README.md (10428:0caf62b57dfd) README.md (11555:2efa95cf8504)
1# DRAM Power Model (DRAMPower)
2[![Build Status](https://travis-ci.org/ravenrd/DRAMPower.svg?branch=master)](https://travis-ci.org/ravenrd/DRAMPower)
3[![Coverage Status](https://coveralls.io/repos/ravenrd/DRAMPower/badge.png?branch=master)](https://coveralls.io/r/ravenrd/DRAMPower?branch=master)
4## 0. Releases
5
6The last official release can be found here:
7https://github.com/ravenrd/DRAMPower/releases/tag/4.0
8
9The master branch of the repository should be regarded as the bleeding-edge version, which has all the latest features, but also all the latest bugs. Use at your own discretion.
10
11## 1. Installation
12
13Clone the repository, or download the zip file of the release you would like to use. The source code is available in src folder. src/cli/drampower.cc file gives the user interface, where the user can specify the memory to be employed and the command/transaction trace to be analyzed. To build, use:
14```bash
15make -j4
16```
17This command will download a set of trace files from https://github.com/Sv3n/DRAMPowerTraces which can be used as test input for the tool.
18
19## 2. Required Packages
20
21The tool was verified on Ubuntu 14.04 using:
22
23 * xerces-c (libxerces-c-dev) - v3.1 with Xerces development package
24 * gcc - v4.4.3
25
26## 3. Directory Structure
27 * src/: contains the source code of the DRAMPower tool that covers the power model, the command scheduler and the trace analysis tool.
28 * memspecs/ : contains the memory specification XMLs, which give the architectural, timing and current/voltage details for different DRAM memories.
29 * traces/ : contains 4 sample DRAM transaction traces and 1 sample command trace (after the installation / compilation)
30 * test/ : contains test script and reference output
31
32## 4. Trace Specification
33### Command Traces
34If the command-level interface is being used, a command trace can be logged in a file.
35An example is given in ```traces/commands.trace```
36
37The format it uses is: ```<timestamp>,<command>,<bank>```.
38For example, "500,ACT,2", where ACT is the command and 2 is the bank. Timestamp is in clock cycles (cc), the list of supported commands is
39mentioned in src/MemCommand.h and the bank is the target bank number. For non-bank-specific commands, bank can be set to 0. Rank need not be
40specified. The timing correctness of the trace is not verified by the tool and is assumed to be accurate. However, warning messages are provided, to identify if the memory or bank state is inconsistent in the trace. A sample command trace is provided in the traces/ folder.
41
42### Transaction Traces
43If the transaction-level interface is being used, a transaction trace can be logged.
44
45The format it uses is: ```<timestamp>,<transaction_type>,<address>```.
46For example, "35,READ,0x80028", where READ/WRITE can be the transaction type and the logical address (32-bits long and byte addressable) less than the maximum supported DRAM capacity of 4GB (32Gb).
47
48The tool uses a flexible and efficient memory map as follows: specified in HEX (0x). Timestamp is in clock cycles (cc) and maximum {row}-{bank}-{column}-{BI}-{BC}-{BGI}-{BL}
49Here, BI gives the degree of bank interleaving, BC gives the burst size (count), BGI gives the degree of bank group interleaving (for DDR4) and BL gives the burst length used by the device.
50Dual-Rank addressing is not yet supported. The BC and BL address bits are derived from the column address bits, whereas the BI and BGI bits are derived from the bank address bits.
51
52Four sample MediaBench application transaction traces have been provided. The MediaBench applications include: (1) EPIC Encoder, (2) JPEG Encoder, (3) H263 Encoder and (4) MPEG2 Encoder. These applications were independently executed on the SimpleScalar simulator with a 16KB L1 D-cache, 16KB L1 I-cache, 128KB L2 cache and 64-byte cache line configuration. We filtered out the L2 cache misses meant for the DRAM and logged them as transaction traces. These can be used with our command scheduler to generate equivalent command traces for any DRAM memory specified.
53
54## 5. Usage
55
56src/cli/drampower.cc is the main interface file, which accepts user inputs to specify memory to be employed and the command or transaction trace to be analyzed. If the transaction trace (DRAM command scheduler) is being used, the users can specify the degree of bank interleaving required, the request size and the use of power-down or self-refresh options. Also, for DDR4 memories bank group interleaving can be specified. Dual-rank DRAMs are not yet supported by the command scheduler. Note: Speculative use of power-down or self-refresh modes will increase the trace length due to the power-up latencies of these power-saving modes.
