OR2.cc (10447:a465576671d4) OR2.cc (10448:bc1a3b7ab5ef)
1/* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
1#include "model/std_cells/OR2.h"
2
3#include <cmath>
4
5#include "model/PortInfo.h"
6#include "model/TransitionInfo.h"
7#include "model/EventInfo.h"
8#include "model/std_cells/StdCellLib.h"
9#include "model/std_cells/CellMacros.h"
10#include "model/timing_graph/ElectricalNet.h"
11#include "model/timing_graph/ElectricalDriver.h"
12#include "model/timing_graph/ElectricalLoad.h"
13#include "model/timing_graph/ElectricalDelay.h"
14
15namespace DSENT
16{
17 using std::max;
18
19 OR2::OR2(const String& instance_name_, const TechModel* tech_model_)
20 : StdCell(instance_name_, tech_model_)
21 {
22 initProperties();
23 }
24
25 OR2::~OR2()
26 {}
27
28 void OR2::initProperties()
29 {
30 return;
31 }
32
33 void OR2::constructModel()
34 {
35 createInputPort("A");
36 createInputPort("B");
37 createOutputPort("Y");
38
39 createLoad("A_Cap");
40 createLoad("B_Cap");
41 createDelay("A_to_Y_delay");
42 createDelay("B_to_Y_delay");
43 createDriver("Y_Ron", true);
44
45 ElectricalLoad* a_cap = getLoad("A_Cap");
46 ElectricalLoad* b_cap = getLoad("B_Cap");
47 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
48 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
49 ElectricalDriver* y_ron = getDriver("Y_Ron");
50
51 getNet("A")->addDownstreamNode(a_cap);
52 getNet("B")->addDownstreamNode(b_cap);
53 a_cap->addDownstreamNode(a_to_y_delay);
54 b_cap->addDownstreamNode(b_to_y_delay);
55 a_to_y_delay->addDownstreamNode(y_ron);
56 b_to_y_delay->addDownstreamNode(y_ron);
57 y_ron->addDownstreamNode(getNet("Y"));
58
59 // Create Area result
60 // Create NDD Power result
61 createElectricalAtomicResults();
62 // Create OR Event Energy Result
63 createElectricalEventAtomicResult("OR2");
64
65 getEventInfo("Idle")->setStaticTransitionInfos();
66
67 return;
68 }
69
70 void OR2::updateModel()
71 {
72 // Get parameters
73 double drive_strength = getDrivingStrength();
74 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
75
76 // Standard cell cache string
77 const String& cell_name = "OR2_X" + (String) drive_strength;
78
79 // Get timing parameters
80 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
81 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
82 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
83 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
84 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
85
86 // Set the cell area
87 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
88 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
89
90 return;
91 }
92
93 void OR2::evaluateModel()
94 {
95 return;
96 }
97
98 void OR2::useModel()
99 {
100 // Get parameters
101 double drive_strength = getDrivingStrength();
102 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
103
104 // Stadard cell cache string
105 const String& cell_name = "OR2_X" + (String) drive_strength;
106
107 // Propagate the transition info and get the 0->1 transtion count
108 propagateTransitionInfo();
109 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
110 double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
111 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
112
113 // Calculate leakage
114 double leakage = 0;
115 leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
116 leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
117 leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
118 leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
119 getNddPowerResult("Leakage")->setValue(leakage);
120
121 // Get VDD
122 double vdd = getTechModel()->get("Vdd");
123
124 // Get capacitances
125 double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
126 double y_cap = cache->get(cell_name + "->Cap->Y");
127 double y_load_cap = getNet("Y")->getTotalDownstreamCap();
128
129 // Calculate OR2Event energy
130 double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
131 getEventResult("OR2")->setValue(energy_per_trans_01 * Y_num_trans_01);
132
133 return;
134 }
135
136 void OR2::propagateTransitionInfo()
137 {
138 // Get input signal transition info
139 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
140 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
141
142 double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
143 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
144 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
145
146 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
147 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
148 double A_prob_10 = A_prob_01;
149 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
150 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
151 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
152 double B_prob_10 = B_prob_01;
153 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
154
155 // Set output transition info
156 double Y_prob_00 = A_prob_00 * B_prob_00;
157 double Y_prob_01 = A_prob_00 * B_prob_01 +
158 A_prob_01 * (B_prob_00 + B_prob_01);
159 double Y_prob_11 = A_prob_00 * B_prob_11 +
160 A_prob_01 * (B_prob_10 + B_prob_11) +
161 A_prob_10 * (B_prob_01 + B_prob_11) +
162 A_prob_11;
163
