == numMicroops);
483
484 for (unsigned i = 0; i < numMicroops - 1; i++) {
485 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
486 assert(uopPtr);
487 uopPtr->setDelayedCommit();
488 }
489 microOps[numMicroops - 1]->setLastMicroop();
490}
491
492VldSingleOp::VldSingleOp(const char *mnem, ExtMachInst machInst,
493 OpClass __opClass, bool all, unsigned elems,
494 RegIndex rn, RegIndex vd, unsigned regs,
495 unsigned inc, uint32_t size, uint32_t align,
496 RegIndex rm, unsigned lane) :
497 PredMacroOp(mnem, machInst, __opClass)
498{
499 assert(regs > 0 && regs <= 4);
500 assert(regs % elems == 0);
501
502 unsigned eBytes = (1 << size);
503 unsigned loadSize = eBytes * elems;
504 unsigned loadRegs M5_VAR_USED = (loadSize + sizeof(FloatRegBits) - 1) /
505 sizeof(FloatRegBits);
506
507 assert(loadRegs > 0 && loadRegs <= 4);
508
509 numMicroops = 1;
510 bool wb = (rm != 15);
511
512 if (wb) numMicroops++;
513 numMicroops += (regs / elems);
514 microOps = new StaticInstPtr[numMicroops];
515
516 RegIndex ufp0 = NumFloatV7ArchRegs;
517
518 unsigned uopIdx = 0;
519 switch (loadSize) {
520 case 1:
521 microOps[uopIdx++] = new MicroLdrNeon1Uop<uint8_t>(
522 machInst, ufp0, rn, 0, align);
523 break;
524 case 2:
525 if (eBytes == 2) {
526 microOps[uopIdx++] = new MicroLdrNeon2Uop<uint16_t>(
527 machInst, ufp0, rn, 0, align);
528 } else {
529 microOps[uopIdx++] = new MicroLdrNeon2Uop<uint8_t>(
530 machInst, ufp0, rn, 0, align);
531 }
532 break;
533 case 3:
534 microOps[uopIdx++] = new MicroLdrNeon3Uop<uint8_t>(
535 machInst, ufp0, rn, 0, align);
536 break;
537 case 4:
538 switch (eBytes) {
539 case 1:
540 microOps[uopIdx++] = new MicroLdrNeon4Uop<uint8_t>(
541 machInst, ufp0, rn, 0, align);
542 break;
543 case 2:
544 microOps[uopIdx++] = new MicroLdrNeon4Uop<uint16_t>(
545 machInst, ufp0, rn, 0, align);
546 break;
547 case 4:
548 microOps[uopIdx++] = new MicroLdrNeon4Uop<uint32_t>(
549 machInst, ufp0, rn, 0, align);
550 break;
551 }
552 break;
553 case 6:
554 microOps[uopIdx++] = new MicroLdrNeon6Uop<uint16_t>(
555 machInst, ufp0, rn, 0, align);
556 break;
557 case 8:
558 switch (eBytes) {
559 case 2:
560 microOps[uopIdx++] = new MicroLdrNeon8Uop<uint16_t>(
561 machInst, ufp0, rn, 0, align);
562 break;
563 case 4:
564 microOps[uopIdx++] = new MicroLdrNeon8Uop<uint32_t>(
565 machInst, ufp0, rn, 0, align);
566 break;
567 }
568 break;
569 case 12:
570 microOps[uopIdx++] = new MicroLdrNeon12Uop<uint32_t>(
571 machInst, ufp0, rn, 0, align);
572 break;
573 case 16:
574 microOps[uopIdx++] = new MicroLdrNeon16Uop<uint32_t>(
575 machInst, ufp0, rn, 0, align);
576 break;
577 default:
578 // Unrecognized load size
579 microOps[uopIdx++] = new Unknown(machInst);
580 }
581 if (wb) {
582 if (rm != 15 && rm != 13) {
583 microOps[uopIdx++] =
584 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
585 } else {
586 microOps[uopIdx++] =
587 new MicroAddiUop(machInst, rn, rn, loadSize);
588 }
589 }
590 switch (elems) {
591 case 4:
592 assert(regs == 4);
593 switch (size) {
594 case 0:
595 if (all) {
596 microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint8_t>(
597 machInst, vd * 2, ufp0, inc * 2);
598 } else {
599 microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint8_t>(
600 machInst, vd * 2, ufp0, inc * 2, lane);
601 }
602 break;
603 case 1:
604 if (all) {
605 microOps[uopIdx++] = new MicroUnpackAllNeon2to8Uop<uint16_t>(
606 machInst, vd * 2, ufp0, inc * 2);
607 } else {
608 microOps[uopIdx++] = new MicroUnpackNeon2to8Uop<uint16_t>(
609 machInst, vd * 2, ufp0, inc * 2, lane);
610 }
611 break;
612 case 2:
613 if (all) {
614 microOps[uopIdx++] = new MicroUnpackAllNeon4to8Uop<uint32_t>(
615 machInst, vd * 2, ufp0, inc * 2);
616 } else {
617 microOps[uopIdx++] = new MicroUnpackNeon4to8Uop<uint32_t>(