57
58To use DRAMPower at the command-level (command trace), after make, use the following:
59```bash
60./drampower -m <memory spec (ID)> -c <commands trace>
61```
62To use DRAMPower at the transaction-level (command scheduler), after make, use the
63following:
64```bash
65./drampower -m <memory spec (ID)> -t <transactions trace>
66```
67Additional options when using transactions trace [-t] include:
68 * [-i] ```<interleaving>```
69 * [-s] ```<request size>```
70 * [-g] ```<DDR4 bank group interleaving>```
71 * [-p] ```<0 - No Power-Down, 1 - Power-Down, 2 - Self-Refresh>```
72
73Also, when using either the commands trace or the transactions trace, the user can
74optionally include IO and Termination power estimates (obtained from Micron's DRAM
75Power Calculator). To enable the same, the '-r' flag can be employed in command line.
76
77If these options are not used, the default values assumed are:
78* interleaving = 1
79* request size = burst length * I/O width / 8 (in bytes) (from memory XMLs)
80* power saving = No power-down
81* bank group interleaving = 1
82* IO and termination = OFF (0)
83* Burst size (count) of 1
84
85## 6. Memory Specifications
86
8736 sample memory specifications are given in the XMLs targeting DDR2/DDR3/DDR4, LPDDR/LPDDR2/LPDDR3 and WIDE IO DRAM devices. The memory specifications are based on 1Gb DDR2, 1Gb & 2Gb DDR3, 2Gb LPDDR/LPDDR2 and 4Gb DDR4/LPDDR3 Micron datasheets and the 256Mb Wide IO SDR specifications are based on JEDEC timing specifications and circuit-level IDD measurements by TU Kaiserslautern, inplace of the as yet unavailable vendor datasheets. 4 of the memory specifications target dual-rank DDR3 DIMMs.
88
89Note: The timing specifications in the XMLs are in clock cycles (cc). The current specifications for Reading and Writing do not include the I/O consumption. They are computed and included seperately based on Micron Power Calculator. The IDD measures associated with different power supply sources of equal measure (VDD2, VDDCA and VDDQ) for LPDDR2, LPDDR3, DDR4 and WIDE IO memories have been added up together for simplicity, since it does not impact power computation accuracy. The current measures for dual-rank DIMMs reflect only the measures for the active rank. The default state of the idle rank is assumed to be the same as the complete memory state, for background power estimation. Accordingly, in all dual-rank memory specifications, IDD2P0 has been subtracted from the active currents and all background currents have been halved. They are also accounted for seperately by the power model. Stacking multiple Wide IO DRAM dies can also be captured by the nbrOfRanks parameter.
90
91## 7. Variation-aware Power And Energy Estimation
92
9315 of the included datasheets reflect the impact of process-variations on DRAM currents for a selection of DDR3 memories manufactured at 50nm process technology. These memories include:
94(1) MICRON_128MB_DDR3-1066_8bit - revision G
95(2) MICRON_128MB_DDR3-1066_16bit - revision G
96(3) MICRON_128MB_DDR3-1600_8bit - revision G
97(4) MICRON_256MB_DDR3-1066_8bit - revision D
98(5) MICRON_256MB_DDR3-1600_16bit - revision D
99
100The original vendor-provided datasheet current specifications are given in XMLs
101without suffixes such as _mu, _2s and _3s. XMLs including suffixes indicate that the
102current measures are either: (1) typical (mu), or (2) include +2 sigma variation (2s),
103or (3) include +3 sigma variation (3s). These measures are derived based on the
104Monte-Carlo analysis performed on our SPICE-based DRAM cross-section.
105
106To include these XMLs in your simulations, simply use them as the target memory.
107
108## 8. Example Usage
109
110An example of using this tool is provided below. To compile the example,
111use the Makefile and make sure the Gcc and Xerces-c are installed. Then, run:
112```
113make -j4
114```
115
116This should show the following compilation message on the screen:
117```
118g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/xmlparser/MemSpecParser.d -iquote src -o src/xmlparser/MemSpecParser.o -c src/xmlparser/MemSpecParser.cc
119g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/xmlparser/XMLHandler.d -iquote src -o src/xmlparser/XMLHandler.o -c src/xmlparser/XMLHandler.cc
120g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/xmlparser/XMLParser.d -iquote src -o src/xmlparser/XMLParser.o -c src/xmlparser/XMLParser.cc
121g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/CmdScheduler.d -iquote src -o src/CmdScheduler.o -c src/CmdScheduler.cc
122g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/CommandAnalysis.d -iquote src -o src/CommandAnalysis.o -c src/CommandAnalysis.cc
123g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemArchitectureSpec.d -iquote src -o src/MemArchitectureSpec.o -c src/MemArchitectureSpec.cc
