Deleted Added
sdiff udiff text old ( 11555:2efa95cf8504 ) new ( 12266:63b8da9eeca4 )
full compact
1/*
2 * Copyright (c) 2012-2014, TU Delft
3 * Copyright (c) 2012-2014, TU Eindhoven
4 * Copyright (c) 2012-2014, TU Kaiserslautern
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * 3. Neither the name of the copyright holder nor the names of its
19 * contributors may be used to endorse or promote products derived from
20 * this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
23 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
28 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji
35 *
36 */
37
38#include "MemoryPowerModel.h"
39
40#include <stdint.h>
41
42#include <cmath> // For pow
43#include <iostream> // fmtflags
44
45
46using namespace std;
47using namespace Data;
48
49// Calculate energy and average power consumption for the given command trace
50
51void MemoryPowerModel::power_calc(const MemorySpecification& memSpec,
52 const CommandAnalysis& c,
53 int term)
54{
55 const MemTimingSpec& t = memSpec.memTimingSpec;
56 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
57 const MemPowerSpec& mps = memSpec.memPowerSpec;
58
59 energy.act_energy = 0.0;
60 energy.pre_energy = 0.0;
61 energy.read_energy = 0.0;
62 energy.write_energy = 0.0;
63 energy.ref_energy = 0.0;
64 energy.act_stdby_energy = 0.0;
65 energy.pre_stdby_energy = 0.0;
66 energy.idle_energy_act = 0.0;
67 energy.idle_energy_pre = 0.0;
68 energy.total_energy = 0.0;
69 energy.f_act_pd_energy = 0.0;
70 energy.f_pre_pd_energy = 0.0;
71 energy.s_act_pd_energy = 0.0;
72 energy.s_pre_pd_energy = 0.0;
73 energy.sref_energy = 0.0;
74 energy.sref_ref_energy = 0.0;
75 energy.sref_ref_act_energy = 0.0;
76 energy.sref_ref_pre_energy = 0.0;
77 energy.spup_energy = 0.0;
78 energy.spup_ref_energy = 0.0;
79 energy.spup_ref_act_energy = 0.0;
80 energy.spup_ref_pre_energy = 0.0;
81 energy.pup_act_energy = 0.0;
82 energy.pup_pre_energy = 0.0;
83 power.IO_power = 0.0;
84 power.WR_ODT_power = 0.0;
85 power.TermRD_power = 0.0;
86 power.TermWR_power = 0.0;
87 energy.read_io_energy = 0.0;
88 energy.write_term_energy = 0.0;
89 energy.read_oterm_energy = 0.0;
90 energy.write_oterm_energy = 0.0;
91 energy.io_term_energy = 0.0;
92
93 // How long a single burst takes, measured in command-clock cycles.
94 int64_t burstCc = memArchSpec.burstLength / memArchSpec.dataRate;
95
96 // IO and Termination Power measures are included, if required.
97 if (term) {
98 io_term_power(memSpec);
99
100 // memArchSpec.width represents the number of data (dq) pins.
101 // 1 DQS pin is associated with every data byte
102 int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8;
103 // 1 DQS and 1 DM pin is associated with every data byte
104 int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8;
105 // Size of one clock period for the data bus.
106 double ddrPeriod = t.clkPeriod / static_cast<double>(memArchSpec.dataRate);
107
108 // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin
109 energy.read_io_energy = calcIoTermEnergy(c.numberofreads * memArchSpec.burstLength,
110 ddrPeriod,
111 power.IO_power,
112 dqPlusDqsBits);
113
114 // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM
115 energy.write_term_energy = calcIoTermEnergy(c.numberofwrites * memArchSpec.burstLength,
116 ddrPeriod,
117 power.WR_ODT_power,
118 dqPlusDqsPlusMaskBits);
119
120 if (memArchSpec.nbrOfRanks > 1) {
121 // Termination power consumed in the idle rank during reads on the active
122 // rank by each DQ (data) and DQS (data strobe) pin.
123 energy.read_oterm_energy = calcIoTermEnergy(c.numberofreads * memArchSpec.burstLength,
124 ddrPeriod,
125 power.TermRD_power,
126 dqPlusDqsBits);
127
128 // Termination power consumed in the idle rank during writes on the active
129 // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin.