618 machInst, vd * 2, ufp0, inc * 2, lane);
619 }
620 break;
621 default:
622 // Bad size
623 microOps[uopIdx++] = new Unknown(machInst);
624 break;
625 }
626 break;
627 case 3:
628 assert(regs == 3);
629 switch (size) {
630 case 0:
631 if (all) {
632 microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint8_t>(
633 machInst, vd * 2, ufp0, inc * 2);
634 } else {
635 microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint8_t>(
636 machInst, vd * 2, ufp0, inc * 2, lane);
637 }
638 break;
639 case 1:
640 if (all) {
641 microOps[uopIdx++] = new MicroUnpackAllNeon2to6Uop<uint16_t>(
642 machInst, vd * 2, ufp0, inc * 2);
643 } else {
644 microOps[uopIdx++] = new MicroUnpackNeon2to6Uop<uint16_t>(
645 machInst, vd * 2, ufp0, inc * 2, lane);
646 }
647 break;
648 case 2:
649 if (all) {
650 microOps[uopIdx++] = new MicroUnpackAllNeon4to6Uop<uint32_t>(
651 machInst, vd * 2, ufp0, inc * 2);
652 } else {
653 microOps[uopIdx++] = new MicroUnpackNeon4to6Uop<uint32_t>(
654 machInst, vd * 2, ufp0, inc * 2, lane);
655 }
656 break;
657 default:
658 // Bad size
659 microOps[uopIdx++] = new Unknown(machInst);
660 break;
661 }
662 break;
663 case 2:
664 assert(regs == 2);
665 assert(loadRegs <= 2);
666 switch (size) {
667 case 0:
668 if (all) {
669 microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint8_t>(
670 machInst, vd * 2, ufp0, inc * 2);
671 } else {
672 microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint8_t>(
673 machInst, vd * 2, ufp0, inc * 2, lane);
674 }
675 break;
676 case 1:
677 if (all) {
678 microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint16_t>(
679 machInst, vd * 2, ufp0, inc * 2);
680 } else {
681 microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint16_t>(
682 machInst, vd * 2, ufp0, inc * 2, lane);
683 }
684 break;
685 case 2:
686 if (all) {
687 microOps[uopIdx++] = new MicroUnpackAllNeon2to4Uop<uint32_t>(
688 machInst, vd * 2, ufp0, inc * 2);
689 } else {
690 microOps[uopIdx++] = new MicroUnpackNeon2to4Uop<uint32_t>(
691 machInst, vd * 2, ufp0, inc * 2, lane);
692 }
693 break;
694 default:
695 // Bad size
696 microOps[uopIdx++] = new Unknown(machInst);
697 break;
698 }
699 break;
700 case 1:
701 assert(regs == 1 || (all && regs == 2));
702 assert(loadRegs <= 2);
703 for (unsigned offset = 0; offset < regs; offset++) {
704 switch (size) {
705 case 0:
706 if (all) {
707 microOps[uopIdx++] =
708 new MicroUnpackAllNeon2to2Uop<uint8_t>(
709 machInst, (vd + offset) * 2, ufp0, inc * 2);
710 } else {
711 microOps[uopIdx++] =
712 new MicroUnpackNeon2to2Uop<uint8_t>(
713 machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
714 }
715 break;
716 case 1:
717 if (all) {
718 microOps[uopIdx++] =
719 new MicroUnpackAllNeon2to2Uop<uint16_t>(
720 machInst, (vd + offset) * 2, ufp0, inc * 2);
721 } else {
722 microOps[uopIdx++] =
723 new MicroUnpackNeon2to2Uop<uint16_t>(
724 machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
725 }
726 break;
727 case 2:
728 if (all) {
729 microOps[uopIdx++] =
730 new MicroUnpackAllNeon2to2Uop<uint32_t>(
731 machInst, (vd + offset) * 2, ufp0, inc * 2);
732 } else {
733 microOps[uopIdx++] =
734 new MicroUnpackNeon2to2Uop<uint32_t>(
735 machInst, (vd + offset) * 2, ufp0, inc * 2, lane);
736 }
737 break;
738 default:
739 // Bad size
740 microOps[uopIdx++] = new Unknown(machInst);
741 break;
742 }
743 }
744 break;
745 default:
746 // Bad number of elements to unpack
747 microOps[uopIdx++] = new Unknown(machInst);
748 }
749 assert(uopIdx == numMicroops);
750
751 for (unsigned i = 0; i < numMicroops - 1; i++) {
752 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
753 assert(uopPtr);
754 uopPtr->setDelayedCommit();
755 }
756 microOps[numMicroops - 1]->setLastMicroop();
757}
758
