decoder.isa (8560:5c4bac827934) decoder.isa (8588:ef28ed90449d)
1// -*- mode:c++ -*-
2
3// Copyright (c) 2003-2006 The Regents of The University of Michigan
4// All rights reserved.
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met: redistributions of source code must retain the above copyright

--- 27 unchanged lines hidden (view full) ---

36decode OPCODE default Unknown::unknown() {
37
38 format LoadAddress {
39 0x08: lda({{ Ra = Rb + disp; }});
40 0x09: ldah({{ Ra = Rb + (disp << 16); }});
41 }
42
43 format LoadOrNop {
1// -*- mode:c++ -*-
2
3// Copyright (c) 2003-2006 The Regents of The University of Michigan
4// All rights reserved.
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met: redistributions of source code must retain the above copyright

--- 27 unchanged lines hidden (view full) ---

36decode OPCODE default Unknown::unknown() {
37
38 format LoadAddress {
39 0x08: lda({{ Ra = Rb + disp; }});
40 0x09: ldah({{ Ra = Rb + (disp << 16); }});
41 }
42
43 format LoadOrNop {
44 0x0a: ldbu({{ Ra.uq = Mem.ub; }});
45 0x0c: ldwu({{ Ra.uq = Mem.uw; }});
46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
47 0x23: ldt({{ Fa = Mem.df; }});
48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LLSC);
49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LLSC);
44 0x0a: ldbu({{ Ra_uq = Mem_ub; }});
45 0x0c: ldwu({{ Ra_uq = Mem_uw; }});
46 0x0b: ldq_u({{ Ra = Mem_uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
47 0x23: ldt({{ Fa = Mem_df; }});
48 0x2a: ldl_l({{ Ra_sl = Mem_sl; }}, mem_flags = LLSC);
49 0x2b: ldq_l({{ Ra_uq = Mem_uq; }}, mem_flags = LLSC);
50 }
51
52 format LoadOrPrefetch {
50 }
51
52 format LoadOrPrefetch {
53 0x28: ldl({{ Ra.sl = Mem.sl; }});
54 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
53 0x28: ldl({{ Ra_sl = Mem_sl; }});
54 0x29: ldq({{ Ra_uq = Mem_uq; }}, pf_flags = EVICT_NEXT);
55 // IsFloating flag on lds gets the prefetch to disassemble
56 // using f31 instead of r31... funcitonally it's unnecessary
55 // IsFloating flag on lds gets the prefetch to disassemble
56 // using f31 instead of r31... funcitonally it's unnecessary
57 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
57 0x22: lds({{ Fa_uq = s_to_t(Mem_ul); }},
58 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
59 }
60
61 format Store {
58 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
59 }
60
61 format Store {
62 0x0e: stb({{ Mem.ub = Ra<7:0>; }});
63 0x0d: stw({{ Mem.uw = Ra<15:0>; }});
64 0x2c: stl({{ Mem.ul = Ra<31:0>; }});
65 0x2d: stq({{ Mem.uq = Ra.uq; }});
66 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
67 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
68 0x27: stt({{ Mem.df = Fa; }});
62 0x0e: stb({{ Mem_ub = Ra<7:0>; }});
63 0x0d: stw({{ Mem_uw = Ra<15:0>; }});
64 0x2c: stl({{ Mem_ul = Ra<31:0>; }});
65 0x2d: stq({{ Mem_uq = Ra_uq; }});
66 0x0f: stq_u({{ Mem_uq = Ra_uq; }}, {{ EA = (Rb + disp) & ~7; }});
67 0x26: sts({{ Mem_ul = t_to_s(Fa_uq); }});
68 0x27: stt({{ Mem_df = Fa; }});
69 }
70
71 format StoreCond {
69 }
70
71 format StoreCond {
72 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
72 0x2e: stl_c({{ Mem_ul = Ra<31:0>; }},
73 {{
74 uint64_t tmp = write_result;
75 // see stq_c
76 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
77 if (tmp == 1) {
78 xc->setStCondFailures(0);
79 }
80 }}, mem_flags = LLSC, inst_flags = IsStoreConditional);
73 {{
74 uint64_t tmp = write_result;
75 // see stq_c
76 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
77 if (tmp == 1) {
78 xc->setStCondFailures(0);
79 }
80 }}, mem_flags = LLSC, inst_flags = IsStoreConditional);
81 0x2f: stq_c({{ Mem.uq = Ra; }},
81 0x2f: stq_c({{ Mem_uq = Ra; }},
82 {{
83 uint64_t tmp = write_result;
84 // If the write operation returns 0 or 1, then
85 // this was a conventional store conditional,
86 // and the value indicates the success/failure
87 // of the operation. If another value is
88 // returned, then this was a Turbolaser
89 // mailbox access, and we don't update the

--- 7 unchanged lines hidden (view full) ---

97 }
98 }}, mem_flags = LLSC, inst_flags = IsStoreConditional);
99 }
100
101 format IntegerOperate {
102
103 0x10: decode INTFUNC { // integer arithmetic operations
104
82 {{
83 uint64_t tmp = write_result;
84 // If the write operation returns 0 or 1, then
85 // this was a conventional store conditional,
86 // and the value indicates the success/failure
87 // of the operation. If another value is
88 // returned, then this was a Turbolaser
89 // mailbox access, and we don't update the

