1/* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22#include "model/std_cells/ADDF.h"
23
24#include <cmath>
25
26#include "model/PortInfo.h"
27#include "model/EventInfo.h"
28#include "model/TransitionInfo.h"
29#include "model/std_cells/StdCellLib.h"
30#include "model/std_cells/CellMacros.h"
31#include "model/timing_graph/ElectricalNet.h"
32#include "model/timing_graph/ElectricalDriver.h"
33#include "model/timing_graph/ElectricalLoad.h"
34#include "model/timing_graph/ElectricalDelay.h"
35
36namespace DSENT
37{
38 using std::ceil;
39 using std::max;
40
41 ADDF::ADDF(const String& instance_name_, const TechModel* tech_model_)
42 : StdCell(instance_name_, tech_model_)
43 {
44 initParameters();
45 initProperties();
46 }
47
48 ADDF::~ADDF()
49 {}
50
51 void ADDF::initProperties()
52 {
53 return;
54 }
55
56 void ADDF::constructModel()
57 {
58 // All constructModel should do is create Area/NDDPower/Energy Results as
59 // well as instantiate any sub-instances using only the hard parameters
60
61 createInputPort("A");
62 createInputPort("B");
63 createInputPort("CI");
64 createOutputPort("S");
65 createOutputPort("CO");
66
67 createLoad("A_Cap");
68 createLoad("B_Cap");
69 createLoad("CI_Cap");
70 createDelay("A_to_S_delay");
71 createDelay("B_to_S_delay");
72 createDelay("CI_to_S_delay");
73 createDelay("A_to_CO_delay");
74 createDelay("B_to_CO_delay");
75 createDelay("CI_to_CO_delay");
76 createDriver("S_Ron", true);
77 createDriver("CO_Ron", true);
78
79 ElectricalLoad* a_cap = getLoad("A_Cap");
80 ElectricalLoad* b_cap = getLoad("B_Cap");
81 ElectricalLoad* ci_cap = getLoad("CI_Cap");
82 ElectricalDelay* a_to_s_delay = getDelay("A_to_S_delay");
83 ElectricalDelay* b_to_s_delay = getDelay("B_to_S_delay");
84 ElectricalDelay* ci_to_s_delay = getDelay("CI_to_S_delay");
85 ElectricalDelay* a_to_co_delay = getDelay("A_to_CO_delay");
86 ElectricalDelay* b_to_co_delay = getDelay("B_to_CO_delay");
87 ElectricalDelay* ci_to_co_delay = getDelay("CI_to_CO_delay");
88 ElectricalDriver* s_ron = getDriver("S_Ron");
89 ElectricalDriver* co_ron = getDriver("CO_Ron");
90
91 getNet("A")->addDownstreamNode(a_cap);
92 getNet("B")->addDownstreamNode(b_cap);
93 getNet("CI")->addDownstreamNode(ci_cap);
94 a_cap->addDownstreamNode(a_to_s_delay);
95 b_cap->addDownstreamNode(b_to_s_delay);
96 ci_cap->addDownstreamNode(ci_to_s_delay);
97 a_cap->addDownstreamNode(a_to_co_delay);
98 b_cap->addDownstreamNode(b_to_co_delay);
99 ci_cap->addDownstreamNode(ci_to_co_delay);
100
101 a_to_s_delay->addDownstreamNode(s_ron);
102 b_to_s_delay->addDownstreamNode(s_ron);
103 ci_to_s_delay->addDownstreamNode(s_ron);
104 a_to_co_delay->addDownstreamNode(co_ron);
105 b_to_co_delay->addDownstreamNode(co_ron);
106 ci_to_co_delay->addDownstreamNode(co_ron);
107
108 s_ron->addDownstreamNode(getNet("S"));
109 co_ron->addDownstreamNode(getNet("CO"));
110
111 // Create Area result
112 // Create NDD Power result
113 createElectricalAtomicResults();
114 // Create ADDF Event Energy Result
115 createElectricalEventAtomicResult("ADDF");
116
117 getEventInfo("Idle")->setStaticTransitionInfos();
118
119 return;
120 }
121
122 void ADDF::updateModel()
123 {
124 // Get parameters
125 double drive_strength = getDrivingStrength();
126 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
127
128 // Standard cell cache string
129 String cell_name = "ADDF_X" + (String) drive_strength;
130
131 // Get timing parameters
132 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
133 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
134 getLoad("CI_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CI"));
135
136 getDelay("A_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_S"));
137 getDelay("B_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_S"));
138 getDelay("CI_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_S"));
139 getDelay("A_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_CO"));
140 getDelay("B_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_CO"));
141 getDelay("CI_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_CO"));
142
143 getDriver("S_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->S"));