759VstMultOp::VstMultOp(const char *mnem, ExtMachInst machInst, OpClass __opClass,
760 unsigned elems, RegIndex rn, RegIndex vd, unsigned regs,
761 unsigned inc, uint32_t size, uint32_t align, RegIndex rm) :
762 PredMacroOp(mnem, machInst, __opClass)
763{
764 assert(regs > 0 && regs <= 4);
765 assert(regs % elems == 0);
766
767 numMicroops = (regs > 2) ? 2 : 1;
768 bool wb = (rm != 15);
769 bool interleave = (elems > 1);
770
771 if (wb) numMicroops++;
772 if (interleave) numMicroops += (regs / elems);
773 microOps = new StaticInstPtr[numMicroops];
774
775 uint32_t noAlign = TLB::MustBeOne;
776
777 RegIndex rMid = interleave ? NumFloatV7ArchRegs : vd * 2;
778
779 unsigned uopIdx = 0;
780 if (interleave) {
781 switch (elems) {
782 case 4:
783 assert(regs == 4);
784 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon8Uop>(
785 size, machInst, rMid, vd * 2, inc * 2);
786 break;
787 case 3:
788 assert(regs == 3);
789 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon6Uop>(
790 size, machInst, rMid, vd * 2, inc * 2);
791 break;
792 case 2:
793 assert(regs == 4 || regs == 2);
794 if (regs == 4) {
795 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
796 size, machInst, rMid, vd * 2, inc * 2);
797 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
798 size, machInst, rMid + 4, vd * 2 + 2, inc * 2);
799 } else {
800 microOps[uopIdx++] = newNeonMixInst<MicroInterNeon4Uop>(
801 size, machInst, rMid, vd * 2, inc * 2);
802 }
803 break;
804 default:
805 // Bad number of elements to interleave
806 microOps[uopIdx++] = new Unknown(machInst);
807 }
808 }
809 switch (regs) {
810 case 4:
811 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
812 size, machInst, rMid, rn, 0, align);
813 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
814 size, machInst, rMid + 4, rn, 16, noAlign);
815 break;
816 case 3:
817 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
818 size, machInst, rMid, rn, 0, align);
819 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
820 size, machInst, rMid + 4, rn, 16, noAlign);
821 break;
822 case 2:
823 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon16Uop>(
824 size, machInst, rMid, rn, 0, align);
825 break;
826 case 1:
827 microOps[uopIdx++] = newNeonMemInst<MicroStrNeon8Uop>(
828 size, machInst, rMid, rn, 0, align);
829 break;
830 default:
831 // Unknown number of registers
832 microOps[uopIdx++] = new Unknown(machInst);
833 }
834 if (wb) {
835 if (rm != 15 && rm != 13) {
836 microOps[uopIdx++] =
837 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
838 } else {
839 microOps[uopIdx++] =
840 new MicroAddiUop(machInst, rn, rn, regs * 8);
841 }
842 }
843 assert(uopIdx == numMicroops);
844
845 for (unsigned i = 0; i < numMicroops - 1; i++) {
846 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
847 assert(uopPtr);
848 uopPtr->setDelayedCommit();
849 }
850 microOps[numMicroops - 1]->setLastMicroop();
851}
852
853VstSingleOp::VstSingleOp(const char *mnem, ExtMachInst machInst,
854 OpClass __opClass, bool all, unsigned elems,
855 RegIndex rn, RegIndex vd, unsigned regs,
856 unsigned inc, uint32_t size, uint32_t align,
857 RegIndex rm, unsigned lane) :
858 PredMacroOp(mnem, machInst, __opClass)
859{
860 assert(!all);
861 assert(regs > 0 && regs <= 4);
862 assert(regs % elems == 0);
863
864 unsigned eBytes = (1 << size);
865 unsigned storeSize = eBytes * elems;
866 unsigned storeRegs M5_VAR_USED = (storeSize + sizeof(FloatRegBits) - 1) /
867 sizeof(FloatRegBits);
868
869 assert(storeRegs > 0 && storeRegs <= 4);
870
871 numMicroops = 1;
872 bool wb = (rm != 15);
873
874 if (wb) numMicroops++;
875 numMicroops += (regs / elems);
876 microOps = new StaticInstPtr[numMicroops];
877
878 RegIndex ufp0 = NumFloatV7ArchRegs;
879
880 unsigned uopIdx = 0;
881 switch (elems) {
882 case 4:
883 assert(regs == 4);
884 switch (size) {
885 case 0:
886 microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint8_t>(
887 machInst, ufp0, vd * 2, inc * 2, lane);
888 break;
889 case 1:
890 microOps[uopIdx++] = new MicroPackNeon8to2Uop<uint16_t>(
891 machInst, ufp0, vd * 2, inc * 2, lane);
892 break;
893 case 2:
894 microOps[uopIdx++] = new MicroPackNeon8to4Uop<uint32_t>(
895 machInst, ufp0, vd * 2, inc * 2, lane);
896 break;
897 default:
898 // Bad size
899 microOps[uopIdx++] = new Unknown(machInst);
900 break;
901 }
902 break;
903 case 3:
904 assert(regs == 3);
905 switch (size) {
906 case 0:
907 microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint8_t>(
908 machInst, ufp0, vd * 2, inc * 2, lane);
909 break;
910 case 1:
911 microOps[uopIdx++] = new MicroPackNeon6to2Uop<uint16_t>(
912 machInst, ufp0, vd * 2, inc * 2, lane);
913 break;
914 case 2:
915 microOps[uopIdx++] = new MicroPackNeon6to4Uop<uint32_t>(
916 machInst, ufp0, vd * 2, inc * 2, lane);
917 break;
918 default:
919 // Bad size
920 microOps[uopIdx++] = new Unknown(machInst);
921 break;
922 }
923 break;
924 case 2:
925 assert(regs == 2);
926 assert(storeRegs <= 2);
927 switch (size) {
928 case 0:
929 microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint8_t>(
930 machInst, ufp0, vd * 2, inc * 2, lane);
931 break;
932 case 1:
933 microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint16_t>(
934 machInst, ufp0, vd * 2, inc * 2, lane);
935 break;
936 case 2:
937 microOps[uopIdx++] = new MicroPackNeon4to2Uop<uint32_t>(
938 machInst, ufp0, vd * 2, inc * 2, lane);
939 break;
940 default:
941 // Bad size
942 microOps[uopIdx++] = new Unknown(machInst);
943 break;
944 }
945 break;
946 case 1:
947 assert(regs == 1 || (all && regs == 2));
948 assert(storeRegs <= 2);
949 for (unsigned offset = 0; offset < regs; offset++) {
950 switch (size) {
951 case 0:
952 microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint8_t>(
953 machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
954 break;
955 case 1:
956 microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint16_t>(
957 machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
958 break;
959 case 2:
960 microOps[uopIdx++] = new MicroPackNeon2to2Uop<uint32_t>(
961 machInst, ufp0, (vd + offset) * 2, inc * 2, lane);
962 break;
963 default:
964 // Bad size
965 microOps[uopIdx++] = new Unknown(machInst);
966 break;
967 }
968 }
969 break;
970 default:
971 // Bad number of elements to unpack
972 microOps[uopIdx++] = new Unknown(machInst);
973 }
974 switch (storeSize) {
975 case 1:
976 microOps[uopIdx++] = new MicroStrNeon1Uop<uint8_t>(
977 machInst, ufp0, rn, 0, align);
978 break;
979 case 2:
980 if (eBytes == 2) {
981 microOps[uopIdx++] = new MicroStrNeon2Uop<uint16_t>(
982 machInst, ufp0, rn, 0, align);
983 } else {
984 microOps[uopIdx++] = new MicroStrNeon2Uop<uint8_t>(
985 machInst, ufp0, rn, 0, align);
986 }
987 break;
988 case 3:
989 microOps[uopIdx++] = new MicroStrNeon3Uop<uint8_t>(
990 machInst, ufp0, rn, 0, align);
991 break;
992 case 4:
993 switch (eBytes) {
994 case 1:
995 microOps[uopIdx++] = new MicroStrNeon4Uop<uint8_t>(
996 machInst, ufp0, rn, 0, align);
997 break;
998 case 2:
999 microOps[uopIdx++] = new MicroStrNeon4Uop<uint16_t>(
1000 machInst, ufp0, rn, 0, align);
1001 break;
1002 case 4:
1003 microOps[uopIdx++] = new MicroStrNeon4Uop<uint32_t>(
1004 machInst, ufp0, rn, 0, align);
1005 break;
1006 }
1007 break;
1008 case 6:
1009 microOps[uopIdx++] = new MicroStrNeon6Uop<uint16_t>(
1010 machInst, ufp0, rn, 0, align);
1011 break;
1012 case 8:
1013 switch (eBytes) {
1014 case 2:
1015 microOps[uopIdx++] = new MicroStrNeon8Uop<uint16_t>(
1016 machInst, ufp0, rn, 0, align);
1017 break;
1018 case 4:
1019 microOps[uopIdx++] = new MicroStrNeon8Uop<uint32_t>(