130 energy.write_oterm_energy = calcIoTermEnergy(c.numberofwrites * memArchSpec.burstLength,
131 ddrPeriod,
132 power.TermWR_power,
133 dqPlusDqsPlusMaskBits);
134 }
135
136 // Sum of all IO and termination energy
137 energy.io_term_energy = energy.read_io_energy + energy.write_term_energy
138 + energy.read_oterm_energy + energy.write_oterm_energy;
139 }
140
141 total_cycles = c.actcycles + c.precycles +
142 c.f_act_pdcycles + c.f_pre_pdcycles +
143 c.s_act_pdcycles + c.s_pre_pdcycles + c.sref_cycles
144 + c.sref_ref_act_cycles + c.sref_ref_pre_cycles +
145 c.spup_ref_act_cycles + c.spup_ref_pre_cycles;
146
147 EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod);
148
149 energy.act_energy = vdd0Domain.calcTivEnergy(c.numberofacts * t.RAS , mps.idd0 - mps.idd3n);
150 energy.pre_energy = vdd0Domain.calcTivEnergy(c.numberofpres * (t.RC - t.RAS) , mps.idd0 - mps.idd2n);
151 energy.read_energy = vdd0Domain.calcTivEnergy(c.numberofreads * burstCc , mps.idd4r - mps.idd3n);
152 energy.write_energy = vdd0Domain.calcTivEnergy(c.numberofwrites * burstCc , mps.idd4w - mps.idd3n);
153 energy.ref_energy = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd5 - mps.idd3n);
154 energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n);
155 energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n);
156 // Idle energy in the active standby clock cycles
157 energy.idle_energy_act = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n);
158 // Idle energy in the precharge standby clock cycles
159 energy.idle_energy_pre = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n);
160 // fast-exit active power-down cycles energy
161 energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1);
162 // fast-exit precharged power-down cycles energy
163 energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1);
164 // slow-exit active power-down cycles energy
165 energy.s_act_pd_energy = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0);
166 // slow-exit precharged power-down cycles energy
167 energy.s_pre_pd_energy = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0);
168
169 // self-refresh cycles energy including a refresh per self-refresh entry
170 energy.sref_energy = engy_sref(mps.idd6, mps.idd3n,
171 mps.idd5, mps.vdd,
172 static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles),
173 static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles),
174 static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod);
175
176 // background energy during active auto-refresh cycles in self-refresh
177 energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0);
178 // background energy during precharged auto-refresh cycles in self-refresh
179 energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0);
180 // background energy during active auto-refresh cycles in self-refresh exit
181 energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n);
182 // background energy during precharged auto-refresh cycles in self-refresh exit
183 energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n);
184 // self-refresh power-up cycles energy -- included
185 energy.spup_energy = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n);
186 // active power-up cycles energy - same as active standby -- included
187 energy.pup_act_energy = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n);
188 // precharged power-up cycles energy - same as precharged standby -- included
189 energy.pup_pre_energy = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n);
190
191 // similar equations as before to support multiple voltage domains in LPDDR2
192 // and WIDEIO memories
193 if (memArchSpec.twoVoltageDomains) {
194 EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod);
195
196 energy.act_energy += vdd2Domain.calcTivEnergy(c.numberofacts * t.RAS , mps.idd02 - mps.idd3n2);
197 energy.pre_energy += vdd2Domain.calcTivEnergy(c.numberofpres * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2);
198 energy.read_energy += vdd2Domain.calcTivEnergy(c.numberofreads * burstCc , mps.idd4r2 - mps.idd3n2);
199 energy.write_energy += vdd2Domain.calcTivEnergy(c.numberofwrites * burstCc , mps.idd4w2 - mps.idd3n2);
200 energy.ref_energy += vdd2Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2);
201 energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2);
202 energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2);
203 // Idle energy in the active standby clock cycles
204 energy.idle_energy_act += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2);
205 // Idle energy in the precharge standby clock cycles
206 energy.idle_energy_pre += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2);
207 // fast-exit active power-down cycles energy
208 energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12);
209 // fast-exit precharged power-down cycles energy
210 energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12);
211 // slow-exit active power-down cycles energy
212 energy.s_act_pd_energy += vdd2Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p02);
213 // slow-exit precharged power-down cycles energy
214 energy.s_pre_pd_energy += vdd2Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p02);