164 // Check that probabilities add up to 1.0 with some finite tolerance
165 ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), "[Error] " + getInstanceName() +
166 "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " +
167 (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
168
169 // Turn probability of transitions per cycle into number of transitions per time unit
170 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
171 getOutputPort("Y")->setTransitionInfo(trans_Y);
172 return;
173 }
174
175 // Creates the standard cell, characterizes and abstracts away the details
176 void OR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
177 {
178 // Get parameters
179 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
180 Map<double>* cache = cell_lib_->getStdCellCache();
181
182 // Stadard cell cache string
183 const String& cell_name = "OR2_X" + (String) drive_strength_;
184
185 Log::printLine("=== " + cell_name + " ===");
186
187 // Now actually build the full standard cell model
188 createInputPort("A");
189 createInputPort("B");
190 createOutputPort("Y");
191
192 createNet("Y_b");
193
194 // Adds macros
195 CellMacros::addNor2(this, "NOR2", false, true, true, "A", "B", "Y_b");
196 CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y");
197
198 // Update macros
199 CellMacros::updateNor2(this, "NOR2", drive_strength_ * 0.66);
200 CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0);
201
202 // Cache area result
203 double area = 0.0;
204 area += gate_pitch * getTotalHeight() * 1;
205 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NOR2_GatePitches").toDouble();
206 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble();
207 cache->set(cell_name + "->ActiveArea", area);
208 Log::printLine(cell_name + "->ActiveArea=" + (String)area);
209
210 // --------------------------------------------------------------------
211 // Leakage Model Calculation
212 // --------------------------------------------------------------------
213 // Cache leakage power results (for every single signal combination)
214 double leakage_00 = 0.0; // !A, !B
215 double leakage_01 = 0.0; // !A, B
216 double leakage_10 = 0.0; // A, !B
217 double leakage_11 = 0.0; // A, B
218
219 leakage_00 += getGenProperties()->get("NOR2_LeakagePower_00").toDouble();
220 leakage_00 += getGenProperties()->get("INV_LeakagePower_1").toDouble();
221
222 leakage_01 += getGenProperties()->get("NOR2_LeakagePower_01").toDouble();
223 leakage_01 += getGenProperties()->get("INV_LeakagePower_0").toDouble();
224
225 leakage_10 += getGenProperties()->get("NOR2_LeakagePower_10").toDouble();
226 leakage_10 += getGenProperties()->get("INV_LeakagePower_0").toDouble();
227
228 leakage_11 += getGenProperties()->get("NOR2_LeakagePower_11").toDouble();
229 leakage_11 += getGenProperties()->get("INV_LeakagePower_0").toDouble();
230
231 cache->set(cell_name + "->Leakage->!A!B", leakage_00);
232 cache->set(cell_name + "->Leakage->!AB", leakage_01);
233 cache->set(cell_name + "->Leakage->A!B", leakage_10);
234 cache->set(cell_name + "->Leakage->AB", leakage_11);
235 Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
236 Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
237 Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
238 Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
239 // --------------------------------------------------------------------
240
241 // --------------------------------------------------------------------
242 // Get Node Capacitances
243 // --------------------------------------------------------------------
244 double a_cap = getNet("A")->getTotalDownstreamCap();
245 double b_cap = getNet("B")->getTotalDownstreamCap();
246 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
247 double y_cap = getNet("Y")->getTotalDownstreamCap();
248
249 cache->set(cell_name + "->Cap->A", a_cap);
250 cache->set(cell_name + "->Cap->B", b_cap);
251 cache->set(cell_name + "->Cap->Y_b", y_b_cap);
252 cache->set(cell_name + "->Cap->Y", y_cap);
253 Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
254 Log::printLine(cell_name + "->Cap->B_Cap=" + (String) b_cap);
255 Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
256 Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
257 // --------------------------------------------------------------------
258
259 // --------------------------------------------------------------------
260 // Build Internal Delay Model
261 // --------------------------------------------------------------------
262 double y_ron = getDriver("INV_RonZN")->getOutputRes();
263 double a_to_y_delay = getDriver("NOR2_RonZN")->calculateDelay() +
264 getDriver("INV_RonZN")->calculateDelay();
265 double b_to_y_delay = getDriver("NOR2_RonZN")->calculateDelay() +
266 getDriver("INV_RonZN")->calculateDelay();
267
268 cache->set(cell_name + "->DriveRes->Y", y_ron);
269 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
270 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
271 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
272 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
273 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
274 // --------------------------------------------------------------------
275