1020 machInst, ufp0, rn, 0, align);
1021 break;
1022 }
1023 break;
1024 case 12:
1025 microOps[uopIdx++] = new MicroStrNeon12Uop<uint32_t>(
1026 machInst, ufp0, rn, 0, align);
1027 break;
1028 case 16:
1029 microOps[uopIdx++] = new MicroStrNeon16Uop<uint32_t>(
1030 machInst, ufp0, rn, 0, align);
1031 break;
1032 default:
1033 // Bad store size
1034 microOps[uopIdx++] = new Unknown(machInst);
1035 }
1036 if (wb) {
1037 if (rm != 15 && rm != 13) {
1038 microOps[uopIdx++] =
1039 new MicroAddUop(machInst, rn, rn, rm, 0, ArmISA::LSL);
1040 } else {
1041 microOps[uopIdx++] =
1042 new MicroAddiUop(machInst, rn, rn, storeSize);
1043 }
1044 }
1045 assert(uopIdx == numMicroops);
1046
1047 for (unsigned i = 0; i < numMicroops - 1; i++) {
1048 MicroOp * uopPtr = dynamic_cast<MicroOp *>(microOps[i].get());
1049 assert(uopPtr);
1050 uopPtr->setDelayedCommit();
1051 }
1052 microOps[numMicroops - 1]->setLastMicroop();
1053}
1054
1055VldMultOp64::VldMultOp64(const char *mnem, ExtMachInst machInst,
1056 OpClass __opClass, RegIndex rn, RegIndex vd,
1057 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1058 uint8_t numStructElems, uint8_t numRegs, bool wb) :
1059 PredMacroOp(mnem, machInst, __opClass)
1060{
1061 RegIndex vx = NumFloatV8ArchRegs / 4;
1062 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1063 bool baseIsSP = isSP((IntRegIndex) rnsp);
1064
1065 numMicroops = wb ? 1 : 0;
1066
1067 int totNumBytes = numRegs * dataSize / 8;
1068 assert(totNumBytes <= 64);
1069
1070 // The guiding principle here is that no more than 16 bytes can be
1071 // transferred at a time
1072 int numMemMicroops = totNumBytes / 16;
1073 int residuum = totNumBytes % 16;
1074 if (residuum)
1075 ++numMemMicroops;
1076 numMicroops += numMemMicroops;
1077
1078 int numMarshalMicroops = numRegs / 2 + (numRegs % 2 ? 1 : 0);
1079 numMicroops += numMarshalMicroops;
1080
1081 microOps = new StaticInstPtr[numMicroops];
1082 unsigned uopIdx = 0;
1083 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1084 TLB::AllowUnaligned;
1085
1086 int i = 0;
1087 for(; i < numMemMicroops - 1; ++i) {
1088 microOps[uopIdx++] = new MicroNeonLoad64(
1089 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1090 baseIsSP, 16 /* accSize */, eSize);
1091 }
1092 microOps[uopIdx++] = new MicroNeonLoad64(
1093 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1094 residuum ? residuum : 16 /* accSize */, eSize);
1095
1096 // Writeback microop: the post-increment amount is encoded in "Rm": a
1097 // 64-bit general register OR as '11111' for an immediate value equal to
1098 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1099 if (wb) {
1100 if (rm != ((RegIndex) INTREG_X31)) {
1101 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1102 UXTX, 0);
1103 } else {
1104 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1105 totNumBytes);
1106 }
1107 }
1108
1109 for (int i = 0; i < numMarshalMicroops; ++i) {
1110 microOps[uopIdx++] = new MicroDeintNeon64(
1111 machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
1112 numStructElems, numRegs, i /* step */);
1113 }
1114
1115 assert(uopIdx == numMicroops);
1116
1117 for (int i = 0; i < numMicroops - 1; ++i) {
1118 microOps[i]->setDelayedCommit();
1119 }
1120 microOps[numMicroops - 1]->setLastMicroop();
1121}
1122
1123VstMultOp64::VstMultOp64(const char *mnem, ExtMachInst machInst,
1124 OpClass __opClass, RegIndex rn, RegIndex vd,
1125 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1126 uint8_t numStructElems, uint8_t numRegs, bool wb) :
1127 PredMacroOp(mnem, machInst, __opClass)
1128{
1129 RegIndex vx = NumFloatV8ArchRegs / 4;
1130 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1131 bool baseIsSP = isSP((IntRegIndex) rnsp);
1132
1133 numMicroops = wb ? 1 : 0;
1134