144 getDriver("CO_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->CO"));
145
146 // Set the cell area
147 getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
148 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
149
150 return;
151 }
152
153 void ADDF::evaluateModel()
154 {
155 return;
156 }
157
158 void ADDF::useModel()
159 {
160 // Get parameters
161 double drive_strength = getDrivingStrength();
162 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
163
164 // Standard cell cache string
165 String cell_name = "ADDF_X" + (String) drive_strength;
166
167 // Propagate the transition info and get the 0->1 transition count
168 propagateTransitionInfo();
169 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
170 double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
171 double P_CI = getInputPort("CI")->getTransitionInfo().getProbability1();
172 double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01();
173 double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01();
174 double CI_num_trans_01 = getInputPort("CI")->getTransitionInfo().getNumberTransitions01();
175 double P_num_trans_01 = m_trans_P_.getNumberTransitions01();
176 double G_num_trans_01 = m_trans_G_.getNumberTransitions01();
177 double CP_num_trans_01 = m_trans_CP_.getNumberTransitions01();
178 double S_num_trans_01 = getOutputPort("S")->getTransitionInfo().getNumberTransitions01();
179 double CO_num_trans_01 = getOutputPort("CO")->getTransitionInfo().getNumberTransitions01();
180
181 // Calculate leakage
182 double leakage = 0;
183 leakage += cache->get(cell_name + "->Leakage->!A!B!CI") * (1 - P_A) * (1 - P_B) * (1 - P_CI);
184 leakage += cache->get(cell_name + "->Leakage->!A!BCI") * (1 - P_A) * (1 - P_B) * P_CI;
185 leakage += cache->get(cell_name + "->Leakage->!AB!CI") * (1 - P_A) * P_B * (1 - P_CI);
186 leakage += cache->get(cell_name + "->Leakage->!ABCI") * (1 - P_A) * P_B * P_CI;
187 leakage += cache->get(cell_name + "->Leakage->A!B!CI") * P_A * (1 - P_B) * (1 - P_CI);
188 leakage += cache->get(cell_name + "->Leakage->A!BCI") * P_A * (1 - P_B) * P_CI;
189 leakage += cache->get(cell_name + "->Leakage->AB!CI") * P_A * P_B * (1 - P_CI);
190 leakage += cache->get(cell_name + "->Leakage->ABCI") * P_A * P_B * P_CI;
191 getNddPowerResult("Leakage")->setValue(leakage);
192
193 // Get VDD
194 double vdd = getTechModel()->get("Vdd");
195
196 // Get capacitances
197 double a_b_cap = cache->get(cell_name + "->Cap->A_b");
198 double b_b_cap = cache->get(cell_name + "->Cap->B_b");
199 double ci_b_cap = cache->get(cell_name + "->Cap->CI_b");
200 double p_cap = cache->get(cell_name + "->Cap->P");
201 double p_b_cap = cache->get(cell_name + "->Cap->P_b");
202 double s_cap = cache->get(cell_name + "->Cap->S");
203 double cp_cap = cache->get(cell_name + "->Cap->CP");
204 double g_cap = cache->get(cell_name + "->Cap->G");
205 double co_cap = cache->get(cell_name + "->Cap->CO");
206 double s_load_cap = getNet("S")->getTotalDownstreamCap();
207 double co_load_cap = getNet("CO")->getTotalDownstreamCap();
208
209 // Calculate ADDF Event energy
210 double addf_event_energy = 0.0;
211 addf_event_energy += a_b_cap * A_num_trans_01;
212 addf_event_energy += b_b_cap * B_num_trans_01;
213 addf_event_energy += ci_b_cap * CI_num_trans_01;
214 addf_event_energy += (p_cap + p_b_cap) * P_num_trans_01;
215 addf_event_energy += (s_cap + s_load_cap) * S_num_trans_01;
216 addf_event_energy += cp_cap * CP_num_trans_01;
217 addf_event_energy += g_cap * G_num_trans_01;
218 addf_event_energy += (co_cap + co_load_cap) * CO_num_trans_01;
219 addf_event_energy *= vdd * vdd;
220 getEventResult("ADDF")->setValue(addf_event_energy);
221
222 return;
223 }
224
225 void ADDF::propagateTransitionInfo()
226 {
227 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
228 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
229 const TransitionInfo& trans_CI = getInputPort("CI")->getTransitionInfo();
230
231 double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_CI.getFrequencyMultiplier());
232 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
233 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
