1/*
2 * Copyright (c) 2010, 2012-2014, 2016-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * Copyright (c) 2007-2008 The Florida State University
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ali Saidi
42 * Gabe Black
43 * Giacomo Gabrielli
44 * Thomas Grocutt
45 */
46
47#include "arch/arm/faults.hh"
48
49#include "arch/arm/insts/static_inst.hh"
50#include "arch/arm/system.hh"
51#include "arch/arm/utility.hh"
52#include "base/compiler.hh"
53#include "base/trace.hh"
54#include "cpu/base.hh"
55#include "cpu/thread_context.hh"
56#include "debug/Faults.hh"
57#include "sim/full_system.hh"
58
59namespace ArmISA
60{
61
62uint8_t ArmFault::shortDescFaultSources[] = {
63 0x01, // AlignmentFault
64 0x04, // InstructionCacheMaintenance
65 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID)
66 0x0c, // SynchExtAbtOnTranslTableWalkL1
67 0x0e, // SynchExtAbtOnTranslTableWalkL2
68 0xff, // SynchExtAbtOnTranslTableWalkL3 (INVALID)
69 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID)
70 0x1c, // SynchPtyErrOnTranslTableWalkL1
71 0x1e, // SynchPtyErrOnTranslTableWalkL2
72 0xff, // SynchPtyErrOnTranslTableWalkL3 (INVALID)
73 0xff, // TranslationL0 (INVALID)
74 0x05, // TranslationL1
75 0x07, // TranslationL2
76 0xff, // TranslationL3 (INVALID)
77 0xff, // AccessFlagL0 (INVALID)
78 0x03, // AccessFlagL1
79 0x06, // AccessFlagL2
80 0xff, // AccessFlagL3 (INVALID)
81 0xff, // DomainL0 (INVALID)
82 0x09, // DomainL1
83 0x0b, // DomainL2
84 0xff, // DomainL3 (INVALID)
85 0xff, // PermissionL0 (INVALID)
86 0x0d, // PermissionL1
87 0x0f, // PermissionL2
88 0xff, // PermissionL3 (INVALID)
89 0x02, // DebugEvent
90 0x08, // SynchronousExternalAbort
91 0x10, // TLBConflictAbort
92 0x19, // SynchPtyErrOnMemoryAccess
93 0x16, // AsynchronousExternalAbort
94 0x18, // AsynchPtyErrOnMemoryAccess
95 0xff, // AddressSizeL0 (INVALID)
96 0xff, // AddressSizeL1 (INVALID)
97 0xff, // AddressSizeL2 (INVALID)
98 0xff, // AddressSizeL3 (INVALID)
99 0x40, // PrefetchTLBMiss
100 0x80 // PrefetchUncacheable
101};
102
103static_assert(sizeof(ArmFault::shortDescFaultSources) ==
104 ArmFault::NumFaultSources,
105 "Invalid size of ArmFault::shortDescFaultSources[]");
106
107uint8_t ArmFault::longDescFaultSources[] = {
108 0x21, // AlignmentFault
109 0xff, // InstructionCacheMaintenance (INVALID)
110 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID)
111 0x15, // SynchExtAbtOnTranslTableWalkL1
112 0x16, // SynchExtAbtOnTranslTableWalkL2
113 0x17, // SynchExtAbtOnTranslTableWalkL3
114 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID)
115 0x1d, // SynchPtyErrOnTranslTableWalkL1
116 0x1e, // SynchPtyErrOnTranslTableWalkL2
117 0x1f, // SynchPtyErrOnTranslTableWalkL3
118 0xff, // TranslationL0 (INVALID)
119 0x05, // TranslationL1
120 0x06, // TranslationL2
121 0x07, // TranslationL3
122 0xff, // AccessFlagL0 (INVALID)
123 0x09, // AccessFlagL1
124 0x0a, // AccessFlagL2
125 0x0b, // AccessFlagL3
126 0xff, // DomainL0 (INVALID)
127 0x3d, // DomainL1
128 0x3e, // DomainL2
129 0xff, // DomainL3 (RESERVED)
130 0xff, // PermissionL0 (INVALID)
131 0x0d, // PermissionL1
132 0x0e, // PermissionL2
133 0x0f, // PermissionL3
134 0x22, // DebugEvent
135 0x10, // SynchronousExternalAbort
136 0x30, // TLBConflictAbort
137 0x18, // SynchPtyErrOnMemoryAccess
138 0x11, // AsynchronousExternalAbort
139 0x19, // AsynchPtyErrOnMemoryAccess
140 0xff, // AddressSizeL0 (INVALID)
141 0xff, // AddressSizeL1 (INVALID)
142 0xff, // AddressSizeL2 (INVALID)
143 0xff, // AddressSizeL3 (INVALID)
144 0x40, // PrefetchTLBMiss
145 0x80 // PrefetchUncacheable
146};
147
148static_assert(sizeof(ArmFault::longDescFaultSources) ==
149 ArmFault::NumFaultSources,
150 "Invalid size of ArmFault::longDescFaultSources[]");
151
152uint8_t ArmFault::aarch64FaultSources[] = {
153 0x21, // AlignmentFault
154 0xff, // InstructionCacheMaintenance (INVALID)
155 0x14, // SynchExtAbtOnTranslTableWalkL0
156 0x15, // SynchExtAbtOnTranslTableWalkL1
157 0x16, // SynchExtAbtOnTranslTableWalkL2
158 0x17, // SynchExtAbtOnTranslTableWalkL3
159 0x1c, // SynchPtyErrOnTranslTableWalkL0
160 0x1d, // SynchPtyErrOnTranslTableWalkL1
161 0x1e, // SynchPtyErrOnTranslTableWalkL2
162 0x1f, // SynchPtyErrOnTranslTableWalkL3
163 0x04, // TranslationL0
164 0x05, // TranslationL1
165 0x06, // TranslationL2
166 0x07, // TranslationL3
167 0x08, // AccessFlagL0
168 0x09, // AccessFlagL1
169 0x0a, // AccessFlagL2
170 0x0b, // AccessFlagL3
171 // @todo: Section & Page Domain Fault in AArch64?
