MemoryPowerModel.cc (11555:2efa95cf8504) MemoryPowerModel.cc (12266:63b8da9eeca4)
1/*
2 * Copyright (c) 2012-2014, TU Delft
3 * Copyright (c) 2012-2014, TU Eindhoven
4 * Copyright (c) 2012-2014, TU Kaiserslautern
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are

--- 17 unchanged lines hidden (view full) ---

26 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
28 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
1/*
2 * Copyright (c) 2012-2014, TU Delft
3 * Copyright (c) 2012-2014, TU Eindhoven
4 * Copyright (c) 2012-2014, TU Kaiserslautern
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are

--- 17 unchanged lines hidden (view full) ---

26 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
28 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji
34 * Authors: Karthik Chandrasekar
35 * Matthias Jung
36 * Omar Naji
37 * Subash Kannoth
38 * Éder F. Zulian
39 * Felipe S. Prado
35 *
36 */
37
38#include "MemoryPowerModel.h"
39
40#include <stdint.h>
41
42#include <cmath> // For pow
43#include <iostream> // fmtflags
40 *
41 */
42
43#include "MemoryPowerModel.h"
44
45#include <stdint.h>
46
47#include <cmath> // For pow
48#include <iostream> // fmtflags
49#include <algorithm>
44
50
45
46using namespace std;
47using namespace Data;
48
51using namespace std;
52using namespace Data;
53
54MemoryPowerModel::MemoryPowerModel()
55{
56 total_cycles = 0;
57 energy.total_energy = 0;
58}
59
49// Calculate energy and average power consumption for the given command trace
50
51void MemoryPowerModel::power_calc(const MemorySpecification& memSpec,
52 const CommandAnalysis& c,
60// Calculate energy and average power consumption for the given command trace
61
62void MemoryPowerModel::power_calc(const MemorySpecification& memSpec,
63 const CommandAnalysis& c,
53 int term)
64 int term,
65 const MemBankWiseParams& bwPowerParams)
54{
55 const MemTimingSpec& t = memSpec.memTimingSpec;
56 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
57 const MemPowerSpec& mps = memSpec.memPowerSpec;
66{
67 const MemTimingSpec& t = memSpec.memTimingSpec;
68 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
69 const MemPowerSpec& mps = memSpec.memPowerSpec;
70 const int64_t nbrofBanks = memSpec.memArchSpec.nbrOfBanks;
58
71
72 energy.act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
73 energy.pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
74 energy.read_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
75 energy.write_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
76 energy.ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
77 energy.refb_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
78 energy.act_stdby_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
79 energy.pre_stdby_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
80 energy.idle_energy_act_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
81 energy.idle_energy_pre_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
82 energy.f_act_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
83 energy.f_pre_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
84 energy.s_act_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
85 energy.s_pre_pd_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
86 energy.ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
87 energy.sref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
88 energy.sref_ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
89 energy.sref_ref_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
90 energy.sref_ref_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
91 energy.spup_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
92 energy.spup_ref_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
93 energy.spup_ref_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
94 energy.spup_ref_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
95 energy.pup_act_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
96 energy.pup_pre_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
97 energy.total_energy_banks.assign(static_cast<size_t>(nbrofBanks), 0.0);
98
59 energy.act_energy = 0.0;
60 energy.pre_energy = 0.0;
61 energy.read_energy = 0.0;
62 energy.write_energy = 0.0;
63 energy.ref_energy = 0.0;
64 energy.act_stdby_energy = 0.0;
65 energy.pre_stdby_energy = 0.0;
66 energy.idle_energy_act = 0.0;
67 energy.idle_energy_pre = 0.0;
99 energy.act_energy = 0.0;
100 energy.pre_energy = 0.0;
101 energy.read_energy = 0.0;
102 energy.write_energy = 0.0;
103 energy.ref_energy = 0.0;
104 energy.act_stdby_energy = 0.0;
105 energy.pre_stdby_energy = 0.0;
106 energy.idle_energy_act = 0.0;
107 energy.idle_energy_pre = 0.0;
68 energy.total_energy = 0.0;
108 energy.window_energy = 0.0;
69 energy.f_act_pd_energy = 0.0;
70 energy.f_pre_pd_energy = 0.0;
71 energy.s_act_pd_energy = 0.0;
72 energy.s_pre_pd_energy = 0.0;
73 energy.sref_energy = 0.0;
74 energy.sref_ref_energy = 0.0;
75 energy.sref_ref_act_energy = 0.0;
76 energy.sref_ref_pre_energy = 0.0;