215
216 energy.sref_energy += engy_sref(mps.idd62, mps.idd3n2,
217 mps.idd52, mps.vdd2,
218 static_cast<double>(c.sref_cycles), static_cast<double>(c.sref_ref_act_cycles),
219 static_cast<double>(c.sref_ref_pre_cycles), static_cast<double>(c.spup_ref_act_cycles),
220 static_cast<double>(c.spup_ref_pre_cycles), t.clkPeriod);
221
222 // background energy during active auto-refresh cycles in self-refresh
223 energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p02);
224 // background energy during precharged auto-refresh cycles in self-refresh
225 energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p02);
226 // background energy during active auto-refresh cycles in self-refresh exit
227 energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n2);
228 // background energy during precharged auto-refresh cycles in self-refresh exit
229 energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n2);
230 // self-refresh power-up cycles energy -- included
231 energy.spup_energy += vdd2Domain.calcTivEnergy(c.spup_cycles, mps.idd2n2);
232 // active power-up cycles energy - same as active standby -- included
233 energy.pup_act_energy += vdd2Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n2);
234 // precharged power-up cycles energy - same as precharged standby -- included
235 energy.pup_pre_energy += vdd2Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n2);
236 }
237
238 // auto-refresh energy during self-refresh cycles
239 energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy;
240
241 // auto-refresh energy during self-refresh exit cycles
242 energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy;
243
244 // adding all energy components for the active rank and all background and idle
245 // energy components for both ranks (in a dual-rank system)
246 energy.total_energy = energy.act_energy + energy.pre_energy + energy.read_energy +
247 energy.write_energy + energy.ref_energy + energy.io_term_energy +
248 static_cast<double>(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy +
249 energy.pre_stdby_energy + energy.sref_energy +
250 energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy
251 + energy.s_pre_pd_energy + energy.sref_ref_energy + energy.spup_ref_energy);
252
253 // Calculate the average power consumption
254 power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod);
255} // MemoryPowerModel::power_calc
256
257void MemoryPowerModel::power_print(const MemorySpecification& memSpec, int term, const CommandAnalysis& c) const
258{
259 const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
260 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
261 const uint64_t nRanks = static_cast<uint64_t>(memArchSpec.nbrOfRanks);
262 const char eUnit[] = " pJ";
263
264 ios_base::fmtflags flags = cout.flags();
265 streamsize precision = cout.precision();
266 cout.precision(0);
267 cout << "* Trace Details:" << fixed << endl
268 << endl << "#ACT commands: " << c.numberofacts
269 << endl << "#RD + #RDA commands: " << c.numberofreads
270 << endl << "#WR + #WRA commands: " << c.numberofwrites
271 /* #PRE commands (precharge all counts a number of #PRE commands equal to the number of active banks) */
272 << endl << "#PRE (+ PREA) commands: " << c.numberofpres
273 << endl << "#REF commands: " << c.numberofrefs
274 << endl << "#Active Cycles: " << c.actcycles
275 << endl << " #Active Idle Cycles: " << c.idlecycles_act
276 << endl << " #Active Power-Up Cycles: " << c.pup_act_cycles
277 << endl << " #Auto-Refresh Active cycles during Self-Refresh Power-Up: " << c.spup_ref_act_cycles
278 << endl << "#Precharged Cycles: " << c.precycles
279 << endl << " #Precharged Idle Cycles: " << c.idlecycles_pre
280 << endl << " #Precharged Power-Up Cycles: " << c.pup_pre_cycles
281 << endl << " #Auto-Refresh Precharged cycles during Self-Refresh Power-Up: " << c.spup_ref_pre_cycles
282 << endl << " #Self-Refresh Power-Up Cycles: " << c.spup_cycles
283 << endl << "Total Idle Cycles (Active + Precharged): " << c.idlecycles_act + c.idlecycles_pre
284 << endl << "#Power-Downs: " << c.f_act_pdns + c.s_act_pdns + c.f_pre_pdns + c.s_pre_pdns
285 << endl << " #Active Fast-exit Power-Downs: " << c.f_act_pdns
286 << endl << " #Active Slow-exit Power-Downs: " << c.s_act_pdns
287 << endl << " #Precharged Fast-exit Power-Downs: " << c.f_pre_pdns
288 << endl << " #Precharged Slow-exit Power-Downs: " << c.s_pre_pdns
289 << endl << "#Power-Down Cycles: " << c.f_act_pdcycles + c.s_act_pdcycles + c.f_pre_pdcycles + c.s_pre_pdcycles
290 << endl << " #Active Fast-exit Power-Down Cycles: " << c.f_act_pdcycles
291 << endl << " #Active Slow-exit Power-Down Cycles: " << c.s_act_pdcycles
292 << endl << " #Auto-Refresh Active cycles during Self-Refresh: " << c.sref_ref_act_cycles
293 << endl << " #Precharged Fast-exit Power-Down Cycles: " << c.f_pre_pdcycles
294 << endl << " #Precharged Slow-exit Power-Down Cycles: " << c.s_pre_pdcycles
295 << endl << " #Auto-Refresh Precharged cycles during Self-Refresh: " << c.sref_ref_pre_cycles
296 << endl << "#Auto-Refresh Cycles: " << c.numberofrefs * memTimingSpec.RFC
297 << endl << "#Self-Refreshes: " << c.numberofsrefs