172 0xff, // DomainL0 (INVALID)
173 0xff, // DomainL1 (INVALID)
174 0xff, // DomainL2 (INVALID)
175 0xff, // DomainL3 (INVALID)
176 0x0c, // PermissionL0
177 0x0d, // PermissionL1
178 0x0e, // PermissionL2
179 0x0f, // PermissionL3
180 0xff, // DebugEvent (INVALID)
181 0x10, // SynchronousExternalAbort
182 0x30, // TLBConflictAbort
183 0x18, // SynchPtyErrOnMemoryAccess
184 0xff, // AsynchronousExternalAbort (INVALID)
185 0xff, // AsynchPtyErrOnMemoryAccess (INVALID)
186 0x00, // AddressSizeL0
187 0x01, // AddressSizeL1
188 0x02, // AddressSizeL2
189 0x03, // AddressSizeL3
190 0x40, // PrefetchTLBMiss
191 0x80 // PrefetchUncacheable
192};
193
194static_assert(sizeof(ArmFault::aarch64FaultSources) ==
195 ArmFault::NumFaultSources,
196 "Invalid size of ArmFault::aarch64FaultSources[]");
197
198// Fields: name, offset, cur{ELT,ELH}Offset, lowerEL{64,32}Offset, next mode,
199// {ARM, Thumb, ARM_ELR, Thumb_ELR} PC offset, hyp trap,
200// {A, F} disable, class, stat
201template<> ArmFault::FaultVals ArmFaultVals<Reset>::vals = {
202 // Some dummy values (the reset vector has an IMPLEMENTATION DEFINED
203 // location in AArch64)
204 "Reset", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
205 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat()
206};
207template<> ArmFault::FaultVals ArmFaultVals<UndefinedInstruction>::vals = {
208 "Undefined Instruction", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_UNDEFINED,
209 4, 2, 0, 0, true, false, false, EC_UNKNOWN, FaultStat()
210};
211template<> ArmFault::FaultVals ArmFaultVals<SupervisorCall>::vals = {
212 "Supervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
213 4, 2, 4, 2, true, false, false, EC_SVC_TO_HYP, FaultStat()
214};
215template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorCall>::vals = {
216 "Secure Monitor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_MON,
217 4, 4, 4, 4, false, true, true, EC_SMC_TO_HYP, FaultStat()
218};
219template<> ArmFault::FaultVals ArmFaultVals<HypervisorCall>::vals = {
220 "Hypervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_HYP,
221 4, 4, 4, 4, true, false, false, EC_HVC, FaultStat()
222};
223template<> ArmFault::FaultVals ArmFaultVals<PrefetchAbort>::vals = {
224 "Prefetch Abort", 0x00C, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
225 4, 4, 0, 0, true, true, false, EC_PREFETCH_ABORT_TO_HYP, FaultStat()
226};
227template<> ArmFault::FaultVals ArmFaultVals<DataAbort>::vals = {
228 "Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
229 8, 8, 0, 0, true, true, false, EC_DATA_ABORT_TO_HYP, FaultStat()
230};
231template<> ArmFault::FaultVals ArmFaultVals<VirtualDataAbort>::vals = {
232 "Virtual Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
233 8, 8, 0, 0, true, true, false, EC_INVALID, FaultStat()
234};
235template<> ArmFault::FaultVals ArmFaultVals<HypervisorTrap>::vals = {
236 // @todo: double check these values
237 "Hypervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_HYP,
238 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat()
239};
240template<> ArmFault::FaultVals ArmFaultVals<Interrupt>::vals = {
241 "IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ,
242 4, 4, 0, 0, false, true, false, EC_UNKNOWN, FaultStat()
243};
244template<> ArmFault::FaultVals ArmFaultVals<VirtualInterrupt>::vals = {
245 "Virtual IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ,
246 4, 4, 0, 0, false, true, false, EC_INVALID, FaultStat()
247};
248template<> ArmFault::FaultVals ArmFaultVals<FastInterrupt>::vals = {
249 "FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ,
250 4, 4, 0, 0, false, true, true, EC_UNKNOWN, FaultStat()
251};
252template<> ArmFault::FaultVals ArmFaultVals<VirtualFastInterrupt>::vals = {
253 "Virtual FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ,
254 4, 4, 0, 0, false, true, true, EC_INVALID, FaultStat()
255};
256template<> ArmFault::FaultVals ArmFaultVals<SupervisorTrap>::vals = {
257 // Some dummy values (SupervisorTrap is AArch64-only)
258 "Supervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
259 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat()
260};
261template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorTrap>::vals = {
262 // Some dummy values (SecureMonitorTrap is AArch64-only)
263 "Secure Monitor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_MON,
264 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat()
265};
266template<> ArmFault::FaultVals ArmFaultVals<PCAlignmentFault>::vals = {
267 // Some dummy values (PCAlignmentFault is AArch64-only)
268 "PC Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
269 0, 0, 0, 0, true, false, false, EC_PC_ALIGNMENT, FaultStat()
270};
271template<> ArmFault::FaultVals ArmFaultVals<SPAlignmentFault>::vals = {
272 // Some dummy values (SPAlignmentFault is AArch64-only)
273 "SP Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
274 0, 0, 0, 0, true, false, false, EC_STACK_PTR_ALIGNMENT, FaultStat()
275};
276template<> ArmFault::FaultVals ArmFaultVals<SystemError>::vals = {
277 // Some dummy values (SError is AArch64-only)
278 "SError", 0x000, 0x180, 0x380, 0x580, 0x780, MODE_SVC,
279 0, 0, 0, 0, false, true, true, EC_SERROR, FaultStat()
280};
281template<> ArmFault::FaultVals ArmFaultVals<SoftwareBreakpoint>::vals = {
282 // Some dummy values (SoftwareBreakpoint is AArch64-only)
283 "Software Breakpoint", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
284 0, 0, 0, 0, true, false, false, EC_SOFTWARE_BREAKPOINT, FaultStat()
285};
286template<> ArmFault::FaultVals ArmFaultVals<ArmSev>::vals = {
287 // Some dummy values
288 "ArmSev Flush", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
289 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat()
290};