124g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemCommand.d -iquote src -o src/MemCommand.o -c src/MemCommand.cc
125g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemoryPowerModel.d -iquote src -o src/MemoryPowerModel.o -c src/MemoryPowerModel.cc
126g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemorySpecification.d -iquote src -o src/MemorySpecification.o -c src/MemorySpecification.cc
127g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemPowerSpec.d -iquote src -o src/MemPowerSpec.o -c src/MemPowerSpec.cc
128g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemTimingSpec.d -iquote src -o src/MemTimingSpec.o -c src/MemTimingSpec.cc
129g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/Parameter.d -iquote src -o src/Parameter.o -c src/Parameter.cc
130g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/Parametrisable.d -iquote src -o src/Parametrisable.o -c src/Parametrisable.cc
131g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/TraceParser.d -iquote src -o src/TraceParser.o -c src/TraceParser.cc
132g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/libdrampower/LibDRAMPower.d -iquote src -o src/libdrampower/LibDRAMPower.o -c src/libdrampower/LibDRAMPower.cc
133ar -cvr src/libdrampowerxml.a src/xmlparser/MemSpecParser.o src/xmlparser/XMLHandler.o src/xmlparser/XMLParser.o
134a - src/xmlparser/MemSpecParser.o
135a - src/xmlparser/XMLHandler.o
136a - src/xmlparser/XMLParser.o
137g++ -Wall -o drampower src/xmlparser/MemSpecParser.o src/xmlparser/XMLHandler.o src/xmlparser/XMLParser.o src/CmdScheduler.o src/CommandAnalysis.o src/MemArchitectureSpec.o src/MemCommand.o src/MemoryPowerModel.o src/MemorySpecification.o src/MemPowerSpec.o src/MemTimingSpec.o src/Parameter.o src/Parametrisable.o src/TraceParser.o -L/usr/lib -lxerces-c
138ar -cvr src/libdrampower.a src/CmdScheduler.o src/CommandAnalysis.o src/MemArchitectureSpec.o src/MemCommand.o src/MemoryPowerModel.o src/MemorySpecification.o src/MemPowerSpec.o src/MemTimingSpec.o src/Parameter.o src/Parametrisable.o src/TraceParser.o src/libdrampower/LibDRAMPower.o
139a - src/CmdScheduler.o
140a - src/CommandAnalysis.o
141a - src/MemArchitectureSpec.o
142a - src/MemCommand.o
143a - src/MemoryPowerModel.o
144a - src/MemorySpecification.o
145a - src/MemPowerSpec.o
146a - src/MemTimingSpec.o
147a - src/Parameter.o
148a - src/Parametrisable.o
149a - src/TraceParser.o
150a - src/libdrampower/LibDRAMPower.o
151```
152After this, run with the command trace or the transaction trace, as described before:
153```
154./drampower -m memspecs/MICRON_1Gb_DDR3-1066_8bit_G.xml -t traces/mediabench-epic.trace -r
155```
156The output should be something like this:
157
158```
159* Parsing memspecs/MICRON_1Gb_DDR3-1066_8bit_G.xml
160* Analysis start time: Thu Nov 14 01:44:24 2013
161* Analyzing the input trace
162* Analysis End Time: Thu Nov 14 01:44:26 2013
163* Power Computation Start time: Thu Nov 14 01:44:26 2013
164* Trace Details:
165Number of Activates: 96984
166Number of Reads: 67179
167Number of Writes: 29805
168Number of Precharges: 96984
169Number of Refreshes: 13168
170Number of Active Cycles: 2519793
171 Number of Active Idle Cycles: 196851
172 Number of Active Power-Up Cycles: 0
173 Number of Auto-Refresh Active cycles during Self-Refresh Power-Up: 0
174Number of Precharged Cycles: 52261474
175 Number of Precharged Idle Cycles: 51649664
176 Number of Precharged Power-Up Cycles: 0
177 Number of Auto-Refresh Precharged cycles during Self-Refresh Power-Up: 0
178 Number of Self-Refresh Power-Up Cycles: 0
179Total Idle Cycles (Active + Precharged): 51846515
180Number of Power-Downs: 0
181 Number of Active Fast-exit Power-Downs: 0
182 Number of Active Slow-exit Power-Downs: 0
183 Number of Precharged Fast-exit Power-Downs: 0
184 Number of Precharged Slow-exit Power-Downs: 0
185Number of Power-Down Cycles: 0
186 Number of Active Fast-exit Power-Down Cycles: 0
187 Number of Active Slow-exit Power-Down Cycles: 0
188 Number of Auto-Refresh Active cycles during Self-Refresh: 0
189 Number of Precharged Fast-exit Power-Down Cycles: 0
190 Number of Precharged Slow-exit Power-Down Cycles: 0
191 Number of Auto-Refresh Precharged cycles during Self-Refresh: 0
192Number of Auto-Refresh Cycles: 776912
193Number of Self-Refreshes: 0
194Number of Self-Refresh Cycles: 0
195----------------------------------------
196Total Trace Length (clock cycles): 54781267
197----------------------------------------
198
199* Trace Power and Energy Estimates:
200ACT Cmd Energy: 109175234.52 pJ
201PRE Cmd Energy: 47764165.10 pJ
202RD Cmd Energy: 49155365.85 pJ
203WR Cmd Energy: 23486116.32 pJ
204RD I/O Energy: 22249684.80 pJ
205WR Termination Energy: 50549280.00 pJ
206ACT Stdby Energy: 283653996.25 pJ
207 Active Idle Energy: 22159587.24 pJ