--- 7 unchanged lines hidden (view full) ---

97 }
98 }}, mem_flags = LLSC, inst_flags = IsStoreConditional);
99 }
100
101 format IntegerOperate {
102
103 0x10: decode INTFUNC { // integer arithmetic operations
104
105 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
105 0x00: addl({{ Rc_sl = Ra_sl + Rb_or_imm_sl; }});
106 0x40: addlv({{
106 0x40: addlv({{
107 int32_t tmp = Ra.sl + Rb_or_imm.sl;
107 int32_t tmp = Ra_sl + Rb_or_imm_sl;
108 // signed overflow occurs when operands have same sign
109 // and sign of result does not match.
108 // signed overflow occurs when operands have same sign
109 // and sign of result does not match.
110 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
110 if (Ra_sl<31:> == Rb_or_imm_sl<31:> && tmp<31:> != Ra_sl<31:>)
111 fault = new IntegerOverflowFault;
111 fault = new IntegerOverflowFault;
112 Rc.sl = tmp;
112 Rc_sl = tmp;
113 }});
113 }});
114 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
115 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
114 0x02: s4addl({{ Rc_sl = (Ra_sl << 2) + Rb_or_imm_sl; }});
115 0x12: s8addl({{ Rc_sl = (Ra_sl << 3) + Rb_or_imm_sl; }});
116
117 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
118 0x60: addqv({{
119 uint64_t tmp = Ra + Rb_or_imm;
120 // signed overflow occurs when operands have same sign
121 // and sign of result does not match.
122 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
123 fault = new IntegerOverflowFault;
124 Rc = tmp;
125 }});
126 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
127 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
128
116
117 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
118 0x60: addqv({{
119 uint64_t tmp = Ra + Rb_or_imm;
120 // signed overflow occurs when operands have same sign
121 // and sign of result does not match.
122 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
123 fault = new IntegerOverflowFault;
124 Rc = tmp;
125 }});
126 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
127 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
128
129 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
129 0x09: subl({{ Rc_sl = Ra_sl - Rb_or_imm_sl; }});
130 0x49: sublv({{
130 0x49: sublv({{
131 int32_t tmp = Ra.sl - Rb_or_imm.sl;
131 int32_t tmp = Ra_sl - Rb_or_imm_sl;
132 // signed overflow detection is same as for add,
133 // except we need to look at the *complemented*
134 // sign bit of the subtrahend (Rb), i.e., if the initial
135 // signs are the *same* then no overflow can occur
132 // signed overflow detection is same as for add,
133 // except we need to look at the *complemented*
134 // sign bit of the subtrahend (Rb), i.e., if the initial
135 // signs are the *same* then no overflow can occur
136 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
136 if (Ra_sl<31:> != Rb_or_imm_sl<31:> && tmp<31:> != Ra_sl<31:>)
137 fault = new IntegerOverflowFault;
137 fault = new IntegerOverflowFault;
138 Rc.sl = tmp;
138 Rc_sl = tmp;
139 }});
139 }});
140 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
141 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
140 0x0b: s4subl({{ Rc_sl = (Ra_sl << 2) - Rb_or_imm_sl; }});
141 0x1b: s8subl({{ Rc_sl = (Ra_sl << 3) - Rb_or_imm_sl; }});
142
143 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
144 0x69: subqv({{
145 uint64_t tmp = Ra - Rb_or_imm;
146 // signed overflow detection is same as for add,
147 // except we need to look at the *complemented*
148 // sign bit of the subtrahend (Rb), i.e., if the initial
149 // signs are the *same* then no overflow can occur
150 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
151 fault = new IntegerOverflowFault;
152 Rc = tmp;
153 }});
154 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
155 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
156
157 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
142
143 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
144 0x69: subqv({{
145 uint64_t tmp = Ra - Rb_or_imm;
146 // signed overflow detection is same as for add,
147 // except we need to look at the *complemented*
148 // sign bit of the subtrahend (Rb), i.e., if the initial
149 // signs are the *same* then no overflow can occur
150 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
151 fault = new IntegerOverflowFault;
152 Rc = tmp;
153 }});
154 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
155 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
156
157 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
158 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
159 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
160 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
161 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
158 0x6d: cmple({{ Rc = (Ra_sq <= Rb_or_imm_sq); }});
159 0x4d: cmplt({{ Rc = (Ra_sq < Rb_or_imm_sq); }});
160 0x3d: cmpule({{ Rc = (Ra_uq <= Rb_or_imm_uq); }});
161 0x1d: cmpult({{ Rc = (Ra_uq < Rb_or_imm_uq); }});
162
163 0x0f: cmpbge({{
164 int hi = 7;
165 int lo = 0;
166 uint64_t tmp = 0;
167 for (int i = 0; i < 8; ++i) {
162
163 0x0f: cmpbge({{
164 int hi = 7;
165 int lo = 0;
166 uint64_t tmp = 0;
167 for (int i = 0; i < 8; ++i) {
168 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
168 tmp |= (Ra_uq<hi:lo> >= Rb_or_imm_uq<hi:lo>) << i;
169 hi += 8;
170 lo += 8;
171 }
172 Rc = tmp;
173 }});
174 }
175
176 0x11: decode INTFUNC { // integer logical operations

--- 5 unchanged lines hidden (view full) ---

182 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
183 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
184
185 // conditional moves
186 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
187 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
188 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
189 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
169 hi += 8;
170 lo += 8;
171 }
172 Rc = tmp;
173 }});
174 }
175
176 0x11: decode INTFUNC { // integer logical operations

--- 5 unchanged lines hidden (view full) ---

182 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
183 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
184
185 // conditional moves
186 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
187 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
188 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
189 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
190 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
191 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
192 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
193 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
190 0x44: cmovlt({{ Rc = (Ra_sq < 0) ? Rb_or_imm : Rc; }});
191 0x46: cmovge({{ Rc = (Ra_sq >= 0) ? Rb_or_imm : Rc; }});
192 0x64: cmovle({{ Rc = (Ra_sq <= 0) ? Rb_or_imm : Rc; }});
193 0x66: cmovgt({{ Rc = (Ra_sq > 0) ? Rb_or_imm : Rc; }});
194
195 // For AMASK, RA must be R31.
196 0x61: decode RA {
197 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
198 }
199
200 // For IMPLVER, RA must be R31 and the B operand
201 // must be the immediate value 1.

