Deleted Added
sdiff udiff text old ( 10152:52c552138ba1 ) new ( 10234:5cb711fa6176 )
full compact
1/*****************************************************************************
2 * McPAT
3 * SOFTWARE LICENSE AGREEMENT
4 * Copyright 2012 Hewlett-Packard Development Company, L.P.
5 * Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
6 * All Rights Reserved
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met: redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer;
12 * redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the

--- 7 unchanged lines hidden (view full) ---

21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 ***************************************************************************/
32
33#include <algorithm>
34#include <cassert>
35#include <cmath>
36#include <iostream>
37#include <string>
38
39#include "basic_circuit.h"
40#include "basic_components.h"
41#include "common.h"
42#include "const.h"
43#include "io.h"
44#include "logic.h"
45#include "memoryctrl.h"
46#include "parameter.h"
47
48/* overview of MC models:
49 * McPAT memory controllers are modeled according to large number of industrial data points.

--- 16 unchanged lines hidden (view full) ---

66 * memory controllers as the DDR2/DDR3-Lite protocol controllers (except DesignWare DDR2/DDR3-Lite memory
67 * controllers, all memory controller IP in Cadence ChipEstimator Tool are backend memory controllers such as
68 * DDRC 1600A and DDRC 800A). Thus,to some extend the area and power difference between DesignWare
69 * DDR2/DDR3-Lite memory controllers and DDR2/DDR3-Lite protocol controllers can be an estimation to the
70 * frontend power and area, which is very close the analitically modeled results of the frontend for Niagara2@65nm
71 *
72 */
73
74MCBackend::MCBackend(XMLNode* _xml_data, InputParameter* interface_ip_,
75 const MCParameters & mcp_, const MCStatistics & mcs_)
76 : McPATComponent(_xml_data), l_ip(*interface_ip_), mcp(mcp_), mcs(mcs_) {
77 name = "Transaction Engine";
78 local_result = init_interface(&l_ip, name);
79
80 // Set up stats for the power calculations
81 tdp_stats.reset();
82 tdp_stats.readAc.access = 0.5 * mcp.num_channels * mcp.clockRate;
83 tdp_stats.writeAc.access = 0.5 * mcp.num_channels * mcp.clockRate;
84 rtp_stats.reset();
85 rtp_stats.readAc.access = mcs.reads;
86 rtp_stats.writeAc.access = mcs.writes;
87}
88
89void MCBackend::computeArea() {
90 // The area is in nm^2
91 if (mcp.mc_type == MC) {
92 if (mcp.type == 0) {
93 output_data.area = (2.7927 * log(mcp.peak_transfer_rate * 2) -
94 19.862) / 2.0 * mcp.dataBusWidth / 128.0 *
95 (l_ip.F_sz_um / 0.09) * mcp.num_channels;
96 } else {
97 output_data.area = 0.15 * mcp.dataBusWidth / 72.0 *
98 (l_ip.F_sz_um / 0.065) * (l_ip.F_sz_um / 0.065) *
99 mcp.num_channels;
100 }
101 } else {
102 //skip old model
103 cout << "Unknown memory controllers" << endl;
104 exit(0);
105 //area based on Cadence ChipEstimator for 8bit bus
106 output_data.area = 0.243 * mcp.dataBusWidth / 8;
107 }
108}
109
110
111void MCBackend::computeEnergy() {
112 double C_MCB, mc_power;
113 double backend_dyn;
114 double backend_gates;
115 double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
116 double NMOS_sizing = g_tp.min_w_nmos_;
117 double PMOS_sizing = g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
118 double area_um2 = output_data.area * 1e6;
119
120 if (mcp.mc_type == MC) {
121 if (mcp.type == 0) {
122 //assuming the approximately same scaling factor as seen in processors.
123 //C_MCB = 1.6/200/1e6/144/1.2/1.2*g_ip.F_sz_um/0.19;//Based on Niagara power numbers.The base power (W) is divided by device frequency and vdd and scale to target process.