298 << endl << "#Self-Refresh Cycles: " << c.sref_cycles
299 << endl << "----------------------------------------"
300 << endl << "Total Trace Length (clock cycles): " << total_cycles
301 << endl << "----------------------------------------" << endl;
302
303 cout.precision(2);
304 cout << endl << "* Trace Power and Energy Estimates:" << endl
305 << endl << "ACT Cmd Energy: " << energy.act_energy << eUnit
306 << endl << "PRE Cmd Energy: " << energy.pre_energy << eUnit
307 << endl << "RD Cmd Energy: " << energy.read_energy << eUnit
308 << endl << "WR Cmd Energy: " << energy.write_energy << eUnit;
309
310 if (term) {
311 cout << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl;
312 // No Termination for LPDDR/2/3 and DDR memories
313 if (memSpec.memArchSpec.termination) {
314 cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl;
315 }
316
317 if (nRanks > 1 && memSpec.memArchSpec.termination) {
318 cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit
319 << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl;
320 }
321 }
322
323 double nRanksDouble = static_cast<double>(nRanks);
324
325 cout << "ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy << eUnit
326 << endl << " Active Idle Energy: " << nRanksDouble * energy.idle_energy_act << eUnit
327 << endl << " Active Power-Up Energy: " << nRanksDouble * energy.pup_act_energy << eUnit
328 << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_act_energy << eUnit
329 << endl << "PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy << eUnit
330 << endl << " Precharge Idle Energy: " << nRanksDouble * energy.idle_energy_pre << eUnit
331 << endl << " Precharged Power-Up Energy: " << nRanksDouble * energy.pup_pre_energy << eUnit
332 << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_pre_energy << eUnit
333 << endl << " Self-Refresh Power-Up Energy: " << nRanksDouble * energy.spup_energy << eUnit
334 << endl << "Total Idle Energy (Active + Precharged): " << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit
335 << endl << "Total Power-Down Energy: " << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit
336 << endl << " Fast-Exit Active Power-Down Energy: " << nRanksDouble * energy.f_act_pd_energy << eUnit
337 << endl << " Slow-Exit Active Power-Down Energy: " << nRanksDouble * energy.s_act_pd_energy << eUnit
338 << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_act_energy << eUnit
339 << endl << " Fast-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.f_pre_pd_energy << eUnit
340 << endl << " Slow-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.s_pre_pd_energy << eUnit
341 << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit
342 << endl << "Auto-Refresh Energy: " << energy.ref_energy << eUnit
343 << endl << "Self-Refresh Energy: " << nRanksDouble * energy.sref_energy << eUnit
344 << endl << "----------------------------------------"
345 << endl << "Total Trace Energy: " << energy.total_energy << eUnit
346 << endl << "Average Power: " << power.average_power << " mW"
347 << endl << "----------------------------------------" << endl;
348
349 cout.flags(flags);
350 cout.precision(precision);
351} // MemoryPowerModel::power_print
352
353// Self-refresh active energy estimation (not including background energy)
354double MemoryPowerModel::engy_sref(double idd6, double idd3n, double idd5,
355 double vdd, double sref_cycles, double sref_ref_act_cycles,
356 double sref_ref_pre_cycles, double spup_ref_act_cycles,
357 double spup_ref_pre_cycles, double clk)
358{
359 double sref_energy;
360
361 sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles
362 + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)))
363 * vdd * clk;
364 return sref_energy;
365}
366
367// IO and Termination power calculation based on Micron Power Calculators
368// Absolute power measures are obtained from Micron Power Calculator (mentioned in mW)
369void MemoryPowerModel::io_term_power(const MemorySpecification& memSpec)
370{
371 const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec;
372 const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
373 const MemPowerSpec& memPowerSpec = memSpec.memPowerSpec;
374
375 power.IO_power = memPowerSpec.ioPower; // in mW
376 power.WR_ODT_power = memPowerSpec.wrOdtPower; // in mW
377
378 if (memArchSpec.nbrOfRanks > 1) {
379 power.TermRD_power = memPowerSpec.termRdPower; // in mW
380 power.TermWR_power = memPowerSpec.termWrPower; // in mW
381 }
382
383 if (memPowerSpec.capacitance != 0.0) {
384 // If capacity is given, then IO Power depends on DRAM clock frequency.
385 power.IO_power = memPowerSpec.capacitance * 0.5 * pow(memPowerSpec.vdd2, 2.0) * memTimingSpec.clkMhz * 1000000;
386 }
387} // MemoryPowerModel::io_term_power
388
389
390double MemoryPowerModel::calcIoTermEnergy(int64_t cycles, double period, double power, int64_t numBits) const
391{
392 return static_cast<double>(cycles) * period * power * static_cast<double>(numBits);
393}
394
395// time (t) * current (I) * voltage (V) energy calculation
396double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const
397{
398 return static_cast<double>(cycles) * clkPeriod * current * voltage;
399}