234 const TransitionInfo& scaled_trans_CI = trans_CI.scaleFrequencyMultiplier(max_freq_mult);
235
236 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
237 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
238 double A_prob_10 = A_prob_01;
239 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
240 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
241 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
242 double B_prob_10 = B_prob_01;
243 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
244 double CI_prob_00 = scaled_trans_CI.getNumberTransitions00() / max_freq_mult;
245 double CI_prob_01 = scaled_trans_CI.getNumberTransitions01() / max_freq_mult;
246 double CI_prob_10 = CI_prob_01;
247 double CI_prob_11 = scaled_trans_CI.getNumberTransitions11() / max_freq_mult;
248
249 // Set P transition info
250 double P_prob_00 = A_prob_00 * B_prob_00 +
251 A_prob_01 * B_prob_01 +
252 A_prob_10 * B_prob_10 +
253 A_prob_11 * B_prob_11;
254 double P_prob_01 = A_prob_00 * B_prob_01 +
255 A_prob_01 * B_prob_00 +
256 A_prob_10 * B_prob_11 +
257 A_prob_11 * B_prob_10;
258 double P_prob_10 = P_prob_01;
259 double P_prob_11 = A_prob_00 * B_prob_11 +
260 A_prob_01 * B_prob_10 +
261 A_prob_10 * B_prob_01 +
262 A_prob_11 * B_prob_00;
263
264 // Set G transition info
265 double G_prob_00 = A_prob_11 * B_prob_11;
266 double G_prob_01 = A_prob_11 * B_prob_10 +
267 A_prob_10 * (B_prob_11 + B_prob_10);
268 double G_prob_10 = G_prob_01;
269 double G_prob_11 = A_prob_00 +
270 A_prob_01 * (B_prob_00 + B_prob_10) +
271 A_prob_10 * (B_prob_00 + B_prob_01) +
272 A_prob_11 * B_prob_00;
273
274 // Set CP transition info
275 double CP_prob_00 = P_prob_11 * CI_prob_11;
276 double CP_prob_01 = P_prob_11 * CI_prob_10 +
277 P_prob_10 * (CI_prob_11 + CI_prob_10);
278 double CP_prob_10 = CP_prob_01;
279 double CP_prob_11 = P_prob_00 +
280 P_prob_01 * (CI_prob_00 + CI_prob_10) +
281 P_prob_10 * (CI_prob_00 + CI_prob_01) +
282 P_prob_11 * CI_prob_00;
283
284 // Set S transition info
285 double S_prob_00 = P_prob_00 * CI_prob_00 +
286 P_prob_01 * CI_prob_01 +
287 P_prob_10 * CI_prob_10 +
288 P_prob_11 * CI_prob_11;
289 double S_prob_01 = P_prob_00 * CI_prob_01 +
290 P_prob_01 * CI_prob_00 +
291 P_prob_10 * CI_prob_11 +
292 P_prob_11 * CI_prob_10;
293 double S_prob_11 = P_prob_00 * CI_prob_11 +
294 P_prob_01 * CI_prob_10 +
295 P_prob_10 * CI_prob_01 +
296 P_prob_11 * CI_prob_00;
297
298 // Set CO transition info
299 double CO_prob_00 = G_prob_11 * CP_prob_11;
300 double CO_prob_01 = G_prob_11 * CP_prob_10 +
301 G_prob_10 * (CP_prob_11 + CP_prob_10);
302 double CO_prob_11 = G_prob_00 +
303 G_prob_01 * (CP_prob_00 + CP_prob_10) +
304 G_prob_10 * (CP_prob_00 + CP_prob_01) +
305 G_prob_11 * CP_prob_00;
306
307 m_trans_P_ = TransitionInfo(P_prob_00 * max_freq_mult, P_prob_01 * max_freq_mult, P_prob_11 * max_freq_mult);
308 m_trans_G_ = TransitionInfo(G_prob_00 * max_freq_mult, G_prob_01 * max_freq_mult, G_prob_11 * max_freq_mult);
309 m_trans_CP_ = TransitionInfo(CP_prob_00 * max_freq_mult, CP_prob_01 * max_freq_mult, CP_prob_11 * max_freq_mult);
310
311 // Check that probabilities add up to 1.0 with some finite tolerance
312 ASSERT(LibUtil::Math::isEqual((S_prob_00 + S_prob_01 + S_prob_01 + S_prob_11), 1.0),
313 "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" +
314 (String) S_prob_00 + ", " + (String) S_prob_01 + ", " + (String) S_prob_11 + ")!");
315
316 // Check that probabilities add up to 1.0 with some finite tolerance
317 ASSERT(LibUtil::Math::isEqual((CO_prob_00 + CO_prob_01 + CO_prob_01 + CO_prob_11), 1.0),
318 "[Error] " + getInstanceName() + "Output S transition probabilities must add up to 1 (" +
319 (String) CO_prob_00 + ", " + (String) CO_prob_01 + ", " + (String) CO_prob_11 + ")!");
320
321 // Turn probability of transitions per cycle into number of transitions per time unit
322 TransitionInfo trans_S(S_prob_00 * max_freq_mult, S_prob_01 * max_freq_mult, S_prob_11 * max_freq_mult);
323 getOutputPort("S")->setTransitionInfo(trans_S);
324 TransitionInfo trans_CO(CO_prob_00 * max_freq_mult, CO_prob_01 * max_freq_mult, CO_prob_11 * max_freq_mult);
325 getOutputPort("CO")->setTransitionInfo(trans_CO);
326 return;
327 }
328