208 Active Power-Up Energy: 0.00 pJ
209 Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: 0.00 pJ
210PRE Stdby Energy: 5147706163.23 pJ
211 Precharge Idle Energy: 5087443452.16 pJ
212 Precharged Power-Up Energy: 0.00 pJ
213 Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: 0.00 pJ
214 Self-Refresh Power-Up Energy: 0.00 pJ
215Total Idle Energy (Active + Precharged): 5109603039.40 pJ
216Total Power-Down Energy: 0.00 pJ
217 Fast-Exit Active Power-Down Energy: 0.00 pJ
218 Slow-Exit Active Power-Down Energy: 0.00 pJ
219 Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: 0.00 pJ
220 Fast-Exit Precharged Power-Down Energy: 0.00 pJ
221 Slow-Exit Precharged Power-Down Energy: 0.00 pJ
222 Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: 0.00 pJ
223Auto-Refresh Energy: 262371782.36 pJ
224Self-Refresh Energy: 0.00 pJ
225----------------------------------------
226Total Trace Energy: 5996111788.44 pJ
227Average Power: 58.34 mW
228----------------------------------------
229* Power Computation End time: Thu Nov 14 01:44:27 2013
230* Total Simulation time: 3.51 seconds
231*
232```
233
234As can be noticed, the tool performs DRAM command scheduling and reports the number
235of activates, precharges, reads, writes, refreshes, power-downs and self-refreshes
236besides the number of clock cycles spent in the active and precharged states, in the
237power-down (fast/slow-exit) and self-refresh states and in the idle mode. It also
238reports the energy consumption of these components, besides the IO and Termination
239components in pJ (pico Joules) and the average power consumption of the trace in mW.
240It also reports the simulation start/end times and the total simulation time in seconds.
241
242## 9. DRAMPower Library
243
244The DRAMPower tool has an additional feature and can be used as a library.
245In order to use the library run "make lib", include src/libdrampower/LibDRAMPower.h in your project and
246link the file src/libdrampower.a with your project.
247An example for the usuage of the library can be found in the folder test/libdrampowertest/lib_test.cc
248
249## 10. Authors & Acknowledgment
250
251The tool is based on the DRAM power model developed jointly by the Computer Engineering Research Group at TU Delft and the Electronic Systems Group at TU Eindhoven and verified by the Microelectronic System Design Research Group at TU Kaiserslautern with equivalent circuit-level simulations. This tool has been developed by Karthik Chandrasekar with Yonghui Li under the supervision of Dr. Benny Akesson and Prof. Kees Goossens. The IO and Termination Power measures have been employed from Micron's DRAM Power Calculator. If you decide to use DRAMPower in your research, please cite one of the following references:
252
253**To cite the DRAMPower Tool:**
254```
1# DRAM Power Model (DRAMPower)
2[![Build Status](https://travis-ci.org/ravenrd/DRAMPower.svg?branch=master)](https://travis-ci.org/ravenrd/DRAMPower)
3[![Coverage Status](https://coveralls.io/repos/ravenrd/DRAMPower/badge.png?branch=master)](https://coveralls.io/r/ravenrd/DRAMPower?branch=master)
4## 0. Releases
5
6The last official release can be found here:
7https://github.com/ravenrd/DRAMPower/releases/tag/4.0
8
9The master branch of the repository should be regarded as the bleeding-edge version, which has all the latest features, but also all the latest bugs. Use at your own discretion.
10
11## 1. Installation
12
13Clone the repository, or download the zip file of the release you would like to use. The source code is available in src folder. src/cli/drampower.cc file gives the user interface, where the user can specify the memory to be employed and the command/transaction trace to be analyzed. To build, use:
14```bash
15make -j4
16```
17This command will download a set of trace files from https://github.com/Sv3n/DRAMPowerTraces which can be used as test input for the tool.
18
19## 2. Required Packages
20
21The tool was verified on Ubuntu 14.04 using:
22
23 * xerces-c (libxerces-c-dev) - v3.1 with Xerces development package
24 * gcc - v4.4.3
25
26## 3. Directory Structure
27 * src/: contains the source code of the DRAMPower tool that covers the power model, the command scheduler and the trace analysis tool.
28 * memspecs/ : contains the memory specification XMLs, which give the architectural, timing and current/voltage details for different DRAM memories.
29 * traces/ : contains 4 sample DRAM transaction traces and 1 sample command trace (after the installation / compilation)
30 * test/ : contains test script and reference output
31
32## 4. Trace Specification
33### Command Traces
34If the command-level interface is being used, a command trace can be logged in a file.
35An example is given in ```traces/commands.trace```
36
37The format it uses is: ```<timestamp>,<command>,<bank>```.