1135 int totNumBytes = numRegs * dataSize / 8;
1136 assert(totNumBytes <= 64);
1137
1138 // The guiding principle here is that no more than 16 bytes can be
1139 // transferred at a time
1140 int numMemMicroops = totNumBytes / 16;
1141 int residuum = totNumBytes % 16;
1142 if (residuum)
1143 ++numMemMicroops;
1144 numMicroops += numMemMicroops;
1145
1146 int numMarshalMicroops = totNumBytes > 32 ? 2 : 1;
1147 numMicroops += numMarshalMicroops;
1148
1149 microOps = new StaticInstPtr[numMicroops];
1150 unsigned uopIdx = 0;
1151
1152 for(int i = 0; i < numMarshalMicroops; ++i) {
1153 microOps[uopIdx++] = new MicroIntNeon64(
1154 machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
1155 numStructElems, numRegs, i /* step */);
1156 }
1157
1158 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1159 TLB::AllowUnaligned;
1160
1161 int i = 0;
1162 for(; i < numMemMicroops - 1; ++i) {
1163 microOps[uopIdx++] = new MicroNeonStore64(
1164 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1165 baseIsSP, 16 /* accSize */, eSize);
1166 }
1167 microOps[uopIdx++] = new MicroNeonStore64(
1168 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1169 residuum ? residuum : 16 /* accSize */, eSize);
1170
1171 // Writeback microop: the post-increment amount is encoded in "Rm": a
1172 // 64-bit general register OR as '11111' for an immediate value equal to
1173 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1174 if (wb) {
1175 if (rm != ((RegIndex) INTREG_X31)) {
1176 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1177 UXTX, 0);
1178 } else {
1179 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1180 totNumBytes);
1181 }
1182 }
1183
1184 assert(uopIdx == numMicroops);
1185
1186 for (int i = 0; i < numMicroops - 1; i++) {
1187 microOps[i]->setDelayedCommit();
1188 }
1189 microOps[numMicroops - 1]->setLastMicroop();
1190}
1191
1192VldSingleOp64::VldSingleOp64(const char *mnem, ExtMachInst machInst,
1193 OpClass __opClass, RegIndex rn, RegIndex vd,
1194 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1195 uint8_t numStructElems, uint8_t index, bool wb,
1196 bool replicate) :
1197 PredMacroOp(mnem, machInst, __opClass)
1198{
1199 RegIndex vx = NumFloatV8ArchRegs / 4;
1200 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1201 bool baseIsSP = isSP((IntRegIndex) rnsp);
1202
1203 numMicroops = wb ? 1 : 0;
1204
1205 int eSizeBytes = 1 << eSize;
1206 int totNumBytes = numStructElems * eSizeBytes;
1207 assert(totNumBytes <= 64);
1208
1209 // The guiding principle here is that no more than 16 bytes can be
1210 // transferred at a time
1211 int numMemMicroops = totNumBytes / 16;
1212 int residuum = totNumBytes % 16;
1213 if (residuum)
1214 ++numMemMicroops;
1215 numMicroops += numMemMicroops;
1216
1217 int numMarshalMicroops = numStructElems / 2 + (numStructElems % 2 ? 1 : 0);
1218 numMicroops += numMarshalMicroops;
1219
1220 microOps = new StaticInstPtr[numMicroops];
1221 unsigned uopIdx = 0;
1222
1223 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1224 TLB::AllowUnaligned;
1225
1226 int i = 0;
1227 for (; i < numMemMicroops - 1; ++i) {
1228 microOps[uopIdx++] = new MicroNeonLoad64(
1229 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1230 baseIsSP, 16 /* accSize */, eSize);
1231 }
1232 microOps[uopIdx++] = new MicroNeonLoad64(
1233 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1234 residuum ? residuum : 16 /* accSize */, eSize);
1235
1236 // Writeback microop: the post-increment amount is encoded in "Rm": a
1237 // 64-bit general register OR as '11111' for an immediate value equal to
1238 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1239 if (wb) {
1240 if (rm != ((RegIndex) INTREG_X31)) {
1241 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1242 UXTX, 0);