291template<> ArmFault::FaultVals ArmFaultVals<IllegalInstSetStateFault>::vals = {
292 // Some dummy values (SPAlignmentFault is AArch64-only)
293 "Illegal Inst Set State Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
294 0, 0, 0, 0, true, false, false, EC_ILLEGAL_INST, FaultStat()
295};
296
297Addr
298ArmFault::getVector(ThreadContext *tc)
299{
300 Addr base;
301
302 // ARM ARM issue C B1.8.1
303 bool haveSecurity = ArmSystem::haveSecurity(tc);
304
305 // panic if SCTLR.VE because I have no idea what to do with vectored
306 // interrupts
307 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR);
308 assert(!sctlr.ve);
309 // Check for invalid modes
310 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
311 assert(haveSecurity || cpsr.mode != MODE_MON);
312 assert(ArmSystem::haveVirtualization(tc) || cpsr.mode != MODE_HYP);
313
314 switch (cpsr.mode)
315 {
316 case MODE_MON:
317 base = tc->readMiscReg(MISCREG_MVBAR);
318 break;
319 case MODE_HYP:
320 base = tc->readMiscReg(MISCREG_HVBAR);
321 break;
322 default:
323 if (sctlr.v) {
324 base = HighVecs;
325 } else {
326 base = haveSecurity ? tc->readMiscReg(MISCREG_VBAR) : 0;
327 }
328 break;
329 }
330 return base + offset(tc);
331}
332
333Addr
334ArmFault::getVector64(ThreadContext *tc)
335{
336 Addr vbar;
337 switch (toEL) {
338 case EL3:
339 assert(ArmSystem::haveSecurity(tc));
340 vbar = tc->readMiscReg(MISCREG_VBAR_EL3);
341 break;
342 case EL2:
343 assert(ArmSystem::haveVirtualization(tc));
344 vbar = tc->readMiscReg(MISCREG_VBAR_EL2);
345 break;
346 case EL1:
347 vbar = tc->readMiscReg(MISCREG_VBAR_EL1);
348 break;
349 default:
350 panic("Invalid target exception level");
351 break;
352 }
353 return vbar + offset64();
354}
355
356MiscRegIndex
357ArmFault::getSyndromeReg64() const
358{
359 switch (toEL) {
360 case EL1:
361 return MISCREG_ESR_EL1;
362 case EL2:
363 return MISCREG_ESR_EL2;
364 case EL3:
365 return MISCREG_ESR_EL3;
366 default:
367 panic("Invalid exception level");
368 break;
369 }
370}
371
372MiscRegIndex
373ArmFault::getFaultAddrReg64() const
374{
375 switch (toEL) {
376 case EL1:
377 return MISCREG_FAR_EL1;
378 case EL2:
379 return MISCREG_FAR_EL2;
380 case EL3:
381 return MISCREG_FAR_EL3;
382 default:
383 panic("Invalid exception level");
384 break;
385 }
386}
387
388void
389ArmFault::setSyndrome(ThreadContext *tc, MiscRegIndex syndrome_reg)
390{
391 uint32_t value;
392 uint32_t exc_class = (uint32_t) ec(tc);
393 uint32_t issVal = iss();
394 assert(!from64 || ArmSystem::highestELIs64(tc));
395
396 value = exc_class << 26;
397
398 // HSR.IL not valid for Prefetch Aborts (0x20, 0x21) and Data Aborts (0x24,
399 // 0x25) for which the ISS information is not valid (ARMv7).
400 // @todo: ARMv8 revises AArch32 functionality: when HSR.IL is not
401 // valid it is treated as RES1.
402 if (to64) {
403 value |= 1 << 25;
404 } else if ((bits(exc_class, 5, 3) != 4) ||
405 (bits(exc_class, 2) && bits(issVal, 24))) {
406 if (!machInst.thumb || machInst.bigThumb)
407 value |= 1 << 25;
408 }
409 // Condition code valid for EC[5:4] nonzero
410 if (!from64 && ((bits(exc_class, 5, 4) == 0) &&
411 (bits(exc_class, 3, 0) != 0))) {
412 if (!machInst.thumb) {
413 uint32_t cond;
414 ConditionCode condCode = (ConditionCode) (uint32_t) machInst.condCode;
415 // If its on unconditional instruction report with a cond code of
416 // 0xE, ie the unconditional code
417 cond = (condCode == COND_UC) ? COND_AL : condCode;
418 value |= cond << 20;
419 value |= 1 << 24;
420 }
421 value |= bits(issVal, 19, 0);
422 } else {
423 value |= issVal;
424 }
425 tc->setMiscReg(syndrome_reg, value);
426}
427
428void
429ArmFault::invoke(ThreadContext *tc, const StaticInstPtr &inst)
430{
431 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
432
433 if (ArmSystem::highestELIs64(tc)) { // ARMv8
434 // Determine source exception level and mode
435 fromMode = (OperatingMode) (uint8_t) cpsr.mode;
436 fromEL = opModeToEL(fromMode);
437 if (opModeIs64(fromMode))
438 from64 = true;
439
440 // Determine target exception level
441 if (ArmSystem::haveSecurity(tc) && routeToMonitor(tc))
442 toEL = EL3;
443 else if (ArmSystem::haveVirtualization(tc) && routeToHyp(tc))
444 toEL = EL2;
445 else
446 toEL = opModeToEL(nextMode());
447 if (fromEL > toEL)
448 toEL = fromEL;
449
450 if (toEL == ArmSystem::highestEL(tc) || ELIs64(tc, toEL)) {
451 // Invoke exception handler in AArch64 state
452 to64 = true;
453 invoke64(tc, inst);
454 return;
455 }
456 }
457
458 // ARMv7 (ARM ARM issue C B1.9)
459
460 bool have_security = ArmSystem::haveSecurity(tc);
461 bool have_virtualization = ArmSystem::haveVirtualization(tc);
462
463 FaultBase::invoke(tc);
464 if (!FullSystem)
465 return;
466 countStat()++;
467
468 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR);
469 SCR scr = tc->readMiscReg(MISCREG_SCR);
470 CPSR saved_cpsr = tc->readMiscReg(MISCREG_CPSR);
471 saved_cpsr.nz = tc->readCCReg(CCREG_NZ);
472 saved_cpsr.c = tc->readCCReg(CCREG_C);
473 saved_cpsr.v = tc->readCCReg(CCREG_V);
474 saved_cpsr.ge = tc->readCCReg(CCREG_GE);
475
476 Addr curPc M5_VAR_USED = tc->pcState().pc();
477 ITSTATE it = tc->pcState().itstate();
478 saved_cpsr.it2 = it.top6;
479 saved_cpsr.it1 = it.bottom2;
480
481 // if we have a valid instruction then use it to annotate this fault with
482 // extra information. This is used to generate the correct fault syndrome
483 // information
484 if (inst) {
485 ArmStaticInst *armInst = reinterpret_cast<ArmStaticInst *>(inst.get());
486 armInst->annotateFault(this);
487 }
488
489 if (have_security && routeToMonitor(tc))
490 cpsr.mode = MODE_MON;
491 else if (have_virtualization && routeToHyp(tc))
492 cpsr.mode = MODE_HYP;
493 else
494 cpsr.mode = nextMode();
495
496 // Ensure Secure state if initially in Monitor mode