38For example, "500,ACT,2", where ACT is the command and 2 is the bank. Timestamp is in clock cycles (cc), the list of supported commands is
39mentioned in src/MemCommand.h and the bank is the target bank number. For non-bank-specific commands, bank can be set to 0. Rank need not be
40specified. The timing correctness of the trace is not verified by the tool and is assumed to be accurate. However, warning messages are provided, to identify if the memory or bank state is inconsistent in the trace. A sample command trace is provided in the traces/ folder.
41
42### Transaction Traces
43If the transaction-level interface is being used, a transaction trace can be logged.
44
45The format it uses is: ```<timestamp>,<transaction_type>,<address>```.
46For example, "35,READ,0x80028", where READ/WRITE can be the transaction type and the logical address (32-bits long and byte addressable) less than the maximum supported DRAM capacity of 4GB (32Gb).
47
48The tool uses a flexible and efficient memory map as follows: specified in HEX (0x). Timestamp is in clock cycles (cc) and maximum {row}-{bank}-{column}-{BI}-{BC}-{BGI}-{BL}
49Here, BI gives the degree of bank interleaving, BC gives the burst size (count), BGI gives the degree of bank group interleaving (for DDR4) and BL gives the burst length used by the device.
50Dual-Rank addressing is not yet supported. The BC and BL address bits are derived from the column address bits, whereas the BI and BGI bits are derived from the bank address bits.
51
52Four sample MediaBench application transaction traces have been provided. The MediaBench applications include: (1) EPIC Encoder, (2) JPEG Encoder, (3) H263 Encoder and (4) MPEG2 Encoder. These applications were independently executed on the SimpleScalar simulator with a 16KB L1 D-cache, 16KB L1 I-cache, 128KB L2 cache and 64-byte cache line configuration. We filtered out the L2 cache misses meant for the DRAM and logged them as transaction traces. These can be used with our command scheduler to generate equivalent command traces for any DRAM memory specified.
53
54## 5. Usage
55
56src/cli/drampower.cc is the main interface file, which accepts user inputs to specify memory to be employed and the command or transaction trace to be analyzed. If the transaction trace (DRAM command scheduler) is being used, the users can specify the degree of bank interleaving required, the request size and the use of power-down or self-refresh options. Also, for DDR4 memories bank group interleaving can be specified. Dual-rank DRAMs are not yet supported by the command scheduler. Note: Speculative use of power-down or self-refresh modes will increase the trace length due to the power-up latencies of these power-saving modes.
57
58To use DRAMPower at the command-level (command trace), after make, use the following:
59```bash
60./drampower -m <memory spec (ID)> -c <commands trace>
61```
62To use DRAMPower at the transaction-level (command scheduler), after make, use the
63following:
64```bash
65./drampower -m <memory spec (ID)> -t <transactions trace>
66```
67Additional options when using transactions trace [-t] include:
68 * [-i] ```<interleaving>```
69 * [-s] ```<request size>```
70 * [-g] ```<DDR4 bank group interleaving>```
71 * [-p] ```<0 - No Power-Down, 1 - Power-Down, 2 - Self-Refresh>```
72
73Also, when using either the commands trace or the transactions trace, the user can
74optionally include IO and Termination power estimates (obtained from Micron's DRAM
75Power Calculator). To enable the same, the '-r' flag can be employed in command line.
76
77If these options are not used, the default values assumed are:
78* interleaving = 1
79* request size = burst length * I/O width / 8 (in bytes) (from memory XMLs)
80* power saving = No power-down
81* bank group interleaving = 1
82* IO and termination = OFF (0)
83* Burst size (count) of 1
84
85## 6. Memory Specifications
86
8736 sample memory specifications are given in the XMLs targeting DDR2/DDR3/DDR4, LPDDR/LPDDR2/LPDDR3 and WIDE IO DRAM devices. The memory specifications are based on 1Gb DDR2, 1Gb & 2Gb DDR3, 2Gb LPDDR/LPDDR2 and 4Gb DDR4/LPDDR3 Micron datasheets and the 256Mb Wide IO SDR specifications are based on JEDEC timing specifications and circuit-level IDD measurements by TU Kaiserslautern, inplace of the as yet unavailable vendor datasheets. 4 of the memory specifications target dual-rank DDR3 DIMMs.
88
89Note: The timing specifications in the XMLs are in clock cycles (cc). The current specifications for Reading and Writing do not include the I/O consumption. They are computed and included seperately based on Micron Power Calculator. The IDD measures associated with different power supply sources of equal measure (VDD2, VDDCA and VDDQ) for LPDDR2, LPDDR3, DDR4 and WIDE IO memories have been added up together for simplicity, since it does not impact power computation accuracy. The current measures for dual-rank DIMMs reflect only the measures for the active rank. The default state of the idle rank is assumed to be the same as the complete memory state, for background power estimation. Accordingly, in all dual-rank memory specifications, IDD2P0 has been subtracted from the active currents and all background currents have been halved. They are also accounted for seperately by the power model. Stacking multiple Wide IO DRAM dies can also be captured by the nbrOfRanks parameter.