--- 24 unchanged lines hidden (view full) ---

101 // 1 DQS pin is associated with every data byte
102 int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8;
103 // 1 DQS and 1 DM pin is associated with every data byte
104 int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8;
105 // Size of one clock period for the data bus.
106 double ddrPeriod = t.clkPeriod / static_cast<double>(memArchSpec.dataRate);
107
108 // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin
109 energy.f_act_pd_energy = 0.0;
110 energy.f_pre_pd_energy = 0.0;
111 energy.s_act_pd_energy = 0.0;
112 energy.s_pre_pd_energy = 0.0;
113 energy.sref_energy = 0.0;
114 energy.sref_ref_energy = 0.0;
115 energy.sref_ref_act_energy = 0.0;
116 energy.sref_ref_pre_energy = 0.0;

--- 24 unchanged lines hidden (view full) ---

141 // 1 DQS pin is associated with every data byte
142 int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8;
143 // 1 DQS and 1 DM pin is associated with every data byte
144 int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8;
145 // Size of one clock period for the data bus.
146 double ddrPeriod = t.clkPeriod / static_cast<double>(memArchSpec.dataRate);
147
148 // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin
109 energy.read_io_energy = calcIoTermEnergy(c.numberofreads * memArchSpec.burstLength,
149 energy.read_io_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength,
110 ddrPeriod,
111 power.IO_power,
112 dqPlusDqsBits);
113
114 // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM
150 ddrPeriod,
151 power.IO_power,
152 dqPlusDqsBits);
153
154 // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM
115 energy.write_term_energy = calcIoTermEnergy(c.numberofwrites * memArchSpec.burstLength,
155 energy.write_term_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength,
116 ddrPeriod,
117 power.WR_ODT_power,
118 dqPlusDqsPlusMaskBits);
119
120 if (memArchSpec.nbrOfRanks > 1) {
121 // Termination power consumed in the idle rank during reads on the active
122 // rank by each DQ (data) and DQS (data strobe) pin.
156 ddrPeriod,
157 power.WR_ODT_power,
158 dqPlusDqsPlusMaskBits);
159
160 if (memArchSpec.nbrOfRanks > 1) {
161 // Termination power consumed in the idle rank during reads on the active
162 // rank by each DQ (data) and DQS (data strobe) pin.
123 energy.read_oterm_energy = calcIoTermEnergy(c.numberofreads * memArchSpec.burstLength,
163 energy.read_oterm_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength,
124 ddrPeriod,
125 power.TermRD_power,
126 dqPlusDqsBits);
127
128 // Termination power consumed in the idle rank during writes on the active
129 // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin.
164 ddrPeriod,
165 power.TermRD_power,
166 dqPlusDqsBits);
167
168 // Termination power consumed in the idle rank during writes on the active
169 // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin.
130 energy.write_oterm_energy = calcIoTermEnergy(c.numberofwrites * memArchSpec.burstLength,
170 energy.write_oterm_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength,
131 ddrPeriod,
132 power.TermWR_power,
133 dqPlusDqsPlusMaskBits);
134 }
135
136 // Sum of all IO and termination energy
137 energy.io_term_energy = energy.read_io_energy + energy.write_term_energy
138 + energy.read_oterm_energy + energy.write_oterm_energy;
139 }
140
171 ddrPeriod,
172 power.TermWR_power,
173 dqPlusDqsPlusMaskBits);
174 }
175
176 // Sum of all IO and termination energy
177 energy.io_term_energy = energy.read_io_energy + energy.write_term_energy
178 + energy.read_oterm_energy + energy.write_oterm_energy;
179 }
180
141 total_cycles = c.actcycles + c.precycles +
181 window_cycles = c.actcycles + c.precycles +
142 c.f_act_pdcycles + c.f_pre_pdcycles +
143 c.s_act_pdcycles + c.s_pre_pdcycles + c.sref_cycles
144 + c.sref_ref_act_cycles + c.sref_ref_pre_cycles +
145 c.spup_ref_act_cycles + c.spup_ref_pre_cycles;
146
147 EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod);
148
182 c.f_act_pdcycles + c.f_pre_pdcycles +
183 c.s_act_pdcycles + c.s_pre_pdcycles + c.sref_cycles
184 + c.sref_ref_act_cycles + c.sref_ref_pre_cycles +
185 c.spup_ref_act_cycles + c.spup_ref_pre_cycles;
186
187 EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod);
188
149 energy.act_energy = vdd0Domain.calcTivEnergy(c.numberofacts * t.RAS , mps.idd0 - mps.idd3n);
150 energy.pre_energy = vdd0Domain.calcTivEnergy(c.numberofpres * (t.RC - t.RAS) , mps.idd0 - mps.idd2n);
151 energy.read_energy = vdd0Domain.calcTivEnergy(c.numberofreads * burstCc , mps.idd4r - mps.idd3n);
152 energy.write_energy = vdd0Domain.calcTivEnergy(c.numberofwrites * burstCc , mps.idd4w - mps.idd3n);
189 energy.act_energy = vdd0Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd0 - mps.idd3n);
190 energy.pre_energy = vdd0Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd0 - mps.idd2n);
191 energy.read_energy = vdd0Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r - mps.idd3n);
192 energy.write_energy = vdd0Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w - mps.idd3n);
153 energy.ref_energy = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd5 - mps.idd3n);
154 energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n);
155 energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n);