497 if (have_security && saved_cpsr.mode == MODE_MON) {
498 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
499 if (scr.ns) {
500 scr.ns = 0;
501 tc->setMiscRegNoEffect(MISCREG_SCR, scr);
502 }
503 }
504
505 // some bits are set differently if we have been routed to hyp mode
506 if (cpsr.mode == MODE_HYP) {
507 SCTLR hsctlr = tc->readMiscReg(MISCREG_HSCTLR);
508 cpsr.t = hsctlr.te;
509 cpsr.e = hsctlr.ee;
510 if (!scr.ea) {cpsr.a = 1;}
511 if (!scr.fiq) {cpsr.f = 1;}
512 if (!scr.irq) {cpsr.i = 1;}
513 } else if (cpsr.mode == MODE_MON) {
514 // Special case handling when entering monitor mode
515 cpsr.t = sctlr.te;
516 cpsr.e = sctlr.ee;
517 cpsr.a = 1;
518 cpsr.f = 1;
519 cpsr.i = 1;
520 } else {
521 cpsr.t = sctlr.te;
522 cpsr.e = sctlr.ee;
523
524 // The *Disable functions are virtual and different per fault
525 cpsr.a = cpsr.a | abortDisable(tc);
526 cpsr.f = cpsr.f | fiqDisable(tc);
527 cpsr.i = 1;
528 }
529 cpsr.it1 = cpsr.it2 = 0;
530 cpsr.j = 0;
531 tc->setMiscReg(MISCREG_CPSR, cpsr);
532
533 // Make sure mailbox sets to one always
534 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1);
535
536 // Clear the exclusive monitor
537 tc->setMiscReg(MISCREG_LOCKFLAG, 0);
538
539 if (cpsr.mode == MODE_HYP) {
540 tc->setMiscReg(MISCREG_ELR_HYP, curPc +
541 (saved_cpsr.t ? thumbPcOffset(true) : armPcOffset(true)));
542 } else {
543 tc->setIntReg(INTREG_LR, curPc +
544 (saved_cpsr.t ? thumbPcOffset(false) : armPcOffset(false)));
545 }
546
547 switch (cpsr.mode) {
548 case MODE_FIQ:
549 tc->setMiscReg(MISCREG_SPSR_FIQ, saved_cpsr);
550 break;
551 case MODE_IRQ:
552 tc->setMiscReg(MISCREG_SPSR_IRQ, saved_cpsr);
553 break;
554 case MODE_SVC:
555 tc->setMiscReg(MISCREG_SPSR_SVC, saved_cpsr);
556 break;
557 case MODE_MON:
558 assert(have_security);
559 tc->setMiscReg(MISCREG_SPSR_MON, saved_cpsr);
560 break;
561 case MODE_ABORT:
562 tc->setMiscReg(MISCREG_SPSR_ABT, saved_cpsr);
563 break;
564 case MODE_UNDEFINED:
565 tc->setMiscReg(MISCREG_SPSR_UND, saved_cpsr);
566 if (ec(tc) != EC_UNKNOWN)
567 setSyndrome(tc, MISCREG_HSR);
568 break;
569 case MODE_HYP:
570 assert(have_virtualization);
571 tc->setMiscReg(MISCREG_SPSR_HYP, saved_cpsr);
572 setSyndrome(tc, MISCREG_HSR);
573 break;
574 default:
575 panic("unknown Mode\n");
576 }
577
578 Addr newPc = getVector(tc);
579 DPRINTF(Faults, "Invoking Fault:%s cpsr:%#x PC:%#x lr:%#x newVec: %#x\n",
580 name(), cpsr, curPc, tc->readIntReg(INTREG_LR), newPc);
581 PCState pc(newPc);
582 pc.thumb(cpsr.t);
583 pc.nextThumb(pc.thumb());
584 pc.jazelle(cpsr.j);
585 pc.nextJazelle(pc.jazelle());
586 pc.aarch64(!cpsr.width);
587 pc.nextAArch64(!cpsr.width);
588 tc->pcState(pc);
589}
590
591void
592ArmFault::invoke64(ThreadContext *tc, const StaticInstPtr &inst)
593{
594 // Determine actual misc. register indices for ELR_ELx and SPSR_ELx
595 MiscRegIndex elr_idx, spsr_idx;
596 switch (toEL) {
597 case EL1:
598 elr_idx = MISCREG_ELR_EL1;
599 spsr_idx = MISCREG_SPSR_EL1;
600 break;
601 case EL2:
602 assert(ArmSystem::haveVirtualization(tc));
603 elr_idx = MISCREG_ELR_EL2;
604 spsr_idx = MISCREG_SPSR_EL2;
605 break;
606 case EL3:
607 assert(ArmSystem::haveSecurity(tc));
608 elr_idx = MISCREG_ELR_EL3;
609 spsr_idx = MISCREG_SPSR_EL3;
610 break;
611 default:
612 panic("Invalid target exception level");
613 break;
614 }
615
616 // Save process state into SPSR_ELx
617 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
618 CPSR spsr = cpsr;
619 spsr.nz = tc->readCCReg(CCREG_NZ);
620 spsr.c = tc->readCCReg(CCREG_C);
621 spsr.v = tc->readCCReg(CCREG_V);
622 if (from64) {
623 // Force some bitfields to 0
624 spsr.q = 0;
625 spsr.it1 = 0;
626 spsr.j = 0;
627 spsr.res0_23_22 = 0;
628 spsr.ge = 0;
629 spsr.it2 = 0;
630 spsr.t = 0;
631 } else {
632 spsr.ge = tc->readCCReg(CCREG_GE);
633 ITSTATE it = tc->pcState().itstate();
634 spsr.it2 = it.top6;
635 spsr.it1 = it.bottom2;
636 // Force some bitfields to 0
637 spsr.res0_23_22 = 0;
638 spsr.ss = 0;
639 }
640 tc->setMiscReg(spsr_idx, spsr);
641
642 // Save preferred return address into ELR_ELx
643 Addr curr_pc = tc->pcState().pc();
644 Addr ret_addr = curr_pc;
645 if (from64)
646 ret_addr += armPcElrOffset();
647 else
648 ret_addr += spsr.t ? thumbPcElrOffset() : armPcElrOffset();
649 tc->setMiscReg(elr_idx, ret_addr);
650
651 // Update process state
652 OperatingMode64 mode = 0;
653 mode.spX = 1;
654 mode.el = toEL;
655 mode.width = 0;
656 cpsr.mode = mode;
657 cpsr.daif = 0xf;
658 cpsr.il = 0;
659 cpsr.ss = 0;
660 tc->setMiscReg(MISCREG_CPSR, cpsr);
661
662 // Set PC to start of exception handler
663 Addr new_pc = purifyTaggedAddr(getVector64(tc), tc, toEL);
664 DPRINTF(Faults, "Invoking Fault (AArch64 target EL):%s cpsr:%#x PC:%#x "
665 "elr:%#x newVec: %#x\n", name(), cpsr, curr_pc, ret_addr, new_pc);
666 PCState pc(new_pc);
667 pc.aarch64(!cpsr.width);
668 pc.nextAArch64(!cpsr.width);
669 tc->pcState(pc);
670
671 // If we have a valid instruction then use it to annotate this fault with
672 // extra information. This is used to generate the correct fault syndrome
673 // information
674 if (inst)
675 reinterpret_cast<ArmStaticInst *>(inst.get())->annotateFault(this);
676 // Save exception syndrome
677 if ((nextMode() != MODE_IRQ) && (nextMode() != MODE_FIQ))
678 setSyndrome(tc, getSyndromeReg64());
679}
680
681void
682Reset::invoke(ThreadContext *tc, const StaticInstPtr &inst)
683{
684 if (FullSystem) {
685 tc->getCpuPtr()->clearInterrupts(tc->threadId());
686 tc->clearArchRegs();
687 }
688 if (!ArmSystem::highestELIs64(tc)) {
689 ArmFault::invoke(tc, inst);
690 tc->setMiscReg(MISCREG_VMPIDR,
691 getMPIDR(dynamic_cast<ArmSystem*>(tc->getSystemPtr()), tc));
692
693 // Unless we have SMC code to get us there, boot in HYP!