90
91## 7. Variation-aware Power And Energy Estimation
92
9315 of the included datasheets reflect the impact of process-variations on DRAM currents for a selection of DDR3 memories manufactured at 50nm process technology. These memories include:
94(1) MICRON_128MB_DDR3-1066_8bit - revision G
95(2) MICRON_128MB_DDR3-1066_16bit - revision G
96(3) MICRON_128MB_DDR3-1600_8bit - revision G
97(4) MICRON_256MB_DDR3-1066_8bit - revision D
98(5) MICRON_256MB_DDR3-1600_16bit - revision D
99
100The original vendor-provided datasheet current specifications are given in XMLs
101without suffixes such as _mu, _2s and _3s. XMLs including suffixes indicate that the
102current measures are either: (1) typical (mu), or (2) include +2 sigma variation (2s),
103or (3) include +3 sigma variation (3s). These measures are derived based on the
104Monte-Carlo analysis performed on our SPICE-based DRAM cross-section.
105
106To include these XMLs in your simulations, simply use them as the target memory.
107
108## 8. Example Usage
109
110An example of using this tool is provided below. To compile the example,
111use the Makefile and make sure the Gcc and Xerces-c are installed. Then, run:
112```
113make -j4
114```
115
116This should show the following compilation message on the screen:
117```
118g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/xmlparser/MemSpecParser.d -iquote src -o src/xmlparser/MemSpecParser.o -c src/xmlparser/MemSpecParser.cc
119g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/xmlparser/XMLHandler.d -iquote src -o src/xmlparser/XMLHandler.o -c src/xmlparser/XMLHandler.cc
120g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/xmlparser/XMLParser.d -iquote src -o src/xmlparser/XMLParser.o -c src/xmlparser/XMLParser.cc
121g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/CmdScheduler.d -iquote src -o src/CmdScheduler.o -c src/CmdScheduler.cc
122g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/CommandAnalysis.d -iquote src -o src/CommandAnalysis.o -c src/CommandAnalysis.cc
123g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemArchitectureSpec.d -iquote src -o src/MemArchitectureSpec.o -c src/MemArchitectureSpec.cc
124g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemCommand.d -iquote src -o src/MemCommand.o -c src/MemCommand.cc
125g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemoryPowerModel.d -iquote src -o src/MemoryPowerModel.o -c src/MemoryPowerModel.cc
126g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemorySpecification.d -iquote src -o src/MemorySpecification.o -c src/MemorySpecification.cc
127g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemPowerSpec.d -iquote src -o src/MemPowerSpec.o -c src/MemPowerSpec.cc
128g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/MemTimingSpec.d -iquote src -o src/MemTimingSpec.o -c src/MemTimingSpec.cc
129g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/Parameter.d -iquote src -o src/Parameter.o -c src/Parameter.cc
130g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/Parametrisable.d -iquote src -o src/Parametrisable.o -c src/Parametrisable.cc
131g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/TraceParser.d -iquote src -o src/TraceParser.o -c src/TraceParser.cc
132g++ -O -W -pedantic-errors -Wextra -Werror -Wformat -Wformat-nonliteral -Wpointer-arith -Wcast-align -Wconversion -g -std=c++98 -MMD -MF src/libdrampower/LibDRAMPower.d -iquote src -o src/libdrampower/LibDRAMPower.o -c src/libdrampower/LibDRAMPower.cc
133ar -cvr src/libdrampowerxml.a src/xmlparser/MemSpecParser.o src/xmlparser/XMLHandler.o src/xmlparser/XMLParser.o
134a - src/xmlparser/MemSpecParser.o
135a - src/xmlparser/XMLHandler.o
136a - src/xmlparser/XMLParser.o
137g++ -Wall -o drampower src/xmlparser/MemSpecParser.o src/xmlparser/XMLHandler.o src/xmlparser/XMLParser.o src/CmdScheduler.o src/CommandAnalysis.o src/MemArchitectureSpec.o src/MemCommand.o src/MemoryPowerModel.o src/MemorySpecification.o src/MemPowerSpec.o src/MemTimingSpec.o src/Parameter.o src/Parametrisable.o src/TraceParser.o -L/usr/lib -lxerces-c
138ar -cvr src/libdrampower.a src/CmdScheduler.o src/CommandAnalysis.o src/MemArchitectureSpec.o src/MemCommand.o src/MemoryPowerModel.o src/MemorySpecification.o src/MemPowerSpec.o src/MemTimingSpec.o src/Parameter.o src/Parametrisable.o src/TraceParser.o src/libdrampower/LibDRAMPower.o
139a - src/CmdScheduler.o