--- 7 unchanged lines hidden (view full) ---

209 }
210
211 // The mysterious 11.25...
212 0x25: WarnUnimpl::eleven25();
213 }
214
215 0x12: decode INTFUNC {
216 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
194
195 // For AMASK, RA must be R31.
196 0x61: decode RA {
197 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
198 }
199
200 // For IMPLVER, RA must be R31 and the B operand
201 // must be the immediate value 1.

--- 7 unchanged lines hidden (view full) ---

209 }
210
211 // The mysterious 11.25...
212 0x25: WarnUnimpl::eleven25();
213 }
214
215 0x12: decode INTFUNC {
216 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
217 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
218 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
217 0x34: srl({{ Rc = Ra_uq >> Rb_or_imm<5:0>; }});
218 0x3c: sra({{ Rc = Ra_sq >> Rb_or_imm<5:0>; }});
219
220 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
221 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
222 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
223 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
224
225 0x52: mskwh({{
226 int bv = Rb_or_imm<2:0>;
227 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
228 }});
229 0x62: msklh({{
230 int bv = Rb_or_imm<2:0>;
231 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
232 }});
233 0x72: mskqh({{
234 int bv = Rb_or_imm<2:0>;
235 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
236 }});
237
219
220 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
221 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
222 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
223 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
224
225 0x52: mskwh({{
226 int bv = Rb_or_imm<2:0>;
227 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
228 }});
229 0x62: msklh({{
230 int bv = Rb_or_imm<2:0>;
231 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
232 }});
233 0x72: mskqh({{
234 int bv = Rb_or_imm<2:0>;
235 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
236 }});
237
238 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
239 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
240 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
241 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
238 0x06: extbl({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
239 0x16: extwl({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
240 0x26: extll({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
241 0x36: extql({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8)); }});
242
243 0x5a: extwh({{
244 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
245 0x6a: extlh({{
246 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
247 0x7a: extqh({{
248 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
249
250 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
251 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
252 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
253 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
254
255 0x57: inswh({{
256 int bv = Rb_or_imm<2:0>;
242
243 0x5a: extwh({{
244 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
245 0x6a: extlh({{
246 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
247 0x7a: extqh({{
248 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
249
250 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
251 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
252 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
253 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
254
255 0x57: inswh({{
256 int bv = Rb_or_imm<2:0>;
257 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
257 Rc = bv ? (Ra_uq<15:0> >> (64 - 8 * bv)) : 0;
258 }});
259 0x67: inslh({{
260 int bv = Rb_or_imm<2:0>;
258 }});
259 0x67: inslh({{
260 int bv = Rb_or_imm<2:0>;
261 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
261 Rc = bv ? (Ra_uq<31:0> >> (64 - 8 * bv)) : 0;
262 }});
263 0x77: insqh({{
264 int bv = Rb_or_imm<2:0>;
262 }});
263 0x77: insqh({{
264 int bv = Rb_or_imm<2:0>;
265 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
265 Rc = bv ? (Ra_uq >> (64 - 8 * bv)) : 0;
266 }});
267
268 0x30: zap({{
269 uint64_t zapmask = 0;
270 for (int i = 0; i < 8; ++i) {
271 if (Rb_or_imm<i:>)
272 zapmask |= (mask(8) << (i * 8));
273 }

--- 5 unchanged lines hidden (view full) ---

279 if (!Rb_or_imm<i:>)
280 zapmask |= (mask(8) << (i * 8));
281 }
282 Rc = Ra & ~zapmask;
283 }});
284 }
285
286 0x13: decode INTFUNC { // integer multiplies
266 }});
267
268 0x30: zap({{
269 uint64_t zapmask = 0;
270 for (int i = 0; i < 8; ++i) {
271 if (Rb_or_imm<i:>)
272 zapmask |= (mask(8) << (i * 8));
273 }