276 return;
277 }
278} // namespace DSENT
279
22#include "model/std_cells/OR2.h"
23
24#include <cmath>
25
26#include "model/PortInfo.h"
27#include "model/TransitionInfo.h"
28#include "model/EventInfo.h"
29#include "model/std_cells/StdCellLib.h"
30#include "model/std_cells/CellMacros.h"
31#include "model/timing_graph/ElectricalNet.h"
32#include "model/timing_graph/ElectricalDriver.h"
33#include "model/timing_graph/ElectricalLoad.h"
34#include "model/timing_graph/ElectricalDelay.h"
35
36namespace DSENT
37{
38 using std::max;
39
40 OR2::OR2(const String& instance_name_, const TechModel* tech_model_)
41 : StdCell(instance_name_, tech_model_)
42 {
43 initProperties();
44 }
45
46 OR2::~OR2()
47 {}
48
49 void OR2::initProperties()
50 {
51 return;
52 }
53
54 void OR2::constructModel()
55 {
56 createInputPort("A");
57 createInputPort("B");
58 createOutputPort("Y");
59
60 createLoad("A_Cap");
61 createLoad("B_Cap");
62 createDelay("A_to_Y_delay");
63 createDelay("B_to_Y_delay");
64 createDriver("Y_Ron", true);
65
66 ElectricalLoad* a_cap = getLoad("A_Cap");
67 ElectricalLoad* b_cap = getLoad("B_Cap");
68 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
69 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
70 ElectricalDriver* y_ron = getDriver("Y_Ron");
71
72 getNet("A")->addDownstreamNode(a_cap);
73 getNet("B")->addDownstreamNode(b_cap);
74 a_cap->addDownstreamNode(a_to_y_delay);
75 b_cap->addDownstreamNode(b_to_y_delay);
76 a_to_y_delay->addDownstreamNode(y_ron);
77 b_to_y_delay->addDownstreamNode(y_ron);
78 y_ron->addDownstreamNode(getNet("Y"));
79
80 // Create Area result
81 // Create NDD Power result
82 createElectricalAtomicResults();
83 // Create OR Event Energy Result
84 createElectricalEventAtomicResult("OR2");
85
86 getEventInfo("Idle")->setStaticTransitionInfos();
87
88 return;
89 }
90
91 void OR2::updateModel()
92 {
93 // Get parameters
94 double drive_strength = getDrivingStrength();
95 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
96
97 // Standard cell cache string
98 const String& cell_name = "OR2_X" + (String) drive_strength;
99
100 // Get timing parameters
101 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
102 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
103 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
104 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
105 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
106
107 // Set the cell area
108 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
109 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
110
111 return;
112 }
113
114 void OR2::evaluateModel()
115 {
116 return;
117 }
118
119 void OR2::useModel()
120 {
121 // Get parameters
122 double drive_strength = getDrivingStrength();
123 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
124
125 // Stadard cell cache string
126 const String& cell_name = "OR2_X" + (String) drive_strength;
127
128 // Propagate the transition info and get the 0->1 transtion count
129 propagateTransitionInfo();
130 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
131 double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
132 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
133
134 // Calculate leakage
135 double leakage = 0;
136 leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
137 leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
138 leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
139 leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
140 getNddPowerResult("Leakage")->setValue(leakage);
141
142 // Get VDD
143 double vdd = getTechModel()->get("Vdd");
144
145 // Get capacitances
146 double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
147 double y_cap = cache->get(cell_name + "->Cap->Y");
148 double y_load_cap = getNet("Y")->getTotalDownstreamCap();
149
150 // Calculate OR2Event energy
151 double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
152 getEventResult("OR2")->setValue(energy_per_trans_01 * Y_num_trans_01);
153
154 return;
155 }
156
157 void OR2::propagateTransitionInfo()
158 {
159 // Get input signal transition info
160 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
161 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
162
163 double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
164 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
165 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
166
167 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
168 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
169 double A_prob_10 = A_prob_01;
170 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
171 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
172 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
173 double B_prob_10 = B_prob_01;
174 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
175
176 // Set output transition info
177 double Y_prob_00 = A_prob_00 * B_prob_00;
178 double Y_prob_01 = A_prob_00 * B_prob_01 +
179 A_prob_01 * (B_prob_00 + B_prob_01);
180 double Y_prob_11 = A_prob_00 * B_prob_11 +
181 A_prob_01 * (B_prob_10 + B_prob_11) +
182 A_prob_10 * (B_prob_01 + B_prob_11) +
183 A_prob_11;
184
185 // Check that probabilities add up to 1.0 with some finite tolerance