140a - src/CommandAnalysis.o
141a - src/MemArchitectureSpec.o
142a - src/MemCommand.o
143a - src/MemoryPowerModel.o
144a - src/MemorySpecification.o
145a - src/MemPowerSpec.o
146a - src/MemTimingSpec.o
147a - src/Parameter.o
148a - src/Parametrisable.o
149a - src/TraceParser.o
150a - src/libdrampower/LibDRAMPower.o
151```
152After this, run with the command trace or the transaction trace, as described before:
153```
154./drampower -m memspecs/MICRON_1Gb_DDR3-1066_8bit_G.xml -t traces/mediabench-epic.trace -r
155```
156The output should be something like this:
157
158```
159* Parsing memspecs/MICRON_1Gb_DDR3-1066_8bit_G.xml
160* Analysis start time: Thu Nov 14 01:44:24 2013
161* Analyzing the input trace
162* Analysis End Time: Thu Nov 14 01:44:26 2013
163* Power Computation Start time: Thu Nov 14 01:44:26 2013
164* Trace Details:
165Number of Activates: 96984
166Number of Reads: 67179
167Number of Writes: 29805
168Number of Precharges: 96984
169Number of Refreshes: 13168
170Number of Active Cycles: 2519793
171 Number of Active Idle Cycles: 196851
172 Number of Active Power-Up Cycles: 0
173 Number of Auto-Refresh Active cycles during Self-Refresh Power-Up: 0
174Number of Precharged Cycles: 52261474
175 Number of Precharged Idle Cycles: 51649664
176 Number of Precharged Power-Up Cycles: 0
177 Number of Auto-Refresh Precharged cycles during Self-Refresh Power-Up: 0
178 Number of Self-Refresh Power-Up Cycles: 0
179Total Idle Cycles (Active + Precharged): 51846515
180Number of Power-Downs: 0
181 Number of Active Fast-exit Power-Downs: 0
182 Number of Active Slow-exit Power-Downs: 0
183 Number of Precharged Fast-exit Power-Downs: 0
184 Number of Precharged Slow-exit Power-Downs: 0
185Number of Power-Down Cycles: 0
186 Number of Active Fast-exit Power-Down Cycles: 0
187 Number of Active Slow-exit Power-Down Cycles: 0
188 Number of Auto-Refresh Active cycles during Self-Refresh: 0
189 Number of Precharged Fast-exit Power-Down Cycles: 0
190 Number of Precharged Slow-exit Power-Down Cycles: 0
191 Number of Auto-Refresh Precharged cycles during Self-Refresh: 0
192Number of Auto-Refresh Cycles: 776912
193Number of Self-Refreshes: 0
194Number of Self-Refresh Cycles: 0
195----------------------------------------
196Total Trace Length (clock cycles): 54781267
197----------------------------------------
198
199* Trace Power and Energy Estimates:
200ACT Cmd Energy: 109175234.52 pJ
201PRE Cmd Energy: 47764165.10 pJ
202RD Cmd Energy: 49155365.85 pJ
203WR Cmd Energy: 23486116.32 pJ
204RD I/O Energy: 22249684.80 pJ
205WR Termination Energy: 50549280.00 pJ
206ACT Stdby Energy: 283653996.25 pJ
207 Active Idle Energy: 22159587.24 pJ
208 Active Power-Up Energy: 0.00 pJ
209 Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: 0.00 pJ
210PRE Stdby Energy: 5147706163.23 pJ
211 Precharge Idle Energy: 5087443452.16 pJ
212 Precharged Power-Up Energy: 0.00 pJ
213 Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: 0.00 pJ
214 Self-Refresh Power-Up Energy: 0.00 pJ
215Total Idle Energy (Active + Precharged): 5109603039.40 pJ
216Total Power-Down Energy: 0.00 pJ
217 Fast-Exit Active Power-Down Energy: 0.00 pJ
218 Slow-Exit Active Power-Down Energy: 0.00 pJ
219 Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: 0.00 pJ
220 Fast-Exit Precharged Power-Down Energy: 0.00 pJ
221 Slow-Exit Precharged Power-Down Energy: 0.00 pJ
222 Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: 0.00 pJ
223Auto-Refresh Energy: 262371782.36 pJ
224Self-Refresh Energy: 0.00 pJ
225----------------------------------------
226Total Trace Energy: 5996111788.44 pJ
227Average Power: 58.34 mW
228----------------------------------------
229* Power Computation End time: Thu Nov 14 01:44:27 2013
230* Total Simulation time: 3.51 seconds
231*
232```
233
234As can be noticed, the tool performs DRAM command scheduling and reports the number
235of activates, precharges, reads, writes, refreshes, power-downs and self-refreshes
236besides the number of clock cycles spent in the active and precharged states, in the
237power-down (fast/slow-exit) and self-refresh states and in the idle mode. It also
238reports the energy consumption of these components, besides the IO and Termination
239components in pJ (pico Joules) and the average power consumption of the trace in mW.
240It also reports the simulation start/end times and the total simulation time in seconds.