1243 } else {
1244 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1245 totNumBytes);
1246 }
1247 }
1248
1249 for(int i = 0; i < numMarshalMicroops; ++i) {
1250 microOps[uopIdx++] = new MicroUnpackNeon64(
1251 machInst, vd + (RegIndex) (2 * i), vx, eSize, dataSize,
1252 numStructElems, index, i /* step */, replicate);
1253 }
1254
1255 assert(uopIdx == numMicroops);
1256
1257 for (int i = 0; i < numMicroops - 1; i++) {
1258 microOps[i]->setDelayedCommit();
1259 }
1260 microOps[numMicroops - 1]->setLastMicroop();
1261}
1262
1263VstSingleOp64::VstSingleOp64(const char *mnem, ExtMachInst machInst,
1264 OpClass __opClass, RegIndex rn, RegIndex vd,
1265 RegIndex rm, uint8_t eSize, uint8_t dataSize,
1266 uint8_t numStructElems, uint8_t index, bool wb,
1267 bool replicate) :
1268 PredMacroOp(mnem, machInst, __opClass)
1269{
1270 RegIndex vx = NumFloatV8ArchRegs / 4;
1271 RegIndex rnsp = (RegIndex) makeSP((IntRegIndex) rn);
1272 bool baseIsSP = isSP((IntRegIndex) rnsp);
1273
1274 numMicroops = wb ? 1 : 0;
1275
1276 int eSizeBytes = 1 << eSize;
1277 int totNumBytes = numStructElems * eSizeBytes;
1278 assert(totNumBytes <= 64);
1279
1280 // The guiding principle here is that no more than 16 bytes can be
1281 // transferred at a time
1282 int numMemMicroops = totNumBytes / 16;
1283 int residuum = totNumBytes % 16;
1284 if (residuum)
1285 ++numMemMicroops;
1286 numMicroops += numMemMicroops;
1287
1288 int numMarshalMicroops = totNumBytes > 32 ? 2 : 1;
1289 numMicroops += numMarshalMicroops;
1290
1291 microOps = new StaticInstPtr[numMicroops];
1292 unsigned uopIdx = 0;
1293
1294 for(int i = 0; i < numMarshalMicroops; ++i) {
1295 microOps[uopIdx++] = new MicroPackNeon64(
1296 machInst, vx + (RegIndex) (2 * i), vd, eSize, dataSize,
1297 numStructElems, index, i /* step */, replicate);
1298 }
1299
1300 uint32_t memaccessFlags = TLB::MustBeOne | (TLB::ArmFlags) eSize |
1301 TLB::AllowUnaligned;
1302
1303 int i = 0;
1304 for(; i < numMemMicroops - 1; ++i) {
1305 microOps[uopIdx++] = new MicroNeonStore64(
1306 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags,
1307 baseIsSP, 16 /* accsize */, eSize);
1308 }
1309 microOps[uopIdx++] = new MicroNeonStore64(
1310 machInst, vx + (RegIndex) i, rnsp, 16 * i, memaccessFlags, baseIsSP,
1311 residuum ? residuum : 16 /* accSize */, eSize);
1312
1313 // Writeback microop: the post-increment amount is encoded in "Rm": a
1314 // 64-bit general register OR as '11111' for an immediate value equal to
1315 // the total number of bytes transferred (i.e. 8, 16, 24, 32, 48 or 64)
1316 if (wb) {
1317 if (rm != ((RegIndex) INTREG_X31)) {
1318 microOps[uopIdx++] = new MicroAddXERegUop(machInst, rnsp, rnsp, rm,
1319 UXTX, 0);
1320 } else {
1321 microOps[uopIdx++] = new MicroAddXiUop(machInst, rnsp, rnsp,
1322 totNumBytes);
1323 }
1324 }
1325
1326 assert(uopIdx == numMicroops);
1327
1328 for (int i = 0; i < numMicroops - 1; i++) {
1329 microOps[i]->setDelayedCommit();
1330 }
1331 microOps[numMicroops - 1]->setLastMicroop();
1332}
1333
1334MacroVFPMemOp::MacroVFPMemOp(const char *mnem, ExtMachInst machInst,
1335 OpClass __opClass, IntRegIndex rn,
1336 RegIndex vd, bool single, bool up,
1337 bool writeback, bool load, uint32_t offset) :
1338 PredMacroOp(mnem, machInst, __opClass)
1339{
1340 int i = 0;
1341
1342 // The lowest order bit selects fldmx (set) or fldmd (clear). These seem
1343 // to be functionally identical except that fldmx is deprecated. For now
1344 // we'll assume they're otherwise interchangable.
1345 int count = (single ? offset : (offset / 2));
1346 if (count == 0 || count > NumFloatV7ArchRegs)
1347 warn_once("Bad offset field for VFP load/store multiple.\n");
1348 if (count == 0) {
1349 // Force there to be at least one microop so the macroop makes sense.