329 // Creates the standard cell, characterizes and abstracts away the details
330 void ADDF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
331 {
332 // Get parameters
333 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
334 Map<double>* cache = cell_lib_->getStdCellCache();
335
336 // Standard cell cache string
337 String cell_name = "ADDF_X" + (String) drive_strength_;
338
339 Log::printLine("=== " + cell_name + " ===");
340
341 // Now actually build the full standard cell model
342 createInputPort("A");
343 createInputPort("B");
344 createInputPort("CI");
345 createOutputPort("S");
346 createOutputPort("CO");
347
348 createNet("A_b");
349 createNet("B_b");
350 createNet("CI_b");
351 createNet("P");
352 createNet("P_b");
353 createNet("G"); //actually G_b since it is NAND'ed
354 createNet("CP"); //actually (CP)_b since it is NAND'ed
355
356 // Adds macros
357 CellMacros::addInverter(this, "INV1", false, true, "A", "A_b");
358 CellMacros::addInverter(this, "INV2", false, true, "B", "B_b");
359 CellMacros::addInverter(this, "INV3", false, true, "CI", "CI_b");
360 CellMacros::addInverter(this, "INV4", false, true, "P", "P_b");
361 CellMacros::addTristate(this, "INVZ1", false, true, true, true, "B", "A", "A_b", "P");
362 CellMacros::addTristate(this, "INVZ2", false, true, true, true, "B_b", "A_b", "A", "P");
363 CellMacros::addTristate(this, "INVZ3", true, true, true, true, "P", "CI", "CI_b", "S");
364 CellMacros::addTristate(this, "INVZ4", true, true, true, true, "P_b", "CI_b", "CI", "S");
365 CellMacros::addNand2(this, "NAND1", false, true, true, "CI", "P", "CP");
366 CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "G");
367 CellMacros::addNand2(this, "NAND3", true, true, true, "CP", "G", "CO");
368
369 // I have no idea how to size each of the parts haha
370 CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
371 CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.250);
372 CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.250);
373 CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.500);
374 CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.250);
375 CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.250);
376 CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.500);
377 CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.500);
378 CellMacros::updateNand2(this, "NAND1", drive_strength_ * 0.500);
379 CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.500);
380 CellMacros::updateNand2(this, "NAND3", drive_strength_ * 1.000);
381
382 // Cache area result
383 double area = 0.0;
384 area += gate_pitch * getTotalHeight() * 1;
385 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
386 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
387 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
388 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
389 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
390 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
391 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble();
392 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble();
393 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND1_GatePitches").toDouble();
394 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble();
395 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND3_GatePitches").toDouble();
396 cache->set(cell_name + "->Area->Active", area);
397 cache->set(cell_name + "->Area->Metal1Wire", area);
398 Log::printLine(cell_name + "->Area->Active=" + (String) area);
399 Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
400
401 // --------------------------------------------------------------------
402 // Leakage Model Calculation
403 // --------------------------------------------------------------------
404 // Cache leakage power results (for every single signal combination)
405 double leakage_000 = 0; //!A, !B, !CI
406 double leakage_001 = 0; //!A, !B, CI
407 double leakage_010 = 0; //!A, B, !CI
408 double leakage_011 = 0; //!A, B, CI
409 double leakage_100 = 0; //A, !B, !CI
410 double leakage_101 = 0; //A, !B, CI
411 double leakage_110 = 0; //A, B, !CI
412 double leakage_111 = 0; //A, B, CI
413
414 //This is so painful...