124 //mc_power = 0.0291*2;//29.1mW@200MHz @130nm From Power Analysis of SystemLevel OnChip Communication Architectures by Lahiri et
125 mc_power = 4.32*0.1;//4.32W@1GhzMHz @65nm Cadence ChipEstimator 10% for backend
126 C_MCB = mc_power/1e9/72/1.1/1.1*l_ip.F_sz_um/0.065;
127 //per access energy in memory controller
128 power.readOp.dynamic = C_MCB * g_tp.peri_global.Vdd *
129 g_tp.peri_global.Vdd *
130 (mcp.dataBusWidth/*+mcp.addressBusWidth*/);
131 power.readOp.leakage = area_um2 / 2 *
132 (g_tp.scaling_factor.core_tx_density) *
133 cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 1, inv) *
134 g_tp.peri_global.Vdd;//unit W
135 power.readOp.gate_leakage = area_um2 / 2 *
136 (g_tp.scaling_factor.core_tx_density) *
137 cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 1, inv) *
138 g_tp.peri_global.Vdd;//unit W
139 } else {
140 //Average on DDR2/3 protocol controller and DDRC 1600/800A in
141 //Cadence ChipEstimate
142 backend_dyn = 0.9e-9 / 800e6 * mcp.clockRate / 12800 *
143 mcp.peak_transfer_rate* mcp.dataBusWidth / 72.0 *
144 g_tp.peri_global.Vdd / 1.1 * g_tp.peri_global.Vdd / 1.1 *
145 (l_ip.F_sz_nm/65.0);
146 //Scaling to technology and DIMM feature. The base IP support
147 //DDR3-1600(PC3 12800)
148 //5000 is from Cadence ChipEstimator
149 backend_gates = 50000 * mcp.dataBusWidth / 64.0;
150
151 power.readOp.dynamic = backend_dyn;
152 power.readOp.leakage = (backend_gates) *
153 cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
154 g_tp.peri_global.Vdd;//unit W
155 power.readOp.gate_leakage = (backend_gates) *
156 cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
157 g_tp.peri_global.Vdd;//unit W
158 }
159 } else {
160 //skip old model
161 cout<<"Unknown memory controllers"<<endl;exit(0);
162 //mc_power = 4.32*0.1;//4.32W@1GhzMHz @65nm Cadence ChipEstimator 10% for backend
163 C_MCB = mc_power/1e9/72/1.1/1.1*l_ip.F_sz_um/0.065;
164 power.readOp.leakage = area_um2 / 2 *
165 (g_tp.scaling_factor.core_tx_density) *
166 cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 1, inv) *
167 g_tp.peri_global.Vdd;//unit W
168 power.readOp.gate_leakage = area_um2 / 2 *
169 (g_tp.scaling_factor.core_tx_density) *
170 cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 1, inv) *
171 g_tp.peri_global.Vdd;//unit W
172 power.readOp.dynamic *= 1.2;
173 power.readOp.leakage *= 1.2;
174 power.readOp.gate_leakage *= 1.2;
175 //flash controller has about 20% more backend power since BCH ECC in
176 //flash is complex and power hungry
177 }
178 double long_channel_device_reduction =
179 longer_channel_device_reduction(Uncore_device);
180 power.readOp.longer_channel_leakage = power.readOp.leakage *
181 long_channel_device_reduction;
182
183 // Output leakage power calculations
184 output_data.subthreshold_leakage_power =
185 longer_channel_device ? power.readOp.longer_channel_leakage :
186 power.readOp.leakage;
187 output_data.gate_leakage_power = power.readOp.gate_leakage;
188
189 // Peak dynamic power calculation
190 output_data.peak_dynamic_power = power.readOp.dynamic *
191 (tdp_stats.readAc.access + tdp_stats.writeAc.access);
192
193 // Runtime dynamic energy calculation
194 output_data.runtime_dynamic_energy =
195 power.readOp.dynamic *
196 (rtp_stats.readAc.access + rtp_stats.writeAc.access) *
197 mcp.llcBlockSize * BITS_PER_BYTE / mcp.dataBusWidth +
198 // Original McPAT code: Assume 10% of peak power is consumed by routine
199 // job including memory refreshing and scrubbing
200 power.readOp.dynamic * 0.1 * execution_time;
201}
202
203MCPHY::MCPHY(XMLNode* _xml_data, InputParameter* interface_ip_,
204 const MCParameters & mcp_, const MCStatistics & mcs_)
205 : McPATComponent(_xml_data), l_ip(*interface_ip_), mcp(mcp_), mcs(mcs_) {
206 name = "Physical Interface (PHY)";
207 local_result = init_interface(&l_ip, name);
208
209 // Set up stats for the power calculations
210 // TODO: Figure out why TDP stats aren't used
211 tdp_stats.reset();
212 tdp_stats.readAc.access = 0.5 * mcp.num_channels;
213 tdp_stats.writeAc.access = 0.5 * mcp.num_channels;
214 rtp_stats.reset();
215 rtp_stats.readAc.access = mcs.reads;
216 rtp_stats.writeAc.access = mcs.writes;
217}
218
219void MCPHY::computeArea() {
220 if (mcp.mc_type == MC) {
221 if (mcp.type == 0) {
222 //Based on die photos from Niagara 1 and 2.