186 ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), "[Error] " + getInstanceName() +
187 "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " +
188 (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
189
190 // Turn probability of transitions per cycle into number of transitions per time unit
191 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
192 getOutputPort("Y")->setTransitionInfo(trans_Y);
193 return;
194 }
195
196 // Creates the standard cell, characterizes and abstracts away the details
197 void OR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
198 {
199 // Get parameters
200 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
201 Map<double>* cache = cell_lib_->getStdCellCache();
202
203 // Stadard cell cache string
204 const String& cell_name = "OR2_X" + (String) drive_strength_;
205
206 Log::printLine("=== " + cell_name + " ===");
207
208 // Now actually build the full standard cell model
209 createInputPort("A");
210 createInputPort("B");
211 createOutputPort("Y");
212
213 createNet("Y_b");
214
215 // Adds macros
216 CellMacros::addNor2(this, "NOR2", false, true, true, "A", "B", "Y_b");
217 CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y");
218
219 // Update macros
220 CellMacros::updateNor2(this, "NOR2", drive_strength_ * 0.66);
221 CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0);
222
223 // Cache area result
224 double area = 0.0;
225 area += gate_pitch * getTotalHeight() * 1;
226 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NOR2_GatePitches").toDouble();
227 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble();
228 cache->set(cell_name + "->ActiveArea", area);
229 Log::printLine(cell_name + "->ActiveArea=" + (String)area);
230
231 // --------------------------------------------------------------------
232 // Leakage Model Calculation
233 // --------------------------------------------------------------------
234 // Cache leakage power results (for every single signal combination)
235 double leakage_00 = 0.0; // !A, !B
236 double leakage_01 = 0.0; // !A, B
237 double leakage_10 = 0.0; // A, !B
238 double leakage_11 = 0.0; // A, B
239
240 leakage_00 += getGenProperties()->get("NOR2_LeakagePower_00").toDouble();
241 leakage_00 += getGenProperties()->get("INV_LeakagePower_1").toDouble();
242
243 leakage_01 += getGenProperties()->get("NOR2_LeakagePower_01").toDouble();
244 leakage_01 += getGenProperties()->get("INV_LeakagePower_0").toDouble();
245
246 leakage_10 += getGenProperties()->get("NOR2_LeakagePower_10").toDouble();
247 leakage_10 += getGenProperties()->get("INV_LeakagePower_0").toDouble();
248
249 leakage_11 += getGenProperties()->get("NOR2_LeakagePower_11").toDouble();
250 leakage_11 += getGenProperties()->get("INV_LeakagePower_0").toDouble();
251
252 cache->set(cell_name + "->Leakage->!A!B", leakage_00);
253 cache->set(cell_name + "->Leakage->!AB", leakage_01);
254 cache->set(cell_name + "->Leakage->A!B", leakage_10);
255 cache->set(cell_name + "->Leakage->AB", leakage_11);
256 Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
257 Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
258 Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
259 Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
260 // --------------------------------------------------------------------
261
262 // --------------------------------------------------------------------
263 // Get Node Capacitances
264 // --------------------------------------------------------------------
265 double a_cap = getNet("A")->getTotalDownstreamCap();
266 double b_cap = getNet("B")->getTotalDownstreamCap();
267 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
268 double y_cap = getNet("Y")->getTotalDownstreamCap();
269
270 cache->set(cell_name + "->Cap->A", a_cap);
271 cache->set(cell_name + "->Cap->B", b_cap);
272 cache->set(cell_name + "->Cap->Y_b", y_b_cap);
273 cache->set(cell_name + "->Cap->Y", y_cap);
274 Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
275 Log::printLine(cell_name + "->Cap->B_Cap=" + (String) b_cap);
276 Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
277 Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
278 // --------------------------------------------------------------------
279
280 // --------------------------------------------------------------------
281 // Build Internal Delay Model
282 // --------------------------------------------------------------------
283 double y_ron = getDriver("INV_RonZN")->getOutputRes();
284 double a_to_y_delay = getDriver("NOR2_RonZN")->calculateDelay() +
285 getDriver("INV_RonZN")->calculateDelay();
286 double b_to_y_delay = getDriver("NOR2_RonZN")->calculateDelay() +
287 getDriver("INV_RonZN")->calculateDelay();
288
289 cache->set(cell_name + "->DriveRes->Y", y_ron);
290 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
291 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
292 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
293 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
294 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
295 // --------------------------------------------------------------------
296
297 return;
298 }
299} // namespace DSENT
300