415 leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
416 leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
417 leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
418 leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
419 leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
420 leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
421 leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
422 leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
423 leakage_000 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
424 leakage_000 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
425 leakage_000 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
426
427 leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
428 leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
429 leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
430 leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
431 leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
432 leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
433 leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
434 leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
435 leakage_001 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
436 leakage_001 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
437 leakage_001 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
438
439 leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
440 leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
441 leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
442 leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
443 leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
444 leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
445 leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
446 leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
447 leakage_010 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
448 leakage_010 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
449 leakage_010 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
450
451 leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
452 leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
453 leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
454 leakage_011 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
455 leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
456 leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
457 leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
458 leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
459 leakage_011 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
460 leakage_011 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
461 leakage_011 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
462
463 leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
464 leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
465 leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
466 leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
467 leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
468 leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
469 leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
470 leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
471 leakage_100 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
472 leakage_100 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
473 leakage_100 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
474
475 leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
476 leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
477 leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
478 leakage_101 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
479 leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
480 leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
481 leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
482 leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
483 leakage_101 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
484 leakage_101 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
485 leakage_101 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
486
487 leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
488 leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
489 leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
490 leakage_110 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
491 leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
492 leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
493 leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
494 leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
495 leakage_110 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
496 leakage_110 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
497 leakage_110 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
498
499 leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
500 leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
501 leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