223 //TODO merge this into undifferentiated core.PHY only achieves
224 //square root of the ideal scaling.
225 output_data.area = (6.4323 * log(mcp.peak_transfer_rate * 2) -
226 48.134) * mcp.dataBusWidth / 128.0 *
227 (l_ip.F_sz_um / 0.09) * mcp.num_channels / 2;//TODO:/2
228 } else {
229 //Designware/synopsis 16bit DDR3 PHY is 1.3mm (WITH IOs) at 40nm
230 //for upto DDR3 2133 (PC3 17066)
231 double non_IO_percentage = 0.2;
232 output_data.area = 1.3 * non_IO_percentage / 2133.0e6 *
233 mcp.clockRate / 17066 * mcp.peak_transfer_rate *
234 mcp.dataBusWidth / 16.0 * (l_ip.F_sz_um / 0.040)*
235 (l_ip.F_sz_um / 0.040) * mcp.num_channels;//um^2
236 }
237 } else {
238 //area based on Cadence ChipEstimator for 8bit bus
239 output_data.area = 0.4e6 / 2 * mcp.dataBusWidth / 8 / 1e6;
240 }
241}
242
243void MCPHY::computeEnergy() {
244 //PHY uses internal data buswidth but the actuall off-chip datawidth is 64bits + ecc
245 double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
246 /*
247 * according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS for next-generation memory interfaces ," ISSCC 2006;
248 * From Cadence ChipEstimator for normal I/O around 0.4~0.8 mW/Gb/s
249 */
250 double power_per_gb_per_s, phy_dyn,phy_gates;
251 double NMOS_sizing = g_tp.min_w_nmos_;
252 double PMOS_sizing = g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
253 double area_um2 = output_data.area * 1e6;
254
255 if (mcp.mc_type == MC) {
256 if (mcp.type == 0) {
257 power_per_gb_per_s = mcp.LVDS ? 0.01 : 0.04;
258 //This is from curve fitting based on Niagara 1 and 2's PHY die photo.
259 //This is power not energy, 10mw/Gb/s @90nm for each channel and scaling down
260 //power.readOp.dynamic = 0.02*memAccesses*llcBlocksize*8;//change from Bytes to bits.
261 power.readOp.dynamic = power_per_gb_per_s *
262 sqrt(l_ip.F_sz_um / 0.09) * g_tp.peri_global.Vdd / 1.2 *
263 g_tp.peri_global.Vdd / 1.2;
264 power.readOp.leakage = area_um2 / 2 *
265 (g_tp.scaling_factor.core_tx_density) *
266 cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 1, inv) *
267 g_tp.peri_global.Vdd;//unit W
268 power.readOp.gate_leakage = area_um2 / 2 *
269 (g_tp.scaling_factor.core_tx_density) *
270 cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 1, inv) *
271 g_tp.peri_global.Vdd;//unit W
272 } else {
273 phy_gates = 200000 * mcp.dataBusWidth / 64.0;
274 power_per_gb_per_s = 0.01;
275 //This is power not energy, 10mw/Gb/s @90nm for each channel and scaling down
276 power.readOp.dynamic = power_per_gb_per_s * (l_ip.F_sz_um / 0.09) *
277 g_tp.peri_global.Vdd / 1.2 * g_tp.peri_global.Vdd / 1.2;
278 power.readOp.leakage = (mcp.withPHY ? phy_gates : 0) *
279 cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
280 g_tp.peri_global.Vdd;//unit W
281 power.readOp.gate_leakage = (mcp.withPHY ? phy_gates : 0) *
282 cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
283 g_tp.peri_global.Vdd;//unit W
284 }
285 }
286
287// double phy_factor = (int)ceil(mcp.dataBusWidth/72.0);//Previous phy power numbers are based on 72 bit DIMM interface
288// power_t.readOp.dynamic *= phy_factor;
289// power_t.readOp.leakage *= phy_factor;
290// power_t.readOp.gate_leakage *= phy_factor;
291
292 double long_channel_device_reduction =
293 longer_channel_device_reduction(Uncore_device);
294 power.readOp.longer_channel_leakage =
295 power.readOp.leakage * long_channel_device_reduction;
296
297 // Leakage power calculations
298 output_data.subthreshold_leakage_power =