--- 5 unchanged lines hidden (view full) ---

279 if (!Rb_or_imm<i:>)
280 zapmask |= (mask(8) << (i * 8));
281 }
282 Rc = Ra & ~zapmask;
283 }});
284 }
285
286 0x13: decode INTFUNC { // integer multiplies
287 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
287 0x00: mull({{ Rc_sl = Ra_sl * Rb_or_imm_sl; }}, IntMultOp);
288 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
289 0x30: umulh({{
290 uint64_t hi, lo;
291 mul128(Ra, Rb_or_imm, hi, lo);
292 Rc = hi;
293 }}, IntMultOp);
294 0x40: mullv({{
295 // 32-bit multiply with trap on overflow
288 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
289 0x30: umulh({{
290 uint64_t hi, lo;
291 mul128(Ra, Rb_or_imm, hi, lo);
292 Rc = hi;
293 }}, IntMultOp);
294 0x40: mullv({{
295 // 32-bit multiply with trap on overflow
296 int64_t Rax = Ra.sl; // sign extended version of Ra.sl
297 int64_t Rbx = Rb_or_imm.sl;
296 int64_t Rax = Ra_sl; // sign extended version of Ra_sl
297 int64_t Rbx = Rb_or_imm_sl;
298 int64_t tmp = Rax * Rbx;
299 // To avoid overflow, all the upper 32 bits must match
300 // the sign bit of the lower 32. We code this as
301 // checking the upper 33 bits for all 0s or all 1s.
302 uint64_t sign_bits = tmp<63:31>;
303 if (sign_bits != 0 && sign_bits != mask(33))
304 fault = new IntegerOverflowFault;
298 int64_t tmp = Rax * Rbx;
299 // To avoid overflow, all the upper 32 bits must match
300 // the sign bit of the lower 32. We code this as
301 // checking the upper 33 bits for all 0s or all 1s.
302 uint64_t sign_bits = tmp<63:31>;
303 if (sign_bits != 0 && sign_bits != mask(33))
304 fault = new IntegerOverflowFault;
305 Rc.sl = tmp<31:0>;
305 Rc_sl = tmp<31:0>;
306 }}, IntMultOp);
307 0x60: mulqv({{
308 // 64-bit multiply with trap on overflow
309 uint64_t hi, lo;
310 mul128(Ra, Rb_or_imm, hi, lo);
311 // all the upper 64 bits must match the sign bit of
312 // the lower 64
313 if (!((hi == 0 && lo<63:> == 0) ||
314 (hi == mask(64) && lo<63:> == 1)))
315 fault = new IntegerOverflowFault;
316 Rc = lo;
317 }}, IntMultOp);
318 }
319
320 0x1c: decode INTFUNC {
306 }}, IntMultOp);
307 0x60: mulqv({{
308 // 64-bit multiply with trap on overflow
309 uint64_t hi, lo;
310 mul128(Ra, Rb_or_imm, hi, lo);
311 // all the upper 64 bits must match the sign bit of
312 // the lower 64
313 if (!((hi == 0 && lo<63:> == 0) ||
314 (hi == mask(64) && lo<63:> == 1)))
315 fault = new IntegerOverflowFault;
316 Rc = lo;
317 }}, IntMultOp);
318 }
319
320 0x1c: decode INTFUNC {
321 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
322 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
321 0x00: decode RA { 31: sextb({{ Rc_sb = Rb_or_imm< 7:0>; }}); }
322 0x01: decode RA { 31: sextw({{ Rc_sw = Rb_or_imm<15:0>; }}); }
323
324 0x30: ctpop({{
325 uint64_t count = 0;
326 for (int i = 0; Rb<63:i>; ++i) {
327 if (Rb<i:i> == 0x1)
328 ++count;
329 }
330 Rc = count;
331 }}, IntAluOp);
332
333 0x31: perr({{
334 uint64_t temp = 0;
335 int hi = 7;
336 int lo = 0;
337 for (int i = 0; i < 8; ++i) {
323
324 0x30: ctpop({{
325 uint64_t count = 0;
326 for (int i = 0; Rb<63:i>; ++i) {
327 if (Rb<i:i> == 0x1)
328 ++count;
329 }
330 Rc = count;
331 }}, IntAluOp);
332
333 0x31: perr({{
334 uint64_t temp = 0;
335 int hi = 7;
336 int lo = 0;
337 for (int i = 0; i < 8; ++i) {
338 uint8_t ra_ub = Ra.uq<hi:lo>;
339 uint8_t rb_ub = Rb.uq<hi:lo>;
338 uint8_t ra_ub = Ra_uq<hi:lo>;
339 uint8_t rb_ub = Rb_uq<hi:lo>;
340 temp += (ra_ub >= rb_ub) ?
341 (ra_ub - rb_ub) : (rb_ub - ra_ub);
342 hi += 8;
343 lo += 8;
344 }
345 Rc = temp;
346 }});
347

--- 22 unchanged lines hidden (view full) ---

370 temp >>= 1; count += 1;
371 }
372 if (!(temp<0:0> & ULL(0x1))) count += 1;
373 Rc = count;
374 }}, IntAluOp);
375
376
377 0x34: unpkbw({{
340 temp += (ra_ub >= rb_ub) ?
341 (ra_ub - rb_ub) : (rb_ub - ra_ub);
342 hi += 8;
343 lo += 8;
344 }
345 Rc = temp;
346 }});
347