694 if (ArmSystem::haveVirtualization(tc) &&
695 !ArmSystem::haveSecurity(tc)) {
696 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
697 cpsr.mode = MODE_HYP;
698 tc->setMiscReg(MISCREG_CPSR, cpsr);
699 }
700 } else {
701 // Advance the PC to the IMPLEMENTATION DEFINED reset value
702 PCState pc = ArmSystem::resetAddr64(tc);
703 pc.aarch64(true);
704 pc.nextAArch64(true);
705 tc->pcState(pc);
706 }
707}
708
709void
710UndefinedInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst)
711{
712 if (FullSystem) {
713 ArmFault::invoke(tc, inst);
714 return;
715 }
716
717 // If the mnemonic isn't defined this has to be an unknown instruction.
718 assert(unknown || mnemonic != NULL);
719 if (disabled) {
720 panic("Attempted to execute disabled instruction "
721 "'%s' (inst 0x%08x)", mnemonic, machInst);
722 } else if (unknown) {
723 panic("Attempted to execute unknown instruction (inst 0x%08x)",
724 machInst);
725 } else {
726 panic("Attempted to execute unimplemented instruction "
727 "'%s' (inst 0x%08x)", mnemonic, machInst);
728 }
729}
730
731bool
732UndefinedInstruction::routeToHyp(ThreadContext *tc) const
733{
734 bool toHyp;
735
736 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
737 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
738 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
739
740 // if in Hyp mode then stay in Hyp mode
741 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
742 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
743 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER);
744 return toHyp;
745}
746
747uint32_t
748UndefinedInstruction::iss() const
749{
750 if (overrideEc == EC_INVALID)
751 return issRaw;
752
753 uint32_t new_iss = 0;
754 uint32_t op0, op1, op2, CRn, CRm, Rt, dir;
755
756 dir = bits(machInst, 21, 21);
757 op0 = bits(machInst, 20, 19);
758 op1 = bits(machInst, 18, 16);
759 CRn = bits(machInst, 15, 12);
760 CRm = bits(machInst, 11, 8);
761 op2 = bits(machInst, 7, 5);
762 Rt = bits(machInst, 4, 0);
763
764 new_iss = op0 << 20 | op2 << 17 | op1 << 14 | CRn << 10 |
765 Rt << 5 | CRm << 1 | dir;
766
767 return new_iss;
768}
769
770void
771SupervisorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst)
772{
773 if (FullSystem) {
774 ArmFault::invoke(tc, inst);
775 return;
776 }
777
778 // As of now, there isn't a 32 bit thumb version of this instruction.
779 assert(!machInst.bigThumb);
780 uint32_t callNum;
781 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
782 OperatingMode mode = (OperatingMode)(uint8_t)cpsr.mode;
783 if (opModeIs64(mode))
784 callNum = tc->readIntReg(INTREG_X8);
785 else
786 callNum = tc->readIntReg(INTREG_R7);
787 Fault fault;
788 tc->syscall(callNum, &fault);
789
790 // Advance the PC since that won't happen automatically.
791 PCState pc = tc->pcState();
792 assert(inst);
793 inst->advancePC(pc);
794 tc->pcState(pc);
795}
796
797bool
798SupervisorCall::routeToHyp(ThreadContext *tc) const
799{
800 bool toHyp;
801
802 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
803 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
804 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
805
806 // if in Hyp mode then stay in Hyp mode
807 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
808 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
809 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER);
810 return toHyp;
811}
812
813ExceptionClass
814SupervisorCall::ec(ThreadContext *tc) const
815{
816 return (overrideEc != EC_INVALID) ? overrideEc :
817 (from64 ? EC_SVC_64 : vals.ec);
818}
819
820uint32_t
821SupervisorCall::iss() const
822{
823 // Even if we have a 24 bit imm from an arm32 instruction then we only use
824 // the bottom 16 bits for the ISS value (it doesn't hurt for AArch64 SVC).
