Searched hist:60 (Results 76 - 100 of 129) sorted by relevance

123456

/gem5/src/mem/cache/prefetch/
H A Dqueued.cc13624:3d8220c2d41d Thu Dec 13 05:38:00 EST 2018 Javier Bueno <javier.bueno@metempsy.com> mem-cache: Updated version of the Signature Path Prefetcher

This implementation is based in the description available in:
Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. 2016.
Path confidence based lookahead prefetching.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 60, 12 pages.

Change-Id: I4b8b54efef48ced7044bd535de9a69bca68d47d9
Reviewed-on: https://gem5-review.googlesource.com/c/14819
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
H A Dbase.hh13624:3d8220c2d41d Thu Dec 13 05:38:00 EST 2018 Javier Bueno <javier.bueno@metempsy.com> mem-cache: Updated version of the Signature Path Prefetcher

This implementation is based in the description available in:
Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. 2016.
Path confidence based lookahead prefetching.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 60, 12 pages.

Change-Id: I4b8b54efef48ced7044bd535de9a69bca68d47d9
Reviewed-on: https://gem5-review.googlesource.com/c/14819
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
H A DPrefetcher.py13624:3d8220c2d41d Thu Dec 13 05:38:00 EST 2018 Javier Bueno <javier.bueno@metempsy.com> mem-cache: Updated version of the Signature Path Prefetcher

This implementation is based in the description available in:
Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. 2016.
Path confidence based lookahead prefetching.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 60, 12 pages.

Change-Id: I4b8b54efef48ced7044bd535de9a69bca68d47d9
Reviewed-on: https://gem5-review.googlesource.com/c/14819
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
H A Dbase.cc13624:3d8220c2d41d Thu Dec 13 05:38:00 EST 2018 Javier Bueno <javier.bueno@metempsy.com> mem-cache: Updated version of the Signature Path Prefetcher

This implementation is based in the description available in:
Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. 2016.
Path confidence based lookahead prefetching.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-49). IEEE Press, Piscataway, NJ, USA, Article 60, 12 pages.

Change-Id: I4b8b54efef48ced7044bd535de9a69bca68d47d9
Reviewed-on: https://gem5-review.googlesource.com/c/14819
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
/gem5/src/cpu/pred/
H A DSConscript10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
/gem5/src/cpu/minor/
H A Dcpu.hh10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
H A Dlsq.hh10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
H A Dexecute.cc10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
H A Dcpu.cc10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
H A Dlsq.cc10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
/gem5/src/mem/ruby/network/
H A DMessageBuffer.hh11171:60d4dfa3241a Wed Oct 14 01:29:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> ruby: remove unused functionalRead() function.

Not required since functional reads cannot rely on messages that are inflight.
H A DMessageBuffer.cc11171:60d4dfa3241a Wed Oct 14 01:29:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> ruby: remove unused functionalRead() function.

Not required since functional reads cannot rely on messages that are inflight.
/gem5/src/mem/ruby/network/simple/
H A DSwitch.cc11171:60d4dfa3241a Wed Oct 14 01:29:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> ruby: remove unused functionalRead() function.

Not required since functional reads cannot rely on messages that are inflight.
H A DPerfectSwitch.cc6846:60e0df8086f0 Thu Sep 17 18:39:00 EDT 2009 Polina Dudnik <pdudnik@cs.wisc.edu> Functionality migrated to sequencer.
H A DSimpleNetwork.cc11171:60d4dfa3241a Wed Oct 14 01:29:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> ruby: remove unused functionalRead() function.

Not required since functional reads cannot rely on messages that are inflight.
/gem5/configs/common/
H A DCpuConfig.py10259:ebb376f73dd2 Wed Jul 23 17:09:00 EDT 2014 Andrew Bardsley <Andrew.Bardsley@arm.com> cpu: `Minor' in-order CPU model

This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).

The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).

Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.

Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.

Minor is faster than the o3 model. Sample results:

Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
/gem5/util/
H A Dstyle.py6846:60e0df8086f0 Thu Sep 17 18:39:00 EDT 2009 Polina Dudnik <pdudnik@cs.wisc.edu> Functionality migrated to sequencer.
/gem5/src/arch/sparc/
H A Dua2005.cc5946:60bc62968888 Wed Feb 25 13:22:00 EST 2009 Gabe Black <gblack@eecs.umich.edu> ISA: Get rid of the get*RegName functions.
3894:60a7b0a3602f Mon Jan 08 18:18:00 EST 2007 Lisa Hsu <hsul@eecs.umich.edu> the way i understand it, interrupts in m5 is a little bloated. the usage of CPU->checkInterrupts bool is inconsistent, and i think should eventually be phased out. For now, I've just assumed that CPU->checkInterrupts() is the way to fast path a CPU if you have no interrupts by having a simple bitfield in each ISA to determine whether interrupts are pending. getInterrupts has been mostly filled in.

src/arch/sparc/interrupts.hh:
fill in how we do interrupts on sparc a little bit.

1) create a bitfield for interrupts, and check that in checkInterrupts() to fast path CPU.
2) fill in getInterrupts() a little bit.

also, update the bitfield access to be HPSTATE::hpriv, etc.
src/arch/sparc/ua2005.cc:
1) update formatting
2) change the way interrupts are done to use the new way to tickle the CPU.
src/cpu/base.cc:
src/cpu/base.hh:
overload the post_interrupt function for SPARC interrupts - which are only denoted by a single int value.
/gem5/src/arch/arm/isa/insts/
H A Dmacromem.isa7134:60fe8a00b36e Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Reimplement load/store multiple external to the decoder.
/gem5/src/cpu/o3/
H A Dcomm.hh3795:60ecc96c3cee Sat Dec 16 07:32:00 EST 2006 Gabe Black <gblack@eecs.umich.edu> Made branch delay slots get squashed, and passed back an NPC and NNPC to start fetching from.
/gem5/src/arch/
H A DSConscript5944:60d926a40afd Wed Feb 25 13:22:00 EST 2009 Gabe Black <gblack@eecs.umich.edu> ISA: Set up common trace flags for tracing registers.
/gem5/src/mem/ruby/slicc_interface/
H A DAbstractController.hh6846:60e0df8086f0 Thu Sep 17 18:39:00 EDT 2009 Polina Dudnik <pdudnik@cs.wisc.edu> Functionality migrated to sequencer.
/gem5/src/mem/ruby/system/
H A DSequencer.hh6846:60e0df8086f0 Thu Sep 17 18:39:00 EDT 2009 Polina Dudnik <pdudnik@cs.wisc.edu> Functionality migrated to sequencer.
/gem5/src/sim/
H A Dsim_object.hh10023:91faf6649de0 Fri Jan 24 16:29:00 EST 2014 Matt Horsnell <matt.horsnell@ARM.com> base: add support for probe points and common probes

The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.

What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py

What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.

FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.

What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)

What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.

What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.

What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.

Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.

Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.

What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).
H A Dsim_object.cc10023:91faf6649de0 Fri Jan 24 16:29:00 EST 2014 Matt Horsnell <matt.horsnell@ARM.com> base: add support for probe points and common probes

The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.

What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py

What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.

FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.

What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)

What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.

What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.

What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.

Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.

Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.

What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).

Completed in 231 milliseconds

123456