193 energy.ref_energy = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd5 - mps.idd3n);
194 energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n);
195 energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n);
196
197 // Using the number of cycles that at least one bank is active here
198 // But the current iddrho is less than idd3n
199 double iddrho = (static_cast<double>(bwPowerParams.bwPowerFactRho) / 100.0) * (mps.idd3n - mps.idd2n) + mps.idd2n;
200 double esharedActStdby = vdd0Domain.calcTivEnergy(c.actcycles, iddrho);
201 // Fixed componenent for PASR
202 double iddsigma = (static_cast<double>(bwPowerParams.bwPowerFactSigma) / 100.0) * mps.idd6;
203 double esharedPASR = vdd0Domain.calcTivEnergy(c.sref_cycles, iddsigma);
204 // ione is Active background current for a single bank. When a single bank is Active
205 //,all the other remainig (B-1) banks will consume a current of iddrho (based on factor Rho)
206 // So to derrive ione we add (B-1)*iddrho to the idd3n and distribute it to each banks.
207 double ione = (mps.idd3n + (iddrho * (static_cast<double>(nbrofBanks - 1)))) / (static_cast<double>(nbrofBanks));
208 // If memory specification does not provide bank wise refresh current,
209 // approximate it to single bank background current removed from
210 // single bank active current
211 double idd5Blocal = (mps.idd5B == 0.0) ? (mps.idd0 - ione) :(mps.idd5B);
212 // if memory specification does not provide the REFB timing approximate it
213 // to time of ACT + PRE
214 int64_t tRefBlocal = (t.REFB == 0) ? (t.RAS + t.RP) : (t.REFB);
215
216 //Distribution of energy componets to each banks
217 for (unsigned i = 0; i < nbrofBanks; i++) {
218 energy.act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofactsBanks[i] * t.RAS, mps.idd0 - ione);
219 energy.pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofpresBanks[i] * (t.RP), mps.idd0 - ione);
220 energy.read_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofreadsBanks[i] * burstCc, mps.idd4r - mps.idd3n);
221 energy.write_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofwritesBanks[i] * burstCc, mps.idd4w - mps.idd3n);
222 energy.ref_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC, mps.idd5 - mps.idd3n) / static_cast<double>(nbrofBanks);
223 energy.refb_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefbBanks[i] * tRefBlocal, idd5Blocal);
224 energy.pre_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n) / static_cast<double>(nbrofBanks);
225 energy.act_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.actcyclesBanks[i], (mps.idd3n - iddrho) / static_cast<double>(nbrofBanks))
226 + esharedActStdby / static_cast<double>(nbrofBanks);
227 energy.idle_energy_act_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n) / static_cast<double>(nbrofBanks);
228 energy.idle_energy_pre_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n) / static_cast<double>(nbrofBanks);
229 energy.f_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1) / static_cast<double>(nbrofBanks);
230 energy.f_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1) / static_cast<double>(nbrofBanks);
231 energy.s_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0) / static_cast<double>(nbrofBanks);
232 energy.s_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0) / static_cast<double>(nbrofBanks);
233
234 energy.sref_energy_banks[i] = engy_sref_banks(mps.idd6, mps.idd3n,
235 mps.idd5, mps.vdd,
236 static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles),
237 static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles),
238 static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod,esharedPASR,bwPowerParams,i,nbrofBanks
239 );
240 energy.sref_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0) / static_cast<double>(nbrofBanks);
241 energy.sref_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0) / static_cast<double>(nbrofBanks);
242 energy.sref_ref_energy_banks[i] = energy.sref_ref_act_energy_banks[i] + energy.sref_ref_pre_energy_banks[i] ;//
243
244 energy.spup_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n) / static_cast<double>(nbrofBanks);
245 energy.spup_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n) / static_cast<double>(nbrofBanks);//
246 energy.spup_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n) / static_cast<double>(nbrofBanks);
247 energy.spup_ref_energy_banks[i] = ( energy.spup_ref_act_energy + energy.spup_ref_pre_energy ) / static_cast<double>(nbrofBanks);
248 energy.pup_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n) / static_cast<double>(nbrofBanks);
249 energy.pup_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n) / static_cast<double>(nbrofBanks);
250 }
251
156 // Idle energy in the active standby clock cycles
157 energy.idle_energy_act = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n);
158 // Idle energy in the precharge standby clock cycles
159 energy.idle_energy_pre = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n);
160 // fast-exit active power-down cycles energy
161 energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1);
162 // fast-exit precharged power-down cycles energy
163 energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1);

