Deleted Added
sdiff udiff text old ( 10152:52c552138ba1 ) new ( 10234:5cb711fa6176 )
full compact
1/*****************************************************************************
2 * McPAT
3 * SOFTWARE LICENSE AGREEMENT
4 * Copyright 2012 Hewlett-Packard Development Company, L.P.
5 * Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
6 * All Rights Reserved
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met: redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer;
12 * redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the

--- 7 unchanged lines hidden (view full) ---

21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 ***************************************************************************/
32
33#include <iostream>
34#include <math.h>
35
36#include "area.h"
37#include "array.h"
38#include "common.h"
39#include "decoder.h"
40#include "parameter.h"
41
42using namespace std;
43
44double ArrayST::area_efficiency_threshold = 20.0;
45int ArrayST::ed = 0;
46//Fixed number, make sure timing can be satisfied.
47int ArrayST::delay_wt = 100;
48int ArrayST::cycle_time_wt = 1000;
49//Fixed number, This is used to exhaustive search for individual components.
50int ArrayST::area_wt = 10;
51//Fixed number, This is used to exhaustive search for individual components.
52int ArrayST::dynamic_power_wt = 10;
53int ArrayST::leakage_power_wt = 10;
54//Fixed number, make sure timing can be satisfied.
55int ArrayST::delay_dev = 1000000;
56int ArrayST::cycle_time_dev = 100;
57//Fixed number, This is used to exhaustive search for individual components.
58int ArrayST::area_dev = 1000000;
59//Fixed number, This is used to exhaustive search for individual components.
60int ArrayST::dynamic_power_dev = 1000000;
61int ArrayST::leakage_power_dev = 1000000;
62int ArrayST::cycle_time_dev_threshold = 10;
63
64
65ArrayST::ArrayST(XMLNode* _xml_data,
66 const InputParameter *configure_interface, string _name,
67 enum Device_ty device_ty_, double _clockRate,
68 bool opt_local_, enum Core_type core_ty_, bool _is_default)
69 : McPATComponent(_xml_data), l_ip(*configure_interface),
70 device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_),
71 is_default(_is_default) {
72 name = _name;
73 clockRate = _clockRate;
74 if (l_ip.cache_sz < MIN_BUFFER_SIZE)
75 l_ip.cache_sz = MIN_BUFFER_SIZE;
76
77 if (!l_ip.error_checking(name)) {
78 exit(1);
79 }
80
81 output_data.reset();
82
83 computeEnergy();
84 computeArea();
85}
86
87void ArrayST::compute_base_power() {
88 local_result = cacti_interface(&l_ip);
89}
90
91void ArrayST::computeArea() {
92 area.set_area(local_result.area);
93 output_data.area = local_result.area / 1e6;
94}
95
96void ArrayST::computeEnergy() {
97 list<uca_org_t > candidate_solutions(0);
98 list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
99
100 uca_org_t* temp_res = NULL;
101 local_result.valid = false;
102
103 double throughput = l_ip.throughput;
104 double latency = l_ip.latency;
105 bool throughput_overflow = true;
106 bool latency_overflow = true;
107 compute_base_power();
108
109 if ((local_result.cycle_time - throughput) <= 1e-10 )
110 throughput_overflow = false;
111 if ((local_result.access_time - latency) <= 1e-10)
112 latency_overflow = false;
113
114 if (opt_for_clk && opt_local) {
115 if (throughput_overflow || latency_overflow) {
116 l_ip.ed = ed;
117
118 l_ip.delay_wt = delay_wt;
119 l_ip.cycle_time_wt = cycle_time_wt;
120
121 l_ip.area_wt = area_wt;
122 l_ip.dynamic_power_wt = dynamic_power_wt;
123 l_ip.leakage_power_wt = leakage_power_wt;
124
125 l_ip.delay_dev = delay_dev;
126 l_ip.cycle_time_dev = cycle_time_dev;
127
128 l_ip.area_dev = area_dev;
129 l_ip.dynamic_power_dev = dynamic_power_dev;
130 l_ip.leakage_power_dev = leakage_power_dev;
131
132 //Reset overflow flag before start optimization iterations
133 throughput_overflow = true;
134 latency_overflow = true;
135
136 //Clean up the result for optimized for ED^2P
137 temp_res = &local_result;
138 temp_res->cleanup();
139 }
140
141
142 while ((throughput_overflow || latency_overflow) &&
143 l_ip.cycle_time_dev > cycle_time_dev_threshold) {
144 compute_base_power();
145
146 //This is the time_dev to be used for next iteration
147 l_ip.cycle_time_dev -= cycle_time_dev_threshold;
148
149 // from best area to worst area -->worst timing to best timing
150 if ((((local_result.cycle_time - throughput) <= 1e-10 ) &&
151 (local_result.access_time - latency) <= 1e-10) ||
152 (local_result.data_array2->area_efficiency <
153 area_efficiency_threshold && l_ip.assoc == 0)) {
154 //if no satisfiable solution is found,the most aggressive one
155 //is left
156 candidate_solutions.push_back(local_result);
157 if (((local_result.cycle_time - throughput) <= 1e-10) &&