241
242## 9. DRAMPower Library
243
244The DRAMPower tool has an additional feature and can be used as a library.
245In order to use the library run "make lib", include src/libdrampower/LibDRAMPower.h in your project and
246link the file src/libdrampower.a with your project.
247An example for the usuage of the library can be found in the folder test/libdrampowertest/lib_test.cc
248
249## 10. Authors & Acknowledgment
250
251The tool is based on the DRAM power model developed jointly by the Computer Engineering Research Group at TU Delft and the Electronic Systems Group at TU Eindhoven and verified by the Microelectronic System Design Research Group at TU Kaiserslautern with equivalent circuit-level simulations. This tool has been developed by Karthik Chandrasekar with Yonghui Li under the supervision of Dr. Benny Akesson and Prof. Kees Goossens. The IO and Termination Power measures have been employed from Micron's DRAM Power Calculator. If you decide to use DRAMPower in your research, please cite one of the following references:
252
253**To cite the DRAMPower Tool:**
254```
255[1] "DRAMPower: Open-source DRAM power & energy estimation tool"
256Karthik Chandrasekar, Christian Weis, Yonghui Li, Benny Akesson, Norbert Wehn, and Kees Goossens
255[1] DRAMPower: Open-source DRAM Power & Energy Estimation Tool
256Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens
257URL: http://www.drampower.info
258```
259
260**To cite the DRAM power model:**
261```
262[2] "Improved Power Modeling of DDR SDRAMs"
263Karthik Chandrasekar, Benny Akesson, and Kees Goossens
264In Proc. 14th Euromicro Conference on Digital System Design (DSD), 2011
265```
266
267**To cite the 3D-DRAM power model:**
268```
269[3] "System and Circuit Level Power Modeling of Energy-Efficient 3D-Stacked Wide I/O DRAMs"
270Karthik Chandrasekar, Christian Weis, Benny Akesson, Norbert Wehn, and Kees Goossens
271In Proc. Design, Automation and Test in Europe (DATE), 2013
272```
273
274**To cite variation-aware DRAM power estimation:**
275```
276[4] "Towards Variation-Aware System-Level Power Estimation of DRAMs: An Empirical Approach"
277Karthik Chandrasekar, Christian Weis, Benny Akesson, Norbert Wehn, and Kees Goossens
278In Proc. Design Automation Conference (DAC), 2013
279```
280
281## 11. Contact Information
282
283Further questions about the tool and the power model can be directed to:
284
285Benny Akesson (k.b.akesson@tue.nl)
286
287Feel free to ask for updates to the tool's features and please do report any bugs
288and errors you encounter. This will encourage us to continuously improve the tool.
289
290## Disclaimer
291
292The tool does not check the timing accuracy of the user's memory command trace
293and the use of commands and memory modes. It is expected that the user employs
294a valid trace generated using a DRAM memory controller or simulator, which
295satisfies all memory timing constraints and other requirements. The user DOES
296NOT get ANY WARRANTIES when using this tool. This software is released under the
297BSD 3-Clause License. By using this software, the user implicitly agrees to the
298licensing terms.
257URL: http://www.drampower.info
258```
259
260**To cite the DRAM power model:**
261```
262[2] "Improved Power Modeling of DDR SDRAMs"
263Karthik Chandrasekar, Benny Akesson, and Kees Goossens
264In Proc. 14th Euromicro Conference on Digital System Design (DSD), 2011
265```
266
267**To cite the 3D-DRAM power model:**
268```
269[3] "System and Circuit Level Power Modeling of Energy-Efficient 3D-Stacked Wide I/O DRAMs"
270Karthik Chandrasekar, Christian Weis, Benny Akesson, Norbert Wehn, and Kees Goossens
271In Proc. Design, Automation and Test in Europe (DATE), 2013
272```
273
274**To cite variation-aware DRAM power estimation:**
275```
276[4] "Towards Variation-Aware System-Level Power Estimation of DRAMs: An Empirical Approach"
277Karthik Chandrasekar, Christian Weis, Benny Akesson, Norbert Wehn, and Kees Goossens
278In Proc. Design Automation Conference (DAC), 2013
279```
280
281## 11. Contact Information
282
283Further questions about the tool and the power model can be directed to:
284
285Benny Akesson (k.b.akesson@tue.nl)
286
287Feel free to ask for updates to the tool's features and please do report any bugs
288and errors you encounter. This will encourage us to continuously improve the tool.
289
290## Disclaimer
291
292The tool does not check the timing accuracy of the user's memory command trace
293and the use of commands and memory modes. It is expected that the user employs
294a valid trace generated using a DRAM memory controller or simulator, which
295satisfies all memory timing constraints and other requirements. The user DOES
296NOT get ANY WARRANTIES when using this tool. This software is released under the
297BSD 3-Clause License. By using this software, the user implicitly agrees to the
298licensing terms.