299 longer_channel_device ? power.readOp.longer_channel_leakage :
300 power.readOp.leakage;
301 output_data.gate_leakage_power = power.readOp.gate_leakage;
302
303 // Peak dynamic power calculation
304 double data_transfer_unit = (mcp.mc_type == MC)? 72:16;/*DIMM data width*/
305 output_data.peak_dynamic_power = power.readOp.dynamic *
306 (mcp.peak_transfer_rate * BITS_PER_BYTE / 1e3) * mcp.dataBusWidth /
307 data_transfer_unit * mcp.num_channels / mcp.clockRate;
308
309 // Runtime dynamic energy calculation
310 output_data.runtime_dynamic_energy =
311 power.readOp.dynamic *
312 (rtp_stats.readAc.access + rtp_stats.writeAc.access) *
313 mcp.llcBlockSize * BITS_PER_BYTE / 1e9 +
314 // Original McPAT code: Assume 10% of peak power is consumed by routine
315 // job including memory refreshing and scrubbing
316 power.readOp.dynamic * 0.1 * execution_time;
317}
318
319MCFrontEnd::MCFrontEnd(XMLNode* _xml_data, InputParameter* interface_ip_,
320 const MCParameters & mcp_, const MCStatistics & mcs_)
321 : McPATComponent(_xml_data), frontendBuffer(NULL), readBuffer(NULL),
322 writeBuffer(NULL), MC_arb(NULL), interface_ip(*interface_ip_),
323 mcp(mcp_), mcs(mcs_) {
324 int tag, data;
325 bool is_default = true;//indication for default setup
326
327 /* MC frontend engine channels share the same engines but logically partitioned
328 * For all hardware inside MC. different channels do not share resources.
329 * TODO: add docodeing/mux stage to steer memory requests to different channels.
330 */
331
332 name = "Front End";
333
334 // Memory Request Reorder Buffer
335 tag = mcp.addressbus_width + EXTRA_TAG_BITS + mcp.opcodeW;
336 data = int(ceil((physical_address_width + mcp.opcodeW) / BITS_PER_BYTE));
337
338 interface_ip.cache_sz = data * mcp.req_window_size_per_channel;
339 interface_ip.line_sz = data;
340 interface_ip.assoc = mcp.reorder_buffer_assoc;
341 interface_ip.nbanks = mcp.reorder_buffer_nbanks;
342 interface_ip.out_w = interface_ip.line_sz * BITS_PER_BYTE;
343 interface_ip.specific_tag = tag > 0;
344 interface_ip.tag_w = tag;
345 interface_ip.access_mode = Normal;
346 interface_ip.obj_func_dyn_energy = 0;
347 interface_ip.obj_func_dyn_power = 0;
348 interface_ip.obj_func_leak_power = 0;
349 interface_ip.obj_func_cycle_t = 1;
350 interface_ip.num_rw_ports = 0;
351 interface_ip.num_rd_ports = mcp.num_channels;
352 interface_ip.num_wr_ports = interface_ip.num_rd_ports;
353 interface_ip.num_se_rd_ports = 0;
354 interface_ip.num_search_ports = mcp.num_channels;
355 interface_ip.is_cache = true;
356 interface_ip.pure_cam = false;
357 interface_ip.pure_ram = false;
358 interface_ip.throughput = 1.0 / mcp.clockRate;
359 interface_ip.latency = 1.0 / mcp.clockRate;
360 frontendBuffer = new CacheArray(xml_data, &interface_ip, "Reorder Buffer",
361 Uncore_device, mcp.clockRate);
362 children.push_back(frontendBuffer);
363
364 frontendBuffer->tdp_stats.reset();
365 frontendBuffer->tdp_stats.readAc.access =
366 frontendBuffer->l_ip.num_search_ports +
367 frontendBuffer->l_ip.num_wr_ports;
368 frontendBuffer->tdp_stats.writeAc.access =
369 frontendBuffer->l_ip.num_search_ports;
370 frontendBuffer->tdp_stats.searchAc.access =
371 frontendBuffer->l_ip.num_wr_ports;
372 frontendBuffer->rtp_stats.reset();
373 // TODO: These stats assume that access power is calculated per buffer
374 // bit, which requires the stats to take into account the number of
375 // bits for each buffer slot. This should be revised...