--- 24 unchanged lines hidden (view full) ---

188 // precharged power-up cycles energy - same as precharged standby -- included
189 energy.pup_pre_energy = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n);
190
191 // similar equations as before to support multiple voltage domains in LPDDR2
192 // and WIDEIO memories
193 if (memArchSpec.twoVoltageDomains) {
194 EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod);
195
252 // Idle energy in the active standby clock cycles
253 energy.idle_energy_act = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n);
254 // Idle energy in the precharge standby clock cycles
255 energy.idle_energy_pre = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n);
256 // fast-exit active power-down cycles energy
257 energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1);
258 // fast-exit precharged power-down cycles energy
259 energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1);

--- 24 unchanged lines hidden (view full) ---

284 // precharged power-up cycles energy - same as precharged standby -- included
285 energy.pup_pre_energy = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n);
286
287 // similar equations as before to support multiple voltage domains in LPDDR2
288 // and WIDEIO memories
289 if (memArchSpec.twoVoltageDomains) {
290 EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod);
291
196 energy.act_energy += vdd2Domain.calcTivEnergy(c.numberofacts * t.RAS , mps.idd02 - mps.idd3n2);
197 energy.pre_energy += vdd2Domain.calcTivEnergy(c.numberofpres * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2);
198 energy.read_energy += vdd2Domain.calcTivEnergy(c.numberofreads * burstCc , mps.idd4r2 - mps.idd3n2);
199 energy.write_energy += vdd2Domain.calcTivEnergy(c.numberofwrites * burstCc , mps.idd4w2 - mps.idd3n2);
292 energy.act_energy += vdd2Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd02 - mps.idd3n2);
293 energy.pre_energy += vdd2Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2);
294 energy.read_energy += vdd2Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r2 - mps.idd3n2);
295 energy.write_energy += vdd2Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w2 - mps.idd3n2);
200 energy.ref_energy += vdd2Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2);
201 energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2);
202 energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2);
296 energy.ref_energy += vdd2Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2);
297 energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2);
298 energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2);
299
203 // Idle energy in the active standby clock cycles
204 energy.idle_energy_act += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2);
205 // Idle energy in the precharge standby clock cycles
206 energy.idle_energy_pre += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2);
207 // fast-exit active power-down cycles energy
208 energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12);
209 // fast-exit precharged power-down cycles energy
210 energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12);

--- 27 unchanged lines hidden (view full) ---

238 // auto-refresh energy during self-refresh cycles
239 energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy;
240
241 // auto-refresh energy during self-refresh exit cycles
242 energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy;
243
244 // adding all energy components for the active rank and all background and idle
245 // energy components for both ranks (in a dual-rank system)
300 // Idle energy in the active standby clock cycles
301 energy.idle_energy_act += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2);
302 // Idle energy in the precharge standby clock cycles
303 energy.idle_energy_pre += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2);
304 // fast-exit active power-down cycles energy
305 energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12);
306 // fast-exit precharged power-down cycles energy
307 energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12);