--- 22 unchanged lines hidden (view full) ---

370 temp >>= 1; count += 1;
371 }
372 if (!(temp<0:0> & ULL(0x1))) count += 1;
373 Rc = count;
374 }}, IntAluOp);
375
376
377 0x34: unpkbw({{
378 Rc = (Rb.uq<7:0>
379 | (Rb.uq<15:8> << 16)
380 | (Rb.uq<23:16> << 32)
381 | (Rb.uq<31:24> << 48));
378 Rc = (Rb_uq<7:0>
379 | (Rb_uq<15:8> << 16)
380 | (Rb_uq<23:16> << 32)
381 | (Rb_uq<31:24> << 48));
382 }}, IntAluOp);
383
384 0x35: unpkbl({{
382 }}, IntAluOp);
383
384 0x35: unpkbl({{
385 Rc = (Rb.uq<7:0> | (Rb.uq<15:8> << 32));
385 Rc = (Rb_uq<7:0> | (Rb_uq<15:8> << 32));
386 }}, IntAluOp);
387
388 0x36: pkwb({{
386 }}, IntAluOp);
387
388 0x36: pkwb({{
389 Rc = (Rb.uq<7:0>
390 | (Rb.uq<23:16> << 8)
391 | (Rb.uq<39:32> << 16)
392 | (Rb.uq<55:48> << 24));
389 Rc = (Rb_uq<7:0>
390 | (Rb_uq<23:16> << 8)
391 | (Rb_uq<39:32> << 16)
392 | (Rb_uq<55:48> << 24));
393 }}, IntAluOp);
394
395 0x37: pklb({{
393 }}, IntAluOp);
394
395 0x37: pklb({{
396 Rc = (Rb.uq<7:0> | (Rb.uq<39:32> << 8));
396 Rc = (Rb_uq<7:0> | (Rb_uq<39:32> << 8));
397 }}, IntAluOp);
398
399 0x38: minsb8({{
400 uint64_t temp = 0;
401 int hi = 63;
402 int lo = 56;
403 for (int i = 7; i >= 0; --i) {
397 }}, IntAluOp);
398
399 0x38: minsb8({{
400 uint64_t temp = 0;
401 int hi = 63;
402 int lo = 56;
403 for (int i = 7; i >= 0; --i) {
404 int8_t ra_sb = Ra.uq<hi:lo>;
405 int8_t rb_sb = Rb.uq<hi:lo>;
404 int8_t ra_sb = Ra_uq<hi:lo>;
405 int8_t rb_sb = Rb_uq<hi:lo>;
406 temp = ((temp << 8)
406 temp = ((temp << 8)
407 | ((ra_sb < rb_sb) ? Ra.uq<hi:lo>
408 : Rb.uq<hi:lo>));
407 | ((ra_sb < rb_sb) ? Ra_uq<hi:lo>
408 : Rb_uq<hi:lo>));
409 hi -= 8;
410 lo -= 8;
411 }
412 Rc = temp;
413 }});
414
415 0x39: minsw4({{
416 uint64_t temp = 0;
417 int hi = 63;
418 int lo = 48;
419 for (int i = 3; i >= 0; --i) {
409 hi -= 8;
410 lo -= 8;
411 }
412 Rc = temp;
413 }});
414
415 0x39: minsw4({{
416 uint64_t temp = 0;
417 int hi = 63;
418 int lo = 48;
419 for (int i = 3; i >= 0; --i) {
420 int16_t ra_sw = Ra.uq<hi:lo>;
421 int16_t rb_sw = Rb.uq<hi:lo>;
420 int16_t ra_sw = Ra_uq<hi:lo>;
421 int16_t rb_sw = Rb_uq<hi:lo>;
422 temp = ((temp << 16)
422 temp = ((temp << 16)
423 | ((ra_sw < rb_sw) ? Ra.uq<hi:lo>
424 : Rb.uq<hi:lo>));
423 | ((ra_sw < rb_sw) ? Ra_uq<hi:lo>
424 : Rb_uq<hi:lo>));
425 hi -= 16;
426 lo -= 16;
427 }
428 Rc = temp;
429 }});
430
431 0x3a: minub8({{
432 uint64_t temp = 0;
433 int hi = 63;
434 int lo = 56;
435 for (int i = 7; i >= 0; --i) {
425 hi -= 16;
426 lo -= 16;
427 }
428 Rc = temp;
429 }});
430
431 0x3a: minub8({{
432 uint64_t temp = 0;
433 int hi = 63;
434 int lo = 56;
435 for (int i = 7; i >= 0; --i) {
436 uint8_t ra_ub = Ra.uq<hi:lo>;
437 uint8_t rb_ub = Rb.uq<hi:lo>;
436 uint8_t ra_ub = Ra_uq<hi:lo>;
437 uint8_t rb_ub = Rb_uq<hi:lo>;
438 temp = ((temp << 8)
438 temp = ((temp << 8)
439 | ((ra_ub < rb_ub) ? Ra.uq<hi:lo>
440 : Rb.uq<hi:lo>));
439 | ((ra_ub < rb_ub) ? Ra_uq<hi:lo>
440 : Rb_uq<hi:lo>));
441 hi -= 8;
442 lo -= 8;
443 }
444 Rc = temp;
445 }});
446
447 0x3b: minuw4({{
448 uint64_t temp = 0;
449 int hi = 63;
450 int lo = 48;
451 for (int i = 3; i >= 0; --i) {
441 hi -= 8;
442 lo -= 8;
443 }
444 Rc = temp;
445 }});
446
447 0x3b: minuw4({{
448 uint64_t temp = 0;
449 int hi = 63;
450 int lo = 48;
451 for (int i = 3; i >= 0; --i) {
452 uint16_t ra_sw = Ra.uq<hi:lo>;
453 uint16_t rb_sw = Rb.uq<hi:lo>;
452 uint16_t ra_sw = Ra_uq<hi:lo>;
453 uint16_t rb_sw = Rb_uq<hi:lo>;
454 temp = ((temp << 16)
454 temp = ((temp << 16)
455 | ((ra_sw < rb_sw) ? Ra.uq<hi:lo>
456 : Rb.uq<hi:lo>));
455 | ((ra_sw < rb_sw) ? Ra_uq<hi:lo>
456 : Rb_uq<hi:lo>));
457 hi -= 16;
458 lo -= 16;
459 }
460 Rc = temp;
461 }});
462
463 0x3c: maxub8({{
464 uint64_t temp = 0;
465 int hi = 63;
466 int lo = 56;
467 for (int i = 7; i >= 0; --i) {
457 hi -= 16;
458 lo -= 16;
459 }
460 Rc = temp;
461 }});
462
463 0x3c: maxub8({{
464 uint64_t temp = 0;