502 leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
503 leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
504 leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
505 leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
506 leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
507 leakage_111 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
508 leakage_111 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
509 leakage_111 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
510
511 cache->set(cell_name + "->Leakage->!A!B!CI", leakage_000);
512 cache->set(cell_name + "->Leakage->!A!BCI", leakage_001);
513 cache->set(cell_name + "->Leakage->!AB!CI", leakage_010);
514 cache->set(cell_name + "->Leakage->!ABCI", leakage_011);
515 cache->set(cell_name + "->Leakage->A!B!CI", leakage_100);
516 cache->set(cell_name + "->Leakage->A!BCI", leakage_101);
517 cache->set(cell_name + "->Leakage->AB!CI", leakage_110);
518 cache->set(cell_name + "->Leakage->ABCI", leakage_111);
519 Log::printLine(cell_name + "->Leakage->!A!B!CI=" + (String) leakage_000);
520 Log::printLine(cell_name + "->Leakage->!A!BCI=" + (String) leakage_001);
521 Log::printLine(cell_name + "->Leakage->!AB!CI=" + (String) leakage_010);
522 Log::printLine(cell_name + "->Leakage->!ABCI=" + (String) leakage_011);
523 Log::printLine(cell_name + "->Leakage->A!B!CI=" + (String) leakage_100);
524 Log::printLine(cell_name + "->Leakage->A!BCI=" + (String) leakage_101);
525 Log::printLine(cell_name + "->Leakage->AB!CI=" + (String) leakage_110);
526 Log::printLine(cell_name + "->Leakage->ABCI=" + (String) leakage_111);
527 // --------------------------------------------------------------------
528
529 /*
530 // Cache event energy results
531 double event_a_flip = 0.0;
532 event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
533 event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
534 event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
535 event_a_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
536 cache->set(cell_name + "->Event_A_Flip", event_a_flip);
537 Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
538
539 double event_b_flip = 0.0;
540 event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
541 event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
542 event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble();
543 event_b_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
544 cache->set(cell_name + "->Event_B_Flip", event_b_flip);
545 Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
546
547 double event_ci_flip = 0.0;
548 event_ci_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble();
549 event_ci_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble();
550 event_ci_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble();
551 event_ci_flip += getGenProperties()->get("NAND1_A1_Flip").toDouble();
552 cache->set(cell_name + "->Event_CI_Flip", event_ci_flip);
553 Log::printLine(cell_name + "->Event_CI_Flip=" + (String) event_ci_flip);
554
555 double event_p_flip = 0.0;
556 event_p_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble();
557 event_p_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
558 event_p_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
559 event_p_flip += getGenProperties()->get("NAND1_A2_Flip").toDouble();
560 cache->set(cell_name + "->Event_P_Flip", event_p_flip);
561 Log::printLine(cell_name + "->Event_P_Flip=" + (String) event_p_flip);
562
563 double event_s_flip = 0.0;
564 event_s_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble();
565 event_s_flip += getGenProperties()->get("INVZ4_ZN_Flip").toDouble();
566 cache->set(cell_name + "->Event_S_Flip", event_s_flip);
567 Log::printLine(cell_name + "->Event_S_Flip=" + (String) event_s_flip);
568
569 double event_cp_flip = 0.0;
570 event_cp_flip += getGenProperties()->get("NAND1_ZN_Flip").toDouble();
571 event_cp_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
572 cache->set(cell_name + "->Event_CP_Flip", event_cp_flip);
573 Log::printLine(cell_name + "->Event_CP_Flip=" + (String) event_cp_flip);
574
575 double event_g_flip = 0.0;
576 event_g_flip += getGenProperties()->get("NAND2_ZN_Flip").toDouble();
577 event_g_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
578 cache->set(cell_name + "->Event_G_Flip", event_g_flip);
579 Log::printLine(cell_name + "->Event_G_Flip=" + (String) event_g_flip);
580
581 double event_co_flip = 0.0;
582 event_co_flip += getGenProperties()->get("NAND3_ZN_Flip").toDouble();
583 cache->set(cell_name + "->Event_CO_Flip", event_co_flip);
584 Log::printLine(cell_name + "->Event_CO_Flip=" + (String) event_co_flip);
585 */
586 // --------------------------------------------------------------------
587 // Get Node Capacitances
588 // --------------------------------------------------------------------
589 double a_cap = getNet("A")->getTotalDownstreamCap();
590 double b_cap = getNet("B")->getTotalDownstreamCap();
591 double ci_cap = getNet("CI")->getTotalDownstreamCap();