--- 27 unchanged lines hidden (view full) ---

335 // auto-refresh energy during self-refresh cycles
336 energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy;
337
338 // auto-refresh energy during self-refresh exit cycles
339 energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy;
340
341 // adding all energy components for the active rank and all background and idle
342 // energy components for both ranks (in a dual-rank system)
246 energy.total_energy = energy.act_energy + energy.pre_energy + energy.read_energy +
247 energy.write_energy + energy.ref_energy + energy.io_term_energy +
248 static_cast<double>(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy +
249 energy.pre_stdby_energy + energy.sref_energy +
250 energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy
251 + energy.s_pre_pd_energy + energy.sref_ref_energy + energy.spup_ref_energy);
252
343
344 if (bwPowerParams.bwMode) {
345 // Calculate total energy per bank.
346 for (unsigned i = 0; i < nbrofBanks; i++) {
347 energy.total_energy_banks[i] = energy.act_energy_banks[i] + energy.pre_energy_banks[i] + energy.read_energy_banks[i]
348 + energy.ref_energy_banks[i] + energy.write_energy_banks[i] + energy.refb_energy_banks[i]
349 + static_cast<double>(memArchSpec.nbrOfRanks) * energy.act_stdby_energy_banks[i]
350 + energy.pre_stdby_energy_banks[i] + energy.f_pre_pd_energy_banks[i] + energy.s_act_pd_energy_banks[i]
351 + energy.s_pre_pd_energy_banks[i]+ energy.sref_ref_energy_banks[i] + energy.spup_ref_energy_banks[i];
352 }
353 // Calculate total energy for all banks.
354 energy.window_energy = sum(energy.total_energy_banks) + energy.io_term_energy;
355
356 } else {
357 energy.window_energy = energy.act_energy + energy.pre_energy + energy.read_energy + energy.write_energy
358 + energy.ref_energy + energy.io_term_energy + sum(energy.refb_energy_banks)
359 + static_cast<double>(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy
360 + energy.pre_stdby_energy + energy.sref_energy + energy.f_act_pd_energy
361 + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy
362 + energy.sref_ref_energy + energy.spup_ref_energy);
363 }
364
365 power.window_average_power = energy.window_energy / (static_cast<double>(window_cycles) * t.clkPeriod);
366
367 total_cycles += window_cycles;
368
369 energy.total_energy += energy.window_energy;
370
253 // Calculate the average power consumption
254 power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod);
255} // MemoryPowerModel::power_calc
256
371 // Calculate the average power consumption
372 power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod);
373} // MemoryPowerModel::power_calc
374
257void MemoryPowerModel::power_print(const MemorySpecification& memSpec, int term, const CommandAnalysis& c) const
375void MemoryPowerModel::power_print(const MemorySpecification& memSpec, int term, const CommandAnalysis& c, bool bankwiseMode) const
258{
259 const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
260 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
261 const uint64_t nRanks = static_cast<uint64_t>(memArchSpec.nbrOfRanks);
262 const char eUnit[] = " pJ";
376{
377 const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
378 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
379 const uint64_t nRanks = static_cast<uint64_t>(memArchSpec.nbrOfRanks);
380 const char eUnit[] = " pJ";
381 const int64_t nbrofBanks = memSpec.memArchSpec.nbrOfBanks;
382 double nRanksDouble = static_cast<double>(nRanks);
263
264 ios_base::fmtflags flags = cout.flags();
265 streamsize precision = cout.precision();
266 cout.precision(0);
383
384 ios_base::fmtflags flags = cout.flags();
385 streamsize precision = cout.precision();
386 cout.precision(0);
267 cout << "* Trace Details:" << fixed << endl
268 << endl << "#ACT commands: " << c.numberofacts
269 << endl << "#RD + #RDA commands: " << c.numberofreads
270 << endl << "#WR + #WRA commands: " << c.numberofwrites
387
388 if (bankwiseMode) {
389 cout << endl << "* Bankwise Details:";
390 for (unsigned i = 0; i < nbrofBanks; i++) {
391 cout << endl << "## @ Bank " << i << fixed
392 << endl << " #ACT commands: " << c.numberofactsBanks[i]
393 << endl << " #RD + #RDA commands: " << c.numberofreadsBanks[i]
394 << endl << " #WR + #WRA commands: " << c.numberofwritesBanks[i]
395 << endl << " #PRE (+ PREA) commands: " << c.numberofpresBanks[i];
396 }
397 cout << endl;
398 }
399
400 cout << endl << "* Trace Details:" << fixed << endl
401 << endl << "#ACT commands: " << sum(c.numberofactsBanks)
402 << endl << "#RD + #RDA commands: " << sum(c.numberofreadsBanks)
403 << endl << "#WR + #WRA commands: " << sum(c.numberofwritesBanks)
271 /* #PRE commands (precharge all counts a number of #PRE commands equal to the number of active banks) */
404 /* #PRE commands (precharge all counts a number of #PRE commands equal to the number of active banks) */
272 << endl << "#PRE (+ PREA) commands: " << c.numberofpres
405 << endl << "#PRE (+ PREA) commands: " << sum(c.numberofpresBanks)
273 << endl << "#REF commands: " << c.numberofrefs
406 << endl << "#REF commands: " << c.numberofrefs
407 << endl << "#REFB commands: " << sum(c.numberofrefbBanks)
274 << endl << "#Active Cycles: " << c.actcycles
275 << endl << " #Active Idle Cycles: " << c.idlecycles_act
276 << endl << " #Active Power-Up Cycles: " << c.pup_act_cycles
277 << endl << " #Auto-Refresh Active cycles during Self-Refresh Power-Up: " << c.spup_ref_act_cycles
278 << endl << "#Precharged Cycles: " << c.precycles
279 << endl << " #Precharged Idle Cycles: " << c.idlecycles_pre
280 << endl << " #Precharged Power-Up Cycles: " << c.pup_pre_cycles
281 << endl << " #Auto-Refresh Precharged cycles during Self-Refresh Power-Up: " << c.spup_ref_pre_cycles