825 return issRaw & 0xFFFF;
826}
827
828uint32_t
829SecureMonitorCall::iss() const
830{
831 if (from64)
832 return bits(machInst, 20, 5);
833 return 0;
834}
835
836ExceptionClass
837UndefinedInstruction::ec(ThreadContext *tc) const
838{
839 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
840}
841
842
843HypervisorCall::HypervisorCall(ExtMachInst _machInst, uint32_t _imm) :
844 ArmFaultVals<HypervisorCall>(_machInst, _imm)
845{}
846
847ExceptionClass
848HypervisorCall::ec(ThreadContext *tc) const
849{
850 return from64 ? EC_HVC_64 : vals.ec;
851}
852
853ExceptionClass
854HypervisorTrap::ec(ThreadContext *tc) const
855{
856 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
857}
858
859template<class T>
860FaultOffset
861ArmFaultVals<T>::offset(ThreadContext *tc)
862{
863 bool isHypTrap = false;
864
865 // Normally we just use the exception vector from the table at the top if
866 // this file, however if this exception has caused a transition to hype
867 // mode, and its an exception type that would only do this if it has been
868 // trapped then we use the hyp trap vector instead of the normal vector
869 if (vals.hypTrappable) {
870 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
871 if (cpsr.mode == MODE_HYP) {
872 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
873 isHypTrap = spsr.mode != MODE_HYP;
874 }
875 }
876 return isHypTrap ? 0x14 : vals.offset;
877}
878
879// void
880// SupervisorCall::setSyndrome64(ThreadContext *tc, MiscRegIndex esr_idx)
881// {
882// ESR esr = 0;
883// esr.ec = machInst.aarch64 ? SvcAArch64 : SvcAArch32;
884// esr.il = !machInst.thumb;
885// if (machInst.aarch64)
886// esr.imm16 = bits(machInst.instBits, 20, 5);
887// else if (machInst.thumb)
888// esr.imm16 = bits(machInst.instBits, 7, 0);
889// else
890// esr.imm16 = bits(machInst.instBits, 15, 0);
891// tc->setMiscReg(esr_idx, esr);
892// }
893
894void
895SecureMonitorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst)
896{
897 if (FullSystem) {
898 ArmFault::invoke(tc, inst);
899 return;
900 }
901}
902
903ExceptionClass
904SecureMonitorCall::ec(ThreadContext *tc) const
905{
906 return (from64 ? EC_SMC_64 : vals.ec);
907}
908
909ExceptionClass
910SupervisorTrap::ec(ThreadContext *tc) const
911{
912 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
913}
914
915ExceptionClass
916SecureMonitorTrap::ec(ThreadContext *tc) const
917{
918 return (overrideEc != EC_INVALID) ? overrideEc :
919 (from64 ? EC_SMC_64 : vals.ec);
920}
921
922template<class T>
923void
924AbortFault<T>::invoke(ThreadContext *tc, const StaticInstPtr &inst)
925{
926 if (tranMethod == ArmFault::UnknownTran) {
927 tranMethod = longDescFormatInUse(tc) ? ArmFault::LpaeTran
928 : ArmFault::VmsaTran;
929
930 if ((tranMethod == ArmFault::VmsaTran) && this->routeToMonitor(tc)) {
931 // See ARM ARM B3-1416
932 bool override_LPAE = false;
933 TTBCR ttbcr_s = tc->readMiscReg(MISCREG_TTBCR_S);
934 TTBCR M5_VAR_USED ttbcr_ns = tc->readMiscReg(MISCREG_TTBCR_NS);
935 if (ttbcr_s.eae) {
936 override_LPAE = true;
937 } else {
938 // Unimplemented code option, not seen in testing. May need
939 // extension according to the manual exceprt above.
940 DPRINTF(Faults, "Warning: Incomplete translation method "
941 "override detected.\n");
942 }
943 if (override_LPAE)
944 tranMethod = ArmFault::LpaeTran;
945 }
946 }
947
948 if (source == ArmFault::AsynchronousExternalAbort) {
949 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
950 }
951 // Get effective fault source encoding
952 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
953 FSR fsr = getFsr(tc);
954
955 // source must be determined BEFORE invoking generic routines which will
956 // try to set hsr etc. and are based upon source!
957 ArmFaultVals<T>::invoke(tc, inst);
958
959 if (!this->to64) { // AArch32
960 if (cpsr.mode == MODE_HYP) {
961 tc->setMiscReg(T::HFarIndex, faultAddr);
962 } else if (stage2) {
963 tc->setMiscReg(MISCREG_HPFAR, (faultAddr >> 8) & ~0xf);
964 tc->setMiscReg(T::HFarIndex, OVAddr);
965 } else {
966 tc->setMiscReg(T::FsrIndex, fsr);
967 tc->setMiscReg(T::FarIndex, faultAddr);
968 }
969 DPRINTF(Faults, "Abort Fault source=%#x fsr=%#x faultAddr=%#x "\
970 "tranMethod=%#x\n", source, fsr, faultAddr, tranMethod);
971 } else { // AArch64
972 // Set the FAR register. Nothing else to do if we are in AArch64 state
973 // because the syndrome register has already been set inside invoke64()
974 if (stage2) {
975 // stage 2 fault, set HPFAR_EL2 to the faulting IPA
976 // and FAR_EL2 to the Original VA
977 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), OVAddr);
978 tc->setMiscReg(MISCREG_HPFAR_EL2, bits(faultAddr, 47, 12) << 4);
979
980 DPRINTF(Faults, "Abort Fault (Stage 2) VA: 0x%x IPA: 0x%x\n",
981 OVAddr, faultAddr);
982 } else {
983 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), faultAddr);
984 }
985 }
986}
987
988template<class T>
989FSR
990AbortFault<T>::getFsr(ThreadContext *tc)
991{
992 FSR fsr = 0;
993
994 if (((CPSR) tc->readMiscRegNoEffect(MISCREG_CPSR)).width) {
995 // AArch32
996 assert(tranMethod != ArmFault::UnknownTran);
997 if (tranMethod == ArmFault::LpaeTran) {
998 srcEncoded = ArmFault::longDescFaultSources[source];
999 fsr.status = srcEncoded;
1000 fsr.lpae = 1;
1001 } else {
1002 srcEncoded = ArmFault::shortDescFaultSources[source];
1003 fsr.fsLow = bits(srcEncoded, 3, 0);
1004 fsr.fsHigh = bits(srcEncoded, 4);
1005 fsr.domain = static_cast<uint8_t>(domain);
1006 }
1007 fsr.wnr = (write ? 1 : 0);
1008 fsr.ext = 0;
1009 } else {
1010 // AArch64
1011 srcEncoded = ArmFault::aarch64FaultSources[source];
1012 }
1013 if (srcEncoded == ArmFault::FaultSourceInvalid) {
1014 panic("Invalid fault source\n");
1015 }
1016 return fsr;
1017}
1018
1019template<class T>
1020bool
1021AbortFault<T>::abortDisable(ThreadContext *tc)
1022{
1023 if (ArmSystem::haveSecurity(tc)) {
1024 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1025 return (!scr.ns || scr.aw);
1026 }
1027 return true;
1028}
1029
1030template<class T>
1031void
1032AbortFault<T>::annotate(ArmFault::AnnotationIDs id, uint64_t val)
1033{
1034 switch (id)
1035 {
1036 case ArmFault::S1PTW:
1037 s1ptw = val;
1038 break;
1039 case ArmFault::OVA:
1040 OVAddr = val;
1041 break;
1042
1043 // Just ignore unknown ID's
1044 default:
1045 break;
1046 }
1047}
1048
1049template<class T>
1050uint32_t
1051AbortFault<T>::iss() const
1052{
1053 uint32_t val;
1054
1055 val = srcEncoded & 0x3F;
1056 val |= write << 6;
1057 val |= s1ptw << 7;
1058 return (val);
1059}
1060
1061template<class T>
1062bool
1063AbortFault<T>::isMMUFault() const
1064{
1065 // NOTE: Not relying on LL information being aligned to lowest bits here
1066 return
1067 (source == ArmFault::AlignmentFault) ||
1068 ((source >= ArmFault::TranslationLL) &&
1069 (source < ArmFault::TranslationLL + 4)) ||
1070 ((source >= ArmFault::AccessFlagLL) &&
1071 (source < ArmFault::AccessFlagLL + 4)) ||
1072 ((source >= ArmFault::DomainLL) &&
1073 (source < ArmFault::DomainLL + 4)) ||
1074 ((source >= ArmFault::PermissionLL) &&
1075 (source < ArmFault::PermissionLL + 4));
1076}
1077
1078ExceptionClass
1079PrefetchAbort::ec(ThreadContext *tc) const
1080{
1081 if (to64) {
1082 // AArch64
1083 if (toEL == fromEL)
1084 return EC_PREFETCH_ABORT_CURR_EL;
1085 else
1086 return EC_PREFETCH_ABORT_LOWER_EL;
1087 } else {
1088 // AArch32
1089 // Abort faults have different EC codes depending on whether
1090 // the fault originated within HYP mode, or not. So override
1091 // the method and add the extra adjustment of the EC value.