376 //For each channel, each memory word need to check the address data to
377 //achieve best scheduling results.
378 //and this need to be done on all physical DIMMs in each logical memory
379 //DIMM *mcp.dataBusWidth/72
380 frontendBuffer->rtp_stats.readAc.access = mcs.reads * mcp.llcBlockSize *
381 BITS_PER_BYTE / mcp.dataBusWidth * mcp.dataBusWidth / 72;
382 frontendBuffer->rtp_stats.writeAc.access = mcs.writes * mcp.llcBlockSize *
383 BITS_PER_BYTE / mcp.dataBusWidth * mcp.dataBusWidth / 72;
384 frontendBuffer->rtp_stats.searchAc.access =
385 frontendBuffer->rtp_stats.readAc.access +
386 frontendBuffer->rtp_stats.writeAc.access;
387
388 // Read Buffers
389 //Support key words first operation
390 data = (int)ceil(mcp.dataBusWidth / BITS_PER_BYTE);
391
392 interface_ip.cache_sz = data * mcp.IO_buffer_size_per_channel;
393 interface_ip.line_sz = data;
394 interface_ip.assoc = mcp.read_buffer_assoc;
395 interface_ip.nbanks = mcp.read_buffer_nbanks;
396 interface_ip.out_w = interface_ip.line_sz * BITS_PER_BYTE;
397 interface_ip.specific_tag = mcp.read_buffer_tag_width > 0;
398 interface_ip.tag_w = mcp.read_buffer_tag_width;
399 interface_ip.access_mode = Sequential;
400 interface_ip.obj_func_dyn_energy = 0;
401 interface_ip.obj_func_dyn_power = 0;
402 interface_ip.obj_func_leak_power = 0;
403 interface_ip.obj_func_cycle_t = 1;
404 interface_ip.num_rw_ports = 0;
405 interface_ip.num_rd_ports = mcp.num_channels;
406 interface_ip.num_wr_ports = interface_ip.num_rd_ports;
407 interface_ip.num_se_rd_ports = 0;
408 interface_ip.num_search_ports = 0;
409 interface_ip.is_cache = false;
410 interface_ip.pure_cam = false;
411 interface_ip.pure_ram = true;
412 interface_ip.throughput = 1.0 / mcp.clockRate;
413 interface_ip.latency = 1.0 / mcp.clockRate;
414 readBuffer = new CacheArray(xml_data, &interface_ip, "Read Buffer",
415 Uncore_device, mcp.clockRate);
416 children.push_back(readBuffer);
417
418 readBuffer->tdp_stats.reset();
419 readBuffer->tdp_stats.readAc.access = readBuffer->l_ip.num_rd_ports *
420 mcs.duty_cycle;
421 readBuffer->tdp_stats.writeAc.access = readBuffer->l_ip.num_wr_ports *
422 mcs.duty_cycle;
423 readBuffer->rtp_stats.reset();
424 readBuffer->rtp_stats.readAc.access = mcs.reads * mcp.llcBlockSize *
425 BITS_PER_BYTE / mcp.dataBusWidth;
426 readBuffer->rtp_stats.writeAc.access = mcs.reads * mcp.llcBlockSize *
427 BITS_PER_BYTE / mcp.dataBusWidth;
428
429 // Write Buffer
430 //Support key words first operation
431 data = (int)ceil(mcp.dataBusWidth / BITS_PER_BYTE);
432
433 interface_ip.cache_sz = data * mcp.IO_buffer_size_per_channel;
434 interface_ip.line_sz = data;
435 interface_ip.assoc = mcp.write_buffer_assoc;
436 interface_ip.nbanks = mcp.write_buffer_nbanks;
437 interface_ip.out_w = interface_ip.line_sz * BITS_PER_BYTE;
438 interface_ip.specific_tag = mcp.write_buffer_tag_width > 0;
439 interface_ip.tag_w = mcp.write_buffer_tag_width;
440 interface_ip.access_mode = Normal;
441 interface_ip.obj_func_dyn_energy = 0;
442 interface_ip.obj_func_dyn_power = 0;
443 interface_ip.obj_func_leak_power = 0;