465 int hi = 63;
466 int lo = 56;
467 for (int i = 7; i >= 0; --i) {
468 uint8_t ra_ub = Ra.uq<hi:lo>;
469 uint8_t rb_ub = Rb.uq<hi:lo>;
468 uint8_t ra_ub = Ra_uq<hi:lo>;
469 uint8_t rb_ub = Rb_uq<hi:lo>;
470 temp = ((temp << 8)
470 temp = ((temp << 8)
471 | ((ra_ub > rb_ub) ? Ra.uq<hi:lo>
472 : Rb.uq<hi:lo>));
471 | ((ra_ub > rb_ub) ? Ra_uq<hi:lo>
472 : Rb_uq<hi:lo>));
473 hi -= 8;
474 lo -= 8;
475 }
476 Rc = temp;
477 }});
478
479 0x3d: maxuw4({{
480 uint64_t temp = 0;
481 int hi = 63;
482 int lo = 48;
483 for (int i = 3; i >= 0; --i) {
473 hi -= 8;
474 lo -= 8;
475 }
476 Rc = temp;
477 }});
478
479 0x3d: maxuw4({{
480 uint64_t temp = 0;
481 int hi = 63;
482 int lo = 48;
483 for (int i = 3; i >= 0; --i) {
484 uint16_t ra_uw = Ra.uq<hi:lo>;
485 uint16_t rb_uw = Rb.uq<hi:lo>;
484 uint16_t ra_uw = Ra_uq<hi:lo>;
485 uint16_t rb_uw = Rb_uq<hi:lo>;
486 temp = ((temp << 16)
486 temp = ((temp << 16)
487 | ((ra_uw > rb_uw) ? Ra.uq<hi:lo>
488 : Rb.uq<hi:lo>));
487 | ((ra_uw > rb_uw) ? Ra_uq<hi:lo>
488 : Rb_uq<hi:lo>));
489 hi -= 16;
490 lo -= 16;
491 }
492 Rc = temp;
493 }});
494
495 0x3e: maxsb8({{
496 uint64_t temp = 0;
497 int hi = 63;
498 int lo = 56;
499 for (int i = 7; i >= 0; --i) {
489 hi -= 16;
490 lo -= 16;
491 }
492 Rc = temp;
493 }});
494
495 0x3e: maxsb8({{
496 uint64_t temp = 0;
497 int hi = 63;
498 int lo = 56;
499 for (int i = 7; i >= 0; --i) {
500 int8_t ra_sb = Ra.uq<hi:lo>;
501 int8_t rb_sb = Rb.uq<hi:lo>;
500 int8_t ra_sb = Ra_uq<hi:lo>;
501 int8_t rb_sb = Rb_uq<hi:lo>;
502 temp = ((temp << 8)
502 temp = ((temp << 8)
503 | ((ra_sb > rb_sb) ? Ra.uq<hi:lo>
504 : Rb.uq<hi:lo>));
503 | ((ra_sb > rb_sb) ? Ra_uq<hi:lo>
504 : Rb_uq<hi:lo>));
505 hi -= 8;
506 lo -= 8;
507 }
508 Rc = temp;
509 }});
510
511 0x3f: maxsw4({{
512 uint64_t temp = 0;
513 int hi = 63;
514 int lo = 48;
515 for (int i = 3; i >= 0; --i) {
505 hi -= 8;
506 lo -= 8;
507 }
508 Rc = temp;
509 }});
510
511 0x3f: maxsw4({{
512 uint64_t temp = 0;
513 int hi = 63;
514 int lo = 48;
515 for (int i = 3; i >= 0; --i) {
516 int16_t ra_sw = Ra.uq<hi:lo>;
517 int16_t rb_sw = Rb.uq<hi:lo>;
516 int16_t ra_sw = Ra_uq<hi:lo>;
517 int16_t rb_sw = Rb_uq<hi:lo>;
518 temp = ((temp << 16)
518 temp = ((temp << 16)
519 | ((ra_sw > rb_sw) ? Ra.uq<hi:lo>
520 : Rb.uq<hi:lo>));
519 | ((ra_sw > rb_sw) ? Ra_uq<hi:lo>
520 : Rb_uq<hi:lo>));
521 hi -= 16;
522 lo -= 16;
523 }
524 Rc = temp;
525 }});
526
527 format BasicOperateWithNopCheck {
528 0x70: decode RB {
521 hi -= 16;
522 lo -= 16;
523 }
524 Rc = temp;
525 }});
526
527 format BasicOperateWithNopCheck {
528 0x70: decode RB {
529 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
529 31: ftoit({{ Rc = Fa_uq; }}, FloatCvtOp);
530 }
531 0x78: decode RB {
530 }
531 0x78: decode RB {
532 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
532 31: ftois({{ Rc_sl = t_to_s(Fa_uq); }},
533 FloatCvtOp);
534 }
535 }
536 }
537 }
538
539 // Conditional branches.
540 format CondBranch {
541 0x39: beq({{ cond = (Ra == 0); }});
542 0x3d: bne({{ cond = (Ra != 0); }});
533 FloatCvtOp);
534 }
535 }
536 }
537 }
538
539 // Conditional branches.
540 format CondBranch {
541 0x39: beq({{ cond = (Ra == 0); }});
542 0x3d: bne({{ cond = (Ra != 0); }});
543 0x3e: bge({{ cond = (Ra.sq >= 0); }});
544 0x3f: bgt({{ cond = (Ra.sq > 0); }});
545 0x3b: ble({{ cond = (Ra.sq <= 0); }});
546 0x3a: blt({{ cond = (Ra.sq < 0); }});
543 0x3e: bge({{ cond = (Ra_sq >= 0); }});
544 0x3f: bgt({{ cond = (Ra_sq > 0); }});
545 0x3b: ble({{ cond = (Ra_sq <= 0); }});
546 0x3a: blt({{ cond = (Ra_sq < 0); }});
547 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
548 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
549
550 0x31: fbeq({{ cond = (Fa == 0); }});
551 0x35: fbne({{ cond = (Fa != 0); }});
552 0x36: fbge({{ cond = (Fa >= 0); }});
553 0x37: fbgt({{ cond = (Fa > 0); }});
554 0x33: fble({{ cond = (Fa <= 0); }});