592 double a_b_cap = getNet("A_b")->getTotalDownstreamCap();
593 double b_b_cap = getNet("B_b")->getTotalDownstreamCap();
594 double ci_b_cap = getNet("CI_b")->getTotalDownstreamCap();
595 double p_cap = getNet("P")->getTotalDownstreamCap();
596 double p_b_cap = getNet("P_b")->getTotalDownstreamCap();
597 double s_cap = getNet("S")->getTotalDownstreamCap();
598 double cp_cap = getNet("CP")->getTotalDownstreamCap();
599 double g_cap = getNet("G")->getTotalDownstreamCap();
600 double co_cap = getNet("CO")->getTotalDownstreamCap();
601
602 cache->set(cell_name + "->Cap->A", a_cap);
603 cache->set(cell_name + "->Cap->B", b_cap);
604 cache->set(cell_name + "->Cap->CI", ci_cap);
605 cache->set(cell_name + "->Cap->A_b", a_b_cap);
606 cache->set(cell_name + "->Cap->B_b", b_b_cap);
607 cache->set(cell_name + "->Cap->CI_b", ci_b_cap);
608 cache->set(cell_name + "->Cap->P", p_cap);
609 cache->set(cell_name + "->Cap->P_b", p_b_cap);
610 cache->set(cell_name + "->Cap->S", s_cap);
611 cache->set(cell_name + "->Cap->CP", cp_cap);
612 cache->set(cell_name + "->Cap->G", g_cap);
613 cache->set(cell_name + "->Cap->CO", co_cap);
614
615 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
616 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
617 Log::printLine(cell_name + "->Cap->CI=" + (String) ci_cap);
618 Log::printLine(cell_name + "->Cap->A_b=" + (String) a_b_cap);
619 Log::printLine(cell_name + "->Cap->B_b=" + (String) b_b_cap);
620 Log::printLine(cell_name + "->Cap->CI_b=" + (String) ci_b_cap);
621 Log::printLine(cell_name + "->Cap->P=" + (String) p_cap);
622 Log::printLine(cell_name + "->Cap->P_b=" + (String) p_b_cap);
623 Log::printLine(cell_name + "->Cap->S=" + (String) s_cap);
624 Log::printLine(cell_name + "->Cap->CP=" + (String) cp_cap);
625 Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);
626 Log::printLine(cell_name + "->Cap->CO=" + (String) co_cap);
627 // --------------------------------------------------------------------
628
629 // --------------------------------------------------------------------
630 // Build Internal Delay Model
631 // --------------------------------------------------------------------
632 // Build abstracted timing model
633 double s_ron = (getDriver("INVZ3_RonZN")->getOutputRes() + getDriver("INVZ4_RonZN")->getOutputRes()) / 2;
634 double co_ron = getDriver("NAND3_RonZN")->getOutputRes();
635
636 double a_to_s_delay = 0.0;
637 a_to_s_delay += getDriver("INV1_RonZN")->calculateDelay();
638 a_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay());
639 a_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
640
641 double b_to_s_delay = 0.0;
642 b_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay());
643 b_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
644
645 double ci_to_s_delay = 0.0;
646 ci_to_s_delay += getDriver("INV3_RonZN")->calculateDelay();
647 ci_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INVZ4_RonZN")->calculateDelay());
648
649 double a_to_co_delay = 0.0;
650 a_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path
651 getDriver("INV1_RonZN")->calculateDelay() + //Carry propagate path
652 max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()) +
653 getDriver("NAND1_RonZN")->calculateDelay());
654 a_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
655
656 double b_to_co_delay = 0.0;
657 b_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(), //Generate path
658 max(getDriver("INVZ1_RonZN")->calculateDelay(), //Carry propagate path
659 getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()) +
660 getDriver("NAND1_RonZN")->calculateDelay());
661 b_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
662
663 double ci_to_co_delay = 0.0;
664 ci_to_co_delay += getDriver("NAND1_RonZN")->calculateDelay();
665 ci_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
666
667 cache->set(cell_name + "->DriveRes->S", s_ron);
668 cache->set(cell_name + "->DriveRes->CO", co_ron);
669
670 cache->set(cell_name + "->Delay->A_to_S", a_to_s_delay);
671 cache->set(cell_name + "->Delay->B_to_S", b_to_s_delay);
672 cache->set(cell_name + "->Delay->CI_to_S", ci_to_s_delay);
673 cache->set(cell_name + "->Delay->A_to_CO", a_to_co_delay);
674 cache->set(cell_name + "->Delay->B_to_CO", b_to_co_delay);
675 cache->set(cell_name + "->Delay->CI_to_CO", ci_to_co_delay);
676
677 Log::printLine(cell_name + "->DriveRes->S=" + (String) s_ron);
678 Log::printLine(cell_name + "->DriveRes->CO=" + (String) co_ron);
679 Log::printLine(cell_name + "->Delay->A_to_S=" + (String) a_to_s_delay);
680 Log::printLine(cell_name + "->Delay->B_to_S=" + (String) b_to_s_delay);
681 Log::printLine(cell_name + "->Delay->CI_to_S=" + (String) ci_to_s_delay);
682 Log::printLine(cell_name + "->Delay->A_to_CO=" + (String) a_to_co_delay);
683 Log::printLine(cell_name + "->Delay->B_to_CO=" + (String) b_to_co_delay);
684 Log::printLine(cell_name + "->Delay->CI_to_CO=" + (String) ci_to_co_delay);
685 // --------------------------------------------------------------------
686
687 return;
688
689 }
690
691} // namespace DSENT
692