444 interface_ip.obj_func_cycle_t = 1;
445 interface_ip.num_rw_ports = 0;
446 interface_ip.num_rd_ports = mcp.num_channels;
447 interface_ip.num_wr_ports = interface_ip.num_rd_ports;
448 interface_ip.num_se_rd_ports = 0;
449 interface_ip.num_search_ports = 0;
450 interface_ip.is_cache = false;
451 interface_ip.pure_cam = false;
452 interface_ip.pure_ram = true;
453 interface_ip.throughput = 1.0 / mcp.clockRate;
454 interface_ip.latency = 1.0 / mcp.clockRate;
455 writeBuffer = new CacheArray(xml_data, &interface_ip, "Write Buffer",
456 Uncore_device, mcp.clockRate);
457 children.push_back(writeBuffer);
458
459 writeBuffer->tdp_stats.reset();
460 writeBuffer->tdp_stats.readAc.access = writeBuffer->l_ip.num_rd_ports *
461 mcs.duty_cycle;
462 writeBuffer->tdp_stats.writeAc.access = writeBuffer->l_ip.num_wr_ports *
463 mcs.duty_cycle;
464 writeBuffer->rtp_stats.reset();
465 writeBuffer->rtp_stats.readAc.access = mcs.reads * mcp.llcBlockSize *
466 BITS_PER_BYTE / mcp.dataBusWidth;
467 writeBuffer->rtp_stats.writeAc.access = mcs.writes * mcp.llcBlockSize *
468 BITS_PER_BYTE / mcp.dataBusWidth;
469
470 // TODO: Set up selection logic as a leaf node in tree
471 //selection and arbitration logic
472 MC_arb =
473 new selection_logic(xml_data, is_default,
474 mcp.req_window_size_per_channel, 1, &interface_ip,
475 "Arbitration Logic", (mcs.reads + mcs.writes),
476 mcp.clockRate, Uncore_device);
477 // MC_arb is not included in the roll-up due to the uninitialized area
478 //children.push_back(MC_arb);
479}
480
481MemoryController::MemoryController(XMLNode* _xml_data,
482 InputParameter* interface_ip_)
483 : McPATComponent(_xml_data), interface_ip(*interface_ip_) {
484 name = "Memory Controller";
485 set_mc_param();
486 // TODO: Pass params and stats as pointers
487 children.push_back(new MCFrontEnd(xml_data, &interface_ip, mcp, mcs));
488 children.push_back(new MCBackend(xml_data, &interface_ip, mcp, mcs));
489
490 if (mcp.type==0 || (mcp.type == 1 && mcp.withPHY)) {
491 children.push_back(new MCPHY(xml_data, &interface_ip, mcp, mcs));
492 }
493}
494
495void MemoryController::initialize_params() {
496 memset(&mcp, 0, sizeof(MCParameters));
497}
498
499void MemoryController::set_mc_param() {
500 initialize_params();
501
502 int num_children = xml_data->nChildNode("param");
503 int tech_type;
504 int mat_type;
505 int i;
506 for (i = 0; i < num_children; i++) {
507 XMLNode* paramNode = xml_data->getChildNodePtr("param", &i);
508 XMLCSTR node_name = paramNode->getAttribute("name");
509 XMLCSTR value = paramNode->getAttribute("value");
510
511 if (!node_name)
512 warnMissingParamName(paramNode->getAttribute("id"));
513
514 ASSIGN_FP_IF("mc_clock", mcp.clockRate);
515 ASSIGN_INT_IF("tech_type", tech_type);
516 ASSIGN_ENUM_IF("mc_type", mcp.mc_type, MemoryCtrl_type);
517 ASSIGN_FP_IF("num_mcs", mcp.num_mcs);
518 ASSIGN_INT_IF("llc_line_length", mcp.llc_line_length);
519 ASSIGN_INT_IF("databus_width", mcp.databus_width);
520 ASSIGN_INT_IF("memory_channels_per_mc", mcp.num_channels);