--- 17 unchanged lines hidden (view full) ---

572 }
573
574 // Square root and integer-to-FP moves
575 0x14: decode FP_SHORTFUNC {
576 // Integer to FP register moves must have RB == 31
577 0x4: decode RB {
578 31: decode FP_FULLFUNC {
579 format BasicOperateWithNopCheck {
547 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
548 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
549
550 0x31: fbeq({{ cond = (Fa == 0); }});
551 0x35: fbne({{ cond = (Fa != 0); }});
552 0x36: fbge({{ cond = (Fa >= 0); }});
553 0x37: fbgt({{ cond = (Fa > 0); }});
554 0x33: fble({{ cond = (Fa <= 0); }});

--- 17 unchanged lines hidden (view full) ---

572 }
573
574 // Square root and integer-to-FP moves
575 0x14: decode FP_SHORTFUNC {
576 // Integer to FP register moves must have RB == 31
577 0x4: decode RB {
578 31: decode FP_FULLFUNC {
579 format BasicOperateWithNopCheck {
580 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
581 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
580 0x004: itofs({{ Fc_uq = s_to_t(Ra_ul); }}, FloatCvtOp);
581 0x024: itoft({{ Fc_uq = Ra_uq; }}, FloatCvtOp);
582 0x014: FailUnimpl::itoff(); // VAX-format conversion
583 }
584 }
585 }
586
587 // Square root instructions must have FA == 31
588 0xb: decode FA {
589 31: decode FP_TYPEFUNC {
590 format FloatingPointOperate {
591#if SS_COMPATIBLE_FP
592 0x0b: sqrts({{
593 if (Fb < 0.0)
594 fault = new ArithmeticFault;
595 Fc = sqrt(Fb);
596 }}, FloatSqrtOp);
597#else
598 0x0b: sqrts({{
582 0x014: FailUnimpl::itoff(); // VAX-format conversion
583 }
584 }
585 }
586
587 // Square root instructions must have FA == 31
588 0xb: decode FA {
589 31: decode FP_TYPEFUNC {
590 format FloatingPointOperate {
591#if SS_COMPATIBLE_FP
592 0x0b: sqrts({{
593 if (Fb < 0.0)
594 fault = new ArithmeticFault;
595 Fc = sqrt(Fb);
596 }}, FloatSqrtOp);
597#else
598 0x0b: sqrts({{
599 if (Fb.sf < 0.0)
599 if (Fb_sf < 0.0)
600 fault = new ArithmeticFault;
600 fault = new ArithmeticFault;
601 Fc.sf = sqrt(Fb.sf);
601 Fc_sf = sqrt(Fb_sf);
602 }}, FloatSqrtOp);
603#endif
604 0x2b: sqrtt({{
605 if (Fb < 0.0)
606 fault = new ArithmeticFault;
607 Fc = sqrt(Fb);
608 }}, FloatSqrtOp);
609 }

--- 23 unchanged lines hidden (view full) ---

633 0,1,5,7: decode FP_TYPEFUNC {
634 format FloatingPointOperate {
635#if SS_COMPATIBLE_FP
636 0x00: adds({{ Fc = Fa + Fb; }});
637 0x01: subs({{ Fc = Fa - Fb; }});
638 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
639 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
640#else
602 }}, FloatSqrtOp);
603#endif
604 0x2b: sqrtt({{
605 if (Fb < 0.0)
606 fault = new ArithmeticFault;
607 Fc = sqrt(Fb);
608 }}, FloatSqrtOp);
609 }

--- 23 unchanged lines hidden (view full) ---

633 0,1,5,7: decode FP_TYPEFUNC {
634 format FloatingPointOperate {
635#if SS_COMPATIBLE_FP
636 0x00: adds({{ Fc = Fa + Fb; }});
637 0x01: subs({{ Fc = Fa - Fb; }});
638 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
639 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
640#else
641 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
642 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
643 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
644 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
641 0x00: adds({{ Fc_sf = Fa_sf + Fb_sf; }});
642 0x01: subs({{ Fc_sf = Fa_sf - Fb_sf; }});
643 0x02: muls({{ Fc_sf = Fa_sf * Fb_sf; }}, FloatMultOp);
644 0x03: divs({{ Fc_sf = Fa_sf / Fb_sf; }}, FloatDivOp);
645#endif
646
647 0x20: addt({{ Fc = Fa + Fb; }});
648 0x21: subt({{ Fc = Fa - Fb; }});
649 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
650 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
651 }
652 }

--- 23 unchanged lines hidden (view full) ---

676 // The FP-to-integer and integer-to-FP conversion insts
677 // require that FA be 31.
678 3: decode FA {
679 31: decode FP_TYPEFUNC {
680 format FloatingPointOperate {
681 0x2f: decode FP_ROUNDMODE {
682 format FPFixedRounding {
683 // "chopped" i.e. round toward zero
645#endif
646
647 0x20: addt({{ Fc = Fa + Fb; }});
648 0x21: subt({{ Fc = Fa - Fb; }});
649 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
650 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
651 }
652 }