--- 13 unchanged lines hidden (view full) ---

295 << endl << " #Auto-Refresh Precharged cycles during Self-Refresh: " << c.sref_ref_pre_cycles
296 << endl << "#Auto-Refresh Cycles: " << c.numberofrefs * memTimingSpec.RFC
297 << endl << "#Self-Refreshes: " << c.numberofsrefs
298 << endl << "#Self-Refresh Cycles: " << c.sref_cycles
299 << endl << "----------------------------------------"
300 << endl << "Total Trace Length (clock cycles): " << total_cycles
301 << endl << "----------------------------------------" << endl;
302
408 << endl << "#Active Cycles: " << c.actcycles
409 << endl << " #Active Idle Cycles: " << c.idlecycles_act
410 << endl << " #Active Power-Up Cycles: " << c.pup_act_cycles
411 << endl << " #Auto-Refresh Active cycles during Self-Refresh Power-Up: " << c.spup_ref_act_cycles
412 << endl << "#Precharged Cycles: " << c.precycles
413 << endl << " #Precharged Idle Cycles: " << c.idlecycles_pre
414 << endl << " #Precharged Power-Up Cycles: " << c.pup_pre_cycles
415 << endl << " #Auto-Refresh Precharged cycles during Self-Refresh Power-Up: " << c.spup_ref_pre_cycles