1350 writeback = true;
1351 }
1352 if (count > NumFloatV7ArchRegs)
1353 count = NumFloatV7ArchRegs;
1354
1355 numMicroops = count * (single ? 1 : 2) + (writeback ? 1 : 0);
1356 microOps = new StaticInstPtr[numMicroops];
1357
1358 int64_t addr = 0;
1359
1360 if (!up)
1361 addr = 4 * offset;
1362
1363 bool tempUp = up;
1364 for (int j = 0; j < count; j++) {
1365 if (load) {
1366 if (single) {
1367 microOps[i++] = new MicroLdrFpUop(machInst, vd++, rn,
1368 tempUp, addr);
1369 } else {
1370 microOps[i++] = new MicroLdrDBFpUop(machInst, vd++, rn,
1371 tempUp, addr);
1372 microOps[i++] = new MicroLdrDTFpUop(machInst, vd++, rn, tempUp,
1373 addr + (up ? 4 : -4));
1374 }
1375 } else {
1376 if (single) {
1377 microOps[i++] = new MicroStrFpUop(machInst, vd++, rn,
1378 tempUp, addr);
1379 } else {
1380 microOps[i++] = new MicroStrDBFpUop(machInst, vd++, rn,
1381 tempUp, addr);
1382 microOps[i++] = new MicroStrDTFpUop(machInst, vd++, rn, tempUp,
1383 addr + (up ? 4 : -4));
1384 }
1385 }
1386 if (!tempUp) {
1387 addr -= (single ? 4 : 8);
1388 // The microops don't handle negative displacement, so turn if we
1389 // hit zero, flip polarity and start adding.
1390 if (addr <= 0) {
1391 tempUp = true;
1392 addr = -addr;
1393 }
1394 } else {
1395 addr += (single ? 4 : 8);
1396 }
1397 }
1398
1399 if (writeback) {
1400 if (up) {
1401 microOps[i++] =
1402 new MicroAddiUop(machInst, rn, rn, 4 * offset);
1403 } else {
1404 microOps[i++] =
1405 new MicroSubiUop(machInst, rn, rn, 4 * offset);
1406 }
1407 }
1408
1409 assert(numMicroops == i);
1410 microOps[numMicroops - 1]->setLastMicroop();
1411
1412 for (StaticInstPtr *curUop = microOps;
1413 !(*curUop)->isLastMicroop(); curUop++) {
1414 MicroOp * uopPtr = dynamic_cast<MicroOp *>(curUop->get());
1415 assert(uopPtr);
1416 uopPtr->setDelayedCommit();
1417 }
1418}
1419
1420std::string
1421MicroIntImmOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1422{
1423 std::stringstream ss;
1424 printMnemonic(ss);
1425 printReg(ss, ura);
1426 ss << ", ";
1427 printReg(ss, urb);
1428 ss << ", ";
1429 ccprintf(ss, "#%d", imm);
1430 return ss.str();
1431}
1432
1433std::string
1434MicroIntImmXOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1435{
1436 std::stringstream ss;
1437 printMnemonic(ss);
1438 printReg(ss, ura);
1439 ss << ", ";
1440 printReg(ss, urb);
1441 ss << ", ";
1442 ccprintf(ss, "#%d", imm);
1443 return ss.str();
1444}
1445
1446std::string
1447MicroSetPCCPSR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1448{
1449 std::stringstream ss;
1450 printMnemonic(ss);
1451 ss << "[PC,CPSR]";
1452 return ss.str();
1453}
1454
1455std::string
1456MicroIntRegXOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1457{
1458 std::stringstream ss;
1459 printMnemonic(ss);
1460 printReg(ss, ura);
1461 ccprintf(ss, ", ");
1462 printReg(ss, urb);
1463 printExtendOperand(false, ss, (IntRegIndex)urc, type, shiftAmt);
1464 return ss.str();
1465}
1466
1467std::string
1468MicroIntMov::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1469{
1470 std::stringstream ss;
1471 printMnemonic(ss);
1472 printReg(ss, ura);
1473 ss << ", ";
1474 printReg(ss, urb);
1475 return ss.str();
1476}
1477
1478std::string
1479MicroIntOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1480{
1481 std::stringstream ss;
1482 printMnemonic(ss);
1483 printReg(ss, ura);
1484 ss << ", ";
1485 printReg(ss, urb);
1486 ss << ", ";
1487 printReg(ss, urc);
1488 return ss.str();
1489}
1490
1491std::string
1492MicroMemOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
1493{
1494 std::stringstream ss;
1495 printMnemonic(ss);
1496 if (isFloating())
1497 printReg(ss, ura + FP_Reg_Base);
1498 else
1499 printReg(ss, ura);
1500 ss << ", [";
1501 printReg(ss, urb);
1502 ss << ", ";
1503 ccprintf(ss, "#%d", imm);
1504 ss << "]";
1505 return ss.str();
1506}
1507
1508}