1092
1093 ExceptionClass ec = ArmFaultVals<PrefetchAbort>::vals.ec;
1094
1095 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
1096 if (spsr.mode == MODE_HYP) {
1097 ec = ((ExceptionClass) (((uint32_t) ec) + 1));
1098 }
1099 return ec;
1100 }
1101}
1102
1103bool
1104PrefetchAbort::routeToMonitor(ThreadContext *tc) const
1105{
1106 SCR scr = 0;
1107 if (from64)
1108 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1109 else
1110 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1111
1112 return scr.ea && !isMMUFault();
1113}
1114
1115bool
1116PrefetchAbort::routeToHyp(ThreadContext *tc) const
1117{
1118 bool toHyp;
1119
1120 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1121 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1122 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1123 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
1124
1125 // if in Hyp mode then stay in Hyp mode
1126 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
1127 // otherwise, check whether to take to Hyp mode through Hyp Trap vector
1128 toHyp |= (stage2 ||
1129 ( (source == DebugEvent) && hdcr.tde && (cpsr.mode != MODE_HYP)) ||
1130 ( (source == SynchronousExternalAbort) && hcr.tge && (cpsr.mode == MODE_USER))
1131 ) && !inSecureState(tc);
1132 return toHyp;
1133}
1134
1135ExceptionClass
1136DataAbort::ec(ThreadContext *tc) const
1137{
1138 if (to64) {
1139 // AArch64
1140 if (source == ArmFault::AsynchronousExternalAbort) {
1141 panic("Asynchronous External Abort should be handled with "
1142 "SystemErrors (SErrors)!");
1143 }
1144 if (toEL == fromEL)
1145 return EC_DATA_ABORT_CURR_EL;
1146 else
1147 return EC_DATA_ABORT_LOWER_EL;
1148 } else {
1149 // AArch32
1150 // Abort faults have different EC codes depending on whether
1151 // the fault originated within HYP mode, or not. So override
1152 // the method and add the extra adjustment of the EC value.
1153
1154 ExceptionClass ec = ArmFaultVals<DataAbort>::vals.ec;
1155
1156 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
1157 if (spsr.mode == MODE_HYP) {
1158 ec = ((ExceptionClass) (((uint32_t) ec) + 1));
1159 }
1160 return ec;
1161 }
1162}
1163
1164bool
1165DataAbort::routeToMonitor(ThreadContext *tc) const
1166{
1167 SCR scr = 0;
1168 if (from64)
1169 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1170 else
1171 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1172
1173 return scr.ea && !isMMUFault();
1174}
1175
1176bool
1177DataAbort::routeToHyp(ThreadContext *tc) const
1178{
1179 bool toHyp;
1180
1181 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1182 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1183 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1184 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
1185
1186 // if in Hyp mode then stay in Hyp mode
1187 toHyp = scr.ns && (cpsr.mode == MODE_HYP);
1188 // otherwise, check whether to take to Hyp mode through Hyp Trap vector
1189 toHyp |= (stage2 ||
1190 ( (cpsr.mode != MODE_HYP) && ( ((source == AsynchronousExternalAbort) && hcr.amo) ||
1191 ((source == DebugEvent) && hdcr.tde) )
1192 ) ||
1193 ( (cpsr.mode == MODE_USER) && hcr.tge &&
1194 ((source == AlignmentFault) ||
1195 (source == SynchronousExternalAbort))
1196 )
1197 ) && !inSecureState(tc);
1198 return toHyp;
1199}
1200
1201uint32_t
1202DataAbort::iss() const
1203{
1204 uint32_t val;
1205
1206 // Add on the data abort specific fields to the generic abort ISS value
1207 val = AbortFault<DataAbort>::iss();
1208 // ISS is valid if not caused by a stage 1 page table walk, and when taken
1209 // to AArch64 only when directed to EL2
1210 if (!s1ptw && (!to64 || toEL == EL2)) {
1211 val |= isv << 24;
1212 if (isv) {
1213 val |= sas << 22;
1214 val |= sse << 21;
1215 val |= srt << 16;
1216 // AArch64 only. These assignments are safe on AArch32 as well
1217 // because these vars are initialized to false
1218 val |= sf << 15;
1219 val |= ar << 14;
1220 }
1221 }
1222 return (val);
1223}
1224
1225void
1226DataAbort::annotate(AnnotationIDs id, uint64_t val)
1227{
1228 AbortFault<DataAbort>::annotate(id, val);
1229 switch (id)
1230 {
1231 case SAS:
1232 isv = true;
1233 sas = val;
1234 break;
1235 case SSE:
1236 isv = true;
1237 sse = val;
1238 break;
1239 case SRT:
1240 isv = true;
1241 srt = val;
1242 break;
1243 case SF:
1244 isv = true;
1245 sf = val;
1246 break;
1247 case AR:
1248 isv = true;
1249 ar = val;
1250 break;
1251 // Just ignore unknown ID's
1252 default:
1253 break;
1254 }
1255}
1256
1257void
1258VirtualDataAbort::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1259{
1260 AbortFault<VirtualDataAbort>::invoke(tc, inst);
1261 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1262 hcr.va = 0;
1263 tc->setMiscRegNoEffect(MISCREG_HCR, hcr);
1264}
1265
1266bool
1267Interrupt::routeToMonitor(ThreadContext *tc) const
1268{
1269 assert(ArmSystem::haveSecurity(tc));
1270 SCR scr = 0;
1271 if (from64)
1272 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1273 else
1274 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1275 return scr.irq;
1276}
1277
1278bool
1279Interrupt::routeToHyp(ThreadContext *tc) const
1280{
1281 bool toHyp;
1282
1283 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1284 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1285 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1286 // Determine whether IRQs are routed to Hyp mode.