--- 13 unchanged lines hidden (view full) ---

429 << endl << " #Auto-Refresh Precharged cycles during Self-Refresh: " << c.sref_ref_pre_cycles
430 << endl << "#Auto-Refresh Cycles: " << c.numberofrefs * memTimingSpec.RFC
431 << endl << "#Self-Refreshes: " << c.numberofsrefs
432 << endl << "#Self-Refresh Cycles: " << c.sref_cycles
433 << endl << "----------------------------------------"
434 << endl << "Total Trace Length (clock cycles): " << total_cycles
435 << endl << "----------------------------------------" << endl;
436
437 if (bankwiseMode) {
438 cout << endl << "* Bankwise Details:";
439 for (unsigned i = 0; i < nbrofBanks; i++) {
440 cout << endl << "## @ Bank " << i << fixed
441 << endl << " ACT Cmd Energy: " << energy.act_energy_banks[i] << eUnit
442 << endl << " PRE Cmd Energy: " << energy.pre_energy_banks[i] << eUnit
443 << endl << " RD Cmd Energy: " << energy.read_energy_banks[i] << eUnit
444 << endl << " WR Cmd Energy: " << energy.write_energy_banks[i] << eUnit
445 << endl << " Auto-Refresh Energy: " << energy.ref_energy_banks[i] << eUnit
446 << endl << " Bankwise-Refresh Energy: " << energy.refb_energy_banks[i] << eUnit
447 << endl << " ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy_banks[i] << eUnit
448 << endl << " PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy_banks[i] << eUnit
449 << endl << " Active Idle Energy: "<< nRanksDouble * energy.idle_energy_act_banks[i] << eUnit
450 << endl << " Precharge Idle Energy: "<< nRanksDouble * energy.idle_energy_pre_banks[i] << eUnit
451 << endl << " Fast-Exit Active Power-Down Energy: "<< nRanksDouble * energy.f_act_pd_energy_banks[i] << eUnit
452 << endl << " Fast-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.f_pre_pd_energy_banks[i] << eUnit
453 << endl << " Slow-Exit Active Power-Down Energy: "<< nRanksDouble * energy.s_act_pd_energy_banks[i] << eUnit
454 << endl << " Slow-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.s_pre_pd_energy_banks[i] << eUnit
455 << endl << " Self-Refresh Energy: "<< nRanksDouble * energy.sref_energy_banks[i] << eUnit
456 << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: "<< nRanksDouble * energy.sref_ref_act_energy_banks[i] << eUnit
457 << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy_banks[i] << eUnit
458 << endl << " Self-Refresh Power-Up Energy: "<< nRanksDouble * energy.spup_energy_banks[i] << eUnit
459 << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_act_energy_banks[i] << eUnit
460 << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_pre_energy_banks[i] << eUnit
461 << endl << " Active Power-Up Energy: "<< nRanksDouble * energy.pup_act_energy_banks[i] << eUnit
462 << endl << " Precharged Power-Up Energy: "<< nRanksDouble * energy.pup_pre_energy_banks[i] << eUnit
463 << endl << " Total Energy: "<< energy.total_energy_banks[i] << eUnit
464 << endl;
465 }
466 cout << endl;
467 }
468
303 cout.precision(2);
304 cout << endl << "* Trace Power and Energy Estimates:" << endl
305 << endl << "ACT Cmd Energy: " << energy.act_energy << eUnit
306 << endl << "PRE Cmd Energy: " << energy.pre_energy << eUnit
307 << endl << "RD Cmd Energy: " << energy.read_energy << eUnit
308 << endl << "WR Cmd Energy: " << energy.write_energy << eUnit;
309
310 if (term) {
469 cout.precision(2);
470 cout << endl << "* Trace Power and Energy Estimates:" << endl
471 << endl << "ACT Cmd Energy: " << energy.act_energy << eUnit
472 << endl << "PRE Cmd Energy: " << energy.pre_energy << eUnit
473 << endl << "RD Cmd Energy: " << energy.read_energy << eUnit
474 << endl << "WR Cmd Energy: " << energy.write_energy << eUnit;
475
476 if (term) {
311 cout << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl;
477 cout << endl << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl;
312 // No Termination for LPDDR/2/3 and DDR memories
313 if (memSpec.memArchSpec.termination) {
314 cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl;
315 }
316
317 if (nRanks > 1 && memSpec.memArchSpec.termination) {
318 cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit
319 << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl;
320 }
321 }
322
478 // No Termination for LPDDR/2/3 and DDR memories
479 if (memSpec.memArchSpec.termination) {
480 cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl;
481 }
482
483 if (nRanks > 1 && memSpec.memArchSpec.termination) {
484 cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit
485 << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl;
486 }
487 }
488
323 double nRanksDouble = static_cast<double>(nRanks);
324
325 cout << "ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy << eUnit
326 << endl << " Active Idle Energy: " << nRanksDouble * energy.idle_energy_act << eUnit
327 << endl << " Active Power-Up Energy: " << nRanksDouble * energy.pup_act_energy << eUnit
328 << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_act_energy << eUnit
329 << endl << "PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy << eUnit
330 << endl << " Precharge Idle Energy: " << nRanksDouble * energy.idle_energy_pre << eUnit
331 << endl << " Precharged Power-Up Energy: " << nRanksDouble * energy.pup_pre_energy << eUnit
332 << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_pre_energy << eUnit
333 << endl << " Self-Refresh Power-Up Energy: " << nRanksDouble * energy.spup_energy << eUnit
334 << endl << "Total Idle Energy (Active + Precharged): " << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit
335 << endl << "Total Power-Down Energy: " << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit
336 << endl << " Fast-Exit Active Power-Down Energy: " << nRanksDouble * energy.f_act_pd_energy << eUnit
337 << endl << " Slow-Exit Active Power-Down Energy: " << nRanksDouble * energy.s_act_pd_energy << eUnit
338 << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_act_energy << eUnit
339 << endl << " Fast-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.f_pre_pd_energy << eUnit
340 << endl << " Slow-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.s_pre_pd_energy << eUnit
341 << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit
342 << endl << "Auto-Refresh Energy: " << energy.ref_energy << eUnit
489 cout << "ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy << eUnit
490 << endl << " Active Idle Energy: " << nRanksDouble * energy.idle_energy_act << eUnit
491 << endl << " Active Power-Up Energy: " << nRanksDouble * energy.pup_act_energy << eUnit
492 << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_act_energy << eUnit
493 << endl << "PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy << eUnit
494 << endl << " Precharge Idle Energy: " << nRanksDouble * energy.idle_energy_pre << eUnit
495 << endl << " Precharged Power-Up Energy: " << nRanksDouble * energy.pup_pre_energy << eUnit
496 << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_pre_energy << eUnit
497 << endl << " Self-Refresh Power-Up Energy: " << nRanksDouble * energy.spup_energy << eUnit
498 << endl << "Total Idle Energy (Active + Precharged): " << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit
499 << endl << "Total Power-Down Energy: " << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit
500 << endl << " Fast-Exit Active Power-Down Energy: " << nRanksDouble * energy.f_act_pd_energy << eUnit
501 << endl << " Slow-Exit Active Power-Down Energy: " << nRanksDouble * energy.s_act_pd_energy << eUnit
502 << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_act_energy << eUnit
503 << endl << " Fast-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.f_pre_pd_energy << eUnit
504 << endl << " Slow-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.s_pre_pd_energy << eUnit
505 << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit
506 << endl << "Auto-Refresh Energy: " << energy.ref_energy << eUnit
507 << endl << "Bankwise-Refresh Energy: " << sum(energy.refb_energy_banks) << eUnit
343 << endl << "Self-Refresh Energy: " << nRanksDouble * energy.sref_energy << eUnit
344 << endl << "----------------------------------------"
345 << endl << "Total Trace Energy: " << energy.total_energy << eUnit
346 << endl << "Average Power: " << power.average_power << " mW"
347 << endl << "----------------------------------------" << endl;
348
349 cout.flags(flags);
350 cout.precision(precision);