--- 23 unchanged lines hidden (view full) ---

676 // The FP-to-integer and integer-to-FP conversion insts
677 // require that FA be 31.
678 3: decode FA {
679 31: decode FP_TYPEFUNC {
680 format FloatingPointOperate {
681 0x2f: decode FP_ROUNDMODE {
682 format FPFixedRounding {
683 // "chopped" i.e. round toward zero
684 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
684 0: cvttq({{ Fc_sq = (int64_t)trunc(Fb); }},
685 Chopped);
686 // round to minus infinity
685 Chopped);
686 // round to minus infinity
687 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
687 1: cvttq({{ Fc_sq = (int64_t)floor(Fb); }},
688 MinusInfinity);
689 }
688 MinusInfinity);
689 }
690 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
690 default: cvttq({{ Fc_sq = (int64_t)nearbyint(Fb); }});
691 }
692
693 // The cvtts opcode is overloaded to be cvtst if the trap
694 // mode is 2 or 6 (which are not valid otherwise)
695 0x2c: decode FP_FULLFUNC {
696 format BasicOperateWithNopCheck {
697 // trap on denorm version "cvtst/s" is
698 // simulated same as cvtst
691 }
692
693 // The cvtts opcode is overloaded to be cvtst if the trap
694 // mode is 2 or 6 (which are not valid otherwise)
695 0x2c: decode FP_FULLFUNC {
696 format BasicOperateWithNopCheck {
697 // trap on denorm version "cvtst/s" is
698 // simulated same as cvtst
699 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
699 0x2ac, 0x6ac: cvtst({{ Fc = Fb_sf; }});
700 }
700 }
701 default: cvtts({{ Fc.sf = Fb; }});
701 default: cvtts({{ Fc_sf = Fb; }});
702 }
703
704 // The trapping mode for integer-to-FP conversions
705 // must be /SUI or nothing; /U and /SU are not
706 // allowed. The full set of rounding modes are
707 // supported though.
708 0x3c: decode FP_TRAPMODE {
702 }
703
704 // The trapping mode for integer-to-FP conversions
705 // must be /SUI or nothing; /U and /SU are not
706 // allowed. The full set of rounding modes are
707 // supported though.
708 0x3c: decode FP_TRAPMODE {
709 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
709 0,7: cvtqs({{ Fc_sf = Fb_sq; }});
710 }
711 0x3e: decode FP_TRAPMODE {
710 }
711 0x3e: decode FP_TRAPMODE {
712 0,7: cvtqt({{ Fc = Fb.sq; }});
712 0,7: cvtqt({{ Fc = Fb_sq; }});
713 }
714 }
715 }
716 }
717 }
718
719 // misc FP operate
720 0x17: decode FP_FULLFUNC {
721 format BasicOperateWithNopCheck {
722 0x010: cvtlq({{
713 }
714 }
715 }
716 }
717 }
718
719 // misc FP operate
720 0x17: decode FP_FULLFUNC {
721 format BasicOperateWithNopCheck {
722 0x010: cvtlq({{
723 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
723 Fc_sl = (Fb_uq<63:62> << 30) | Fb_uq<58:29>;
724 }});
725 0x030: cvtql({{
724 }});
725 0x030: cvtql({{
726 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
726 Fc_uq = (Fb_uq<31:30> << 62) | (Fb_uq<29:0> << 29);
727 }});
728
729 // We treat the precise & imprecise trapping versions of
730 // cvtql identically.
731 0x130, 0x530: cvtqlv({{
732 // To avoid overflow, all the upper 32 bits must match
733 // the sign bit of the lower 32. We code this as
734 // checking the upper 33 bits for all 0s or all 1s.
727 }});
728
729 // We treat the precise & imprecise trapping versions of
730 // cvtql identically.
731 0x130, 0x530: cvtqlv({{
732 // To avoid overflow, all the upper 32 bits must match
733 // the sign bit of the lower 32. We code this as
734 // checking the upper 33 bits for all 0s or all 1s.
735 uint64_t sign_bits = Fb.uq<63:31>;
735 uint64_t sign_bits = Fb_uq<63:31>;
736 if (sign_bits != 0 && sign_bits != mask(33))
737 fault = new IntegerOverflowFault;
736 if (sign_bits != 0 && sign_bits != mask(33))
737 fault = new IntegerOverflowFault;
738 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
738 Fc_uq = (Fb_uq<31:30> << 62) | (Fb_uq<29:0> << 29);
739 }});
740
741 0x020: cpys({{ // copy sign
739 }});
740
741 0x020: cpys({{ // copy sign
742 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
742 Fc_uq = (Fa_uq<63:> << 63) | Fb_uq<62:0>;
743 }});
744 0x021: cpysn({{ // copy sign negated
743 }});
744 0x021: cpysn({{ // copy sign negated
745 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
745 Fc_uq = (~Fa_uq<63:> << 63) | Fb_uq<62:0>;
746 }});
747 0x022: cpyse({{ // copy sign and exponent
746 }});
747 0x022: cpyse({{ // copy sign and exponent
748 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
748 Fc_uq = (Fa_uq<63:52> << 52) | Fb_uq<51:0>;
749 }});
750
751 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
752 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
753 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
754 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
755 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
756 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
757
749 }});
750
751 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
752 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
753 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
754 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
755 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
756 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
757
758 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess);
759 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess);
758 0x024: mt_fpcr({{ FPCR = Fa_uq; }}, IsIprAccess);
759 0x025: mf_fpcr({{ Fa_uq = FPCR; }}, IsIprAccess);
760 }
761 }
762
763 // miscellaneous mem-format ops
764 0x18: decode MEMFUNC {
765 format WarnUnimpl {
766 0x8000: fetch();
767 0xa000: fetch_m();

--- 89 unchanged lines hidden (view full) ---

857 }
858#endif
859
860#if FULL_SYSTEM
861 0x1b: decode PALMODE {
862 0: OpcdecFault::hw_st_quad();
863 1: decode HW_LDST_QUAD {
864 format HwLoad {
760 }
761 }
762
763 // miscellaneous mem-format ops
764 0x18: decode MEMFUNC {
765 format WarnUnimpl {
766 0x8000: fetch();
767 0xa000: fetch_m();

--- 89 unchanged lines hidden (view full) ---

857 }
858#endif
859
860#if FULL_SYSTEM
861 0x1b: decode PALMODE {
862 0: OpcdecFault::hw_st_quad();
863 1: decode HW_LDST_QUAD {
864 format HwLoad {
865 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }},
865 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem_ul; }},
866 L, IsSerializing, IsSerializeBefore);
866 L, IsSerializing, IsSerializeBefore);
867 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }},
867 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem_uq; }},
868 Q, IsSerializing, IsSerializeBefore);
869 }
870 }
871 }
872
873 0x1f: decode PALMODE {
874 0: OpcdecFault::hw_st_cond();
875 format HwStore {
876 1: decode HW_LDST_COND {
877 0: decode HW_LDST_QUAD {
878 0: hw_st({{ EA = (Rb + disp) & ~3; }},
868 Q, IsSerializing, IsSerializeBefore);
869 }
870 }
871 }
872
873 0x1f: decode PALMODE {
874 0: OpcdecFault::hw_st_cond();
875 format HwStore {
876 1: decode HW_LDST_COND {
877 0: decode HW_LDST_QUAD {
878 0: hw_st({{ EA = (Rb + disp) & ~3; }},
879 {{ Mem.ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore);
879 {{ Mem_ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore);
880 1: hw_st({{ EA = (Rb + disp) & ~7; }},
880 1: hw_st({{ EA = (Rb + disp) & ~7; }},
881 {{ Mem.uq = Ra.uq; }}, Q, IsSerializing, IsSerializeBefore);
881 {{ Mem_uq = Ra_uq; }}, Q, IsSerializing, IsSerializeBefore);
882 }
883
884 1: FailUnimpl::hw_st_cond();
885 }
886 }
887 }
888
889 0x19: decode PALMODE {

--- 180 unchanged lines hidden ---
882 }
883
884 1: FailUnimpl::hw_st_cond();
885 }
886 }
887 }
888
889 0x19: decode PALMODE {

--- 180 unchanged lines hidden ---