521 ASSIGN_INT_IF("req_window_size_per_channel",
522 mcp.req_window_size_per_channel);
523 ASSIGN_INT_IF("IO_buffer_size_per_channel",
524 mcp.IO_buffer_size_per_channel);
525 ASSIGN_INT_IF("addressbus_width", mcp.addressbus_width);
526 ASSIGN_INT_IF("opcode_width", mcp.opcodeW);
527 ASSIGN_INT_IF("type", mcp.type);
528 ASSIGN_ENUM_IF("LVDS", mcp.LVDS, bool);
529 ASSIGN_ENUM_IF("withPHY", mcp.withPHY, bool);
530 ASSIGN_INT_IF("peak_transfer_rate", mcp.peak_transfer_rate);
531 ASSIGN_INT_IF("number_ranks", mcp.number_ranks);
532 ASSIGN_INT_IF("reorder_buffer_assoc", mcp.reorder_buffer_assoc);
533 ASSIGN_INT_IF("reorder_buffer_nbanks", mcp.reorder_buffer_nbanks);
534 ASSIGN_INT_IF("read_buffer_assoc", mcp.read_buffer_assoc);
535 ASSIGN_INT_IF("read_buffer_nbanks", mcp.read_buffer_nbanks);
536 ASSIGN_INT_IF("read_buffer_tag_width", mcp.read_buffer_tag_width);
537 ASSIGN_INT_IF("write_buffer_assoc", mcp.write_buffer_assoc);
538 ASSIGN_INT_IF("write_buffer_nbanks", mcp.write_buffer_nbanks);
539 ASSIGN_INT_IF("write_buffer_tag_width", mcp.write_buffer_tag_width);
540 ASSIGN_INT_IF("wire_mat_type", mat_type);
541 ASSIGN_ENUM_IF("wire_type", interface_ip.wt, Wire_type);
542
543 else {
544 warnUnrecognizedParam(node_name);
545 }
546 }
547
548 if (mcp.mc_type != MC) {
549 cout << "Unknown memory controller type: Only DRAM controller is "
550 << "supported for now" << endl;
551 exit(0);
552 }
553
554 // Change from MHz to Hz
555 mcp.clockRate *= 1e6;
556
557 interface_ip.data_arr_ram_cell_tech_type = tech_type;
558 interface_ip.data_arr_peri_global_tech_type = tech_type;
559 interface_ip.tag_arr_ram_cell_tech_type = tech_type;
560 interface_ip.tag_arr_peri_global_tech_type = tech_type;
561 interface_ip.wire_is_mat_type = mat_type;
562 interface_ip.wire_os_mat_type = mat_type;
563
564 num_children = xml_data->nChildNode("stat");
565 for (i = 0; i < num_children; i++) {
566 XMLNode* statNode = xml_data->getChildNodePtr("stat", &i);
567 XMLCSTR node_name = statNode->getAttribute("name");
568 XMLCSTR value = statNode->getAttribute("value");
569
570 if (!node_name)
571 warnMissingStatName(statNode->getAttribute("id"));
572
573 ASSIGN_FP_IF("duty_cycle", mcs.duty_cycle);
574 ASSIGN_FP_IF("perc_load", mcs.perc_load);
575 ASSIGN_FP_IF("memory_reads", mcs.reads);
576 ASSIGN_INT_IF("memory_writes", mcs.writes);
577
578 else {
579 warnUnrecognizedStat(node_name);
580 }
581 }
582
583 // Add ECC overhead
584 mcp.llcBlockSize = int(ceil(mcp.llc_line_length / BITS_PER_BYTE)) +
585 mcp.llc_line_length;
586 mcp.dataBusWidth = int(ceil(mcp.databus_width / BITS_PER_BYTE)) +
587 mcp.databus_width;
588}
589
590MCFrontEnd ::~MCFrontEnd() {
591
592 if (MC_arb) {
593 delete MC_arb;
594 MC_arb = NULL;
595 }
596 if (frontendBuffer) {
597 delete frontendBuffer;
598 frontendBuffer = NULL;
599 }
600 if (readBuffer) {
601 delete readBuffer;
602 readBuffer = NULL;
603 }
604 if (writeBuffer) {
605 delete writeBuffer;
606 writeBuffer = NULL;
607 }
608}
609
610MemoryController::~MemoryController() {
611 // TODO: use default constructor to delete children
612}
613