1287 toHyp = (!scr.irq && hcr.imo && !inSecureState(tc)) ||
1288 (cpsr.mode == MODE_HYP);
1289 return toHyp;
1290}
1291
1292bool
1293Interrupt::abortDisable(ThreadContext *tc)
1294{
1295 if (ArmSystem::haveSecurity(tc)) {
1296 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1297 return (!scr.ns || scr.aw);
1298 }
1299 return true;
1300}
1301
1302VirtualInterrupt::VirtualInterrupt()
1303{}
1304
1305bool
1306FastInterrupt::routeToMonitor(ThreadContext *tc) const
1307{
1308 assert(ArmSystem::haveSecurity(tc));
1309 SCR scr = 0;
1310 if (from64)
1311 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1312 else
1313 scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1314 return scr.fiq;
1315}
1316
1317bool
1318FastInterrupt::routeToHyp(ThreadContext *tc) const
1319{
1320 bool toHyp;
1321
1322 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1323 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1324 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1325 // Determine whether IRQs are routed to Hyp mode.
1326 toHyp = (!scr.fiq && hcr.fmo && !inSecureState(tc)) ||
1327 (cpsr.mode == MODE_HYP);
1328 return toHyp;
1329}
1330
1331bool
1332FastInterrupt::abortDisable(ThreadContext *tc)
1333{
1334 if (ArmSystem::haveSecurity(tc)) {
1335 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1336 return (!scr.ns || scr.aw);
1337 }
1338 return true;
1339}
1340
1341bool
1342FastInterrupt::fiqDisable(ThreadContext *tc)
1343{
1344 if (ArmSystem::haveVirtualization(tc)) {
1345 return true;
1346 } else if (ArmSystem::haveSecurity(tc)) {
1347 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1348 return (!scr.ns || scr.fw);
1349 }
1350 return true;
1351}
1352
1353VirtualFastInterrupt::VirtualFastInterrupt()
1354{}
1355
1356void
1357PCAlignmentFault::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1358{
1359 ArmFaultVals<PCAlignmentFault>::invoke(tc, inst);
1360 assert(from64);
1361 // Set the FAR
1362 tc->setMiscReg(getFaultAddrReg64(), faultPC);
1363}
1364
1365SPAlignmentFault::SPAlignmentFault()
1366{}
1367
1368SystemError::SystemError()
1369{}
1370
1371void
1372SystemError::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1373{
1374 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
1375 ArmFault::invoke(tc, inst);
1376}
1377
1378bool
1379SystemError::routeToMonitor(ThreadContext *tc) const
1380{
1381 assert(ArmSystem::haveSecurity(tc));
1382 assert(from64);
1383 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1384 return scr.ea;
1385}
1386
1387bool
1388SystemError::routeToHyp(ThreadContext *tc) const
1389{
1390 bool toHyp;
1391 assert(from64);
1392
1393 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1394 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1395
1396 toHyp = (!scr.ea && hcr.amo && !inSecureState(tc)) ||
1397 (!scr.ea && !scr.rw && !hcr.amo && !inSecureState(tc));
1398 return toHyp;
1399}
1400
1401
1402SoftwareBreakpoint::SoftwareBreakpoint(ExtMachInst _mach_inst, uint32_t _iss)
1403 : ArmFaultVals<SoftwareBreakpoint>(_mach_inst, _iss)
1404{}
1405
1406bool
1407SoftwareBreakpoint::routeToHyp(ThreadContext *tc) const
1408{
1409 assert(from64);
1410
1411 const bool have_el2 = ArmSystem::haveVirtualization(tc);
1412
1413 const HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR_EL2);
1414 const HDCR mdcr = tc->readMiscRegNoEffect(MISCREG_MDCR_EL2);
1415
1416 return have_el2 && !inSecureState(tc) && fromEL <= EL1 &&
1417 (hcr.tge || mdcr.tde);
1418}
1419
1420void
1421ArmSev::invoke(ThreadContext *tc, const StaticInstPtr &inst) {
1422 DPRINTF(Faults, "Invoking ArmSev Fault\n");
1423 if (!FullSystem)
1424 return;
1425
1426 // Set sev_mailbox to 1, clear the pending interrupt from remote
1427 // SEV execution and let pipeline continue as pcState is still
1428 // valid.
1429 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1);
1430 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_SEV, 0);
1431}
1432
1433// Instantiate all the templates to make the linker happy
1434template class ArmFaultVals<Reset>;
1435template class ArmFaultVals<UndefinedInstruction>;
1436template class ArmFaultVals<SupervisorCall>;
1437template class ArmFaultVals<SecureMonitorCall>;
1438template class ArmFaultVals<HypervisorCall>;
1439template class ArmFaultVals<PrefetchAbort>;
1440template class ArmFaultVals<DataAbort>;
1441template class ArmFaultVals<VirtualDataAbort>;
1442template class ArmFaultVals<HypervisorTrap>;
1443template class ArmFaultVals<Interrupt>;
1444template class ArmFaultVals<VirtualInterrupt>;
1445template class ArmFaultVals<FastInterrupt>;
1446template class ArmFaultVals<VirtualFastInterrupt>;
1447template class ArmFaultVals<SupervisorTrap>;
1448template class ArmFaultVals<SecureMonitorTrap>;
1449template class ArmFaultVals<PCAlignmentFault>;
1450template class ArmFaultVals<SPAlignmentFault>;
1451template class ArmFaultVals<SystemError>;
1452template class ArmFaultVals<SoftwareBreakpoint>;
1453template class ArmFaultVals<ArmSev>;
1454template class AbortFault<PrefetchAbort>;
1455template class AbortFault<DataAbort>;
1456template class AbortFault<VirtualDataAbort>;
1457
1458
1459IllegalInstSetStateFault::IllegalInstSetStateFault()
1460{}
1461
1462
1463} // namespace ArmISA