--- 8 unchanged lines hidden (view full) ---

359 double sref_energy;
360
361 sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles
362 + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)))
363 * vdd * clk;
364 return sref_energy;
365}
366
508 << endl << "Self-Refresh Energy: " << nRanksDouble * energy.sref_energy << eUnit
509 << endl << "----------------------------------------"
510 << endl << "Total Trace Energy: " << energy.total_energy << eUnit
511 << endl << "Average Power: " << power.average_power << " mW"
512 << endl << "----------------------------------------" << endl;
513
514 cout.flags(flags);
515 cout.precision(precision);

--- 8 unchanged lines hidden (view full) ---

524 double sref_energy;
525
526 sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles
527 + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)))
528 * vdd * clk;
529 return sref_energy;
530}
531
532// Self-refresh active energy estimation per banks
533double MemoryPowerModel::engy_sref_banks(double idd6, double idd3n, double idd5,
534 double vdd, double sref_cycles, double sref_ref_act_cycles,
535 double sref_ref_pre_cycles, double spup_ref_act_cycles,
536 double spup_ref_pre_cycles, double clk,
537 double esharedPASR, const MemBankWiseParams& bwPowerParams,
538 unsigned bnkIdx, int64_t nbrofBanks)
539{
540 // Bankwise Self-refresh energy
541 double sref_energy_banks;
542 // Dynamic componenents for PASR energy varying based on PASR mode
543 double iddsigmaDynBanks;
544 double pasr_energy_dyn;
545 // This component is distributed among all banks
546 double sref_energy_shared;
547 //Is PASR Active
548 if (bwPowerParams.flgPASR){
549 sref_energy_shared = (((idd5 - idd3n) * (sref_ref_act_cycles
550 + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)) * vdd * clk)
551 / static_cast<double>(nbrofBanks);
552 //if the bank is active under current PASR mode
553 if (bwPowerParams.isBankActiveInPasr(bnkIdx)){
554 // Distribute the sref energy to the active banks
555 iddsigmaDynBanks = (static_cast<double>(100 - bwPowerParams.bwPowerFactSigma) / (100.0 * static_cast<double>(nbrofBanks))) * idd6;
556 pasr_energy_dyn = vdd * iddsigmaDynBanks * sref_cycles;
557 // Add the static components
558 sref_energy_banks = sref_energy_shared + pasr_energy_dyn + (esharedPASR /static_cast<double>(nbrofBanks));
559
560 }else{
561 sref_energy_banks = (esharedPASR /static_cast<double>(nbrofBanks));
562 }
563 }
564 //When PASR is not active total all the banks are in Self-Refresh. Thus total Self-Refresh energy is distributed across all banks
565 else{
566
567
568 sref_energy_banks = (((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles
569 + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)))
570 * vdd * clk)
571 / static_cast<double>(nbrofBanks);
572 }
573 return sref_energy_banks;
574}
575
576
367// IO and Termination power calculation based on Micron Power Calculators
368// Absolute power measures are obtained from Micron Power Calculator (mentioned in mW)
369void MemoryPowerModel::io_term_power(const MemorySpecification& memSpec)
370{
371 const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
372 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
373 const MemPowerSpec& memPowerSpec = memSpec.memPowerSpec;
374

--- 17 unchanged lines hidden (view full) ---

392 return static_cast<double>(cycles) * period * power * static_cast<double>(numBits);
393}
394
395// time (t) * current (I) * voltage (V) energy calculation
396double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const
397{
398 return static_cast<double>(cycles) * clkPeriod * current * voltage;
399}
577// IO and Termination power calculation based on Micron Power Calculators
578// Absolute power measures are obtained from Micron Power Calculator (mentioned in mW)
579void MemoryPowerModel::io_term_power(const MemorySpecification& memSpec)
580{
581 const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
582 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
583 const MemPowerSpec& memPowerSpec = memSpec.memPowerSpec;
584

--- 17 unchanged lines hidden (view full) ---

602 return static_cast<double>(cycles) * period * power * static_cast<double>(numBits);
603}
604
605// time (t) * current (I) * voltage (V) energy calculation
606double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const
607{
608 return static_cast<double>(cycles) * clkPeriod * current * voltage;
609}
610