158 ((local_result.access_time - latency) <= 1e-10)) {
159 //ensure stop opt not because of cam
160 throughput_overflow = false;
161 latency_overflow = false;
162 }
163
164 } else {
165 if ((local_result.cycle_time - throughput) <= 1e-10)
166 throughput_overflow = false;
167 if ((local_result.access_time - latency) <= 1e-10)
168 latency_overflow = false;
169
170 //if not >10 local_result is the last result, it cannot be
171 //cleaned up
172 if (l_ip.cycle_time_dev > cycle_time_dev_threshold) {
173 //Only solutions not saved in the list need to be
174 //cleaned up
175 temp_res = &local_result;
176 temp_res->cleanup();
177 }
178 }
179 }
180
181
182 if (l_ip.assoc > 0) {
183 //For array structures except CAM and FA, Give warning but still
184 //provide a result with best timing found
185 if (throughput_overflow == true)
186 cout << "Warning: " << name
187 << " array structure cannot satisfy throughput constraint."
188 << endl;
189 if (latency_overflow == true)
190 cout << "Warning: " << name
191 << " array structure cannot satisfy latency constraint."
192 << endl;
193 }
194
195 double min_dynamic_energy = BIGNUM;
196 if (candidate_solutions.empty() == false) {
197 local_result.valid = true;
198 for (candidate_iter = candidate_solutions.begin();
199 candidate_iter != candidate_solutions.end();
200 ++candidate_iter) {
201 if (min_dynamic_energy >
202 (candidate_iter)->power.readOp.dynamic) {
203 min_dynamic_energy =
204 (candidate_iter)->power.readOp.dynamic;
205 min_dynamic_energy_iter = candidate_iter;
206 local_result = *(min_dynamic_energy_iter);
207 } else {
208 candidate_iter->cleanup() ;
209 }
210
211 }
212
213
214 }
215 candidate_solutions.clear();
216 }
217
218 double long_channel_device_reduction =
219 longer_channel_device_reduction(device_ty, core_ty);
220
221 double macro_layout_overhead = g_tp.macro_layout_overhead;
222 double chip_PR_overhead = g_tp.chip_layout_overhead;
223 double total_overhead = macro_layout_overhead * chip_PR_overhead;
224 local_result.area *= total_overhead;
225
226 //maintain constant power density
227 double pppm_t[4] = {total_overhead, 1, 1, total_overhead};
228
229 double sckRation = g_tp.sckt_co_eff;
230 local_result.power.readOp.dynamic *= sckRation;
231 local_result.power.writeOp.dynamic *= sckRation;
232 local_result.power.searchOp.dynamic *= sckRation;
233 local_result.power.readOp.leakage *= l_ip.nbanks;
234 local_result.power.readOp.longer_channel_leakage =
235 local_result.power.readOp.leakage * long_channel_device_reduction;
236 local_result.power = local_result.power * pppm_t;
237
238 local_result.data_array2->power.readOp.dynamic *= sckRation;
239 local_result.data_array2->power.writeOp.dynamic *= sckRation;
240 local_result.data_array2->power.searchOp.dynamic *= sckRation;
241 local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
242 local_result.data_array2->power.readOp.longer_channel_leakage =
243 local_result.data_array2->power.readOp.leakage *
244 long_channel_device_reduction;
245 local_result.data_array2->power = local_result.data_array2->power * pppm_t;
246
247
248 if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) {
249 local_result.tag_array2->power.readOp.dynamic *= sckRation;
250 local_result.tag_array2->power.writeOp.dynamic *= sckRation;
251 local_result.tag_array2->power.searchOp.dynamic *= sckRation;
252 local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
253 local_result.tag_array2->power.readOp.longer_channel_leakage =
254 local_result.tag_array2->power.readOp.leakage *
255 long_channel_device_reduction;
256 local_result.tag_array2->power =
257 local_result.tag_array2->power * pppm_t;
258 }
259
260 power = local_result.power;
261
262 output_data.peak_dynamic_power = power.readOp.dynamic * clockRate;
263 output_data.subthreshold_leakage_power = power.readOp.leakage;
264 output_data.gate_leakage_power = power.readOp.gate_leakage;
265}
266
267void ArrayST::leakage_feedback(double temperature)
268{
269 // Update the temperature. l_ip is already set and error-checked in the creator function.
270 l_ip.temp = (unsigned int)round(temperature/10.0)*10;
271
272 // This corresponds to cacti_interface() in the initialization process. Leakage power is updated here.

--- 29 unchanged lines hidden (view full) ---

302 local_result.tag_array2->power.writeOp.dynamic *= sckRation;
303 local_result.tag_array2->power.searchOp.dynamic *= sckRation;
304 local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
305 local_result.tag_array2->power.readOp.longer_channel_leakage = local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction;
306 local_result.tag_array2->power = local_result.tag_array2->power* pppm_t;
307 }
308}
309
310ArrayST::~ArrayST() {
311 local_result.cleanup();
312}