Searched hist:10575 (Results 1 - 2 of 2) sorted by relevance

/gem5/src/cpu/o3/
H A Dlsq_impl.hh10575:a8d612fa170b Tue Dec 02 06:08:00 EST 2014 Marco Elver <Marco.Elver@ARM.com> cpu, o3: Ignored invalidate causing same-address load reordering

In case the memory subsystem sends a combined response with invalidate
(e.g. ReadRespWithInvalidate), we cannot ignore the invalidate part
of the response.

If we were to ignore the invalidate part, under certain circumstances
this effectively leads to reordering of loads to the same address
which is not permitted under any memory consistency model implemented
in gem5.

Consider the case where a later load's address is computed before an
earlier load in program order, and is therefore sent to the memory
subsystem first. At some point the earlier load's address is computed
and in doing so correctly marks the later load as a
possibleLoadViolation. In the meantime some other node writes and
sends invalidations to all other nodes. The invalidation races with
the later load's ReadResp, and arrives before ReadResp and is
deferred. Upon receipt of the ReadResp, the response is changed to
ReadRespWithInvalidate, and sent to the CPU. If we ignore the
invalidate part of the packet, we let the later load read the old
value of the address. Eventually the earlier load's ReadResp arrives,
but with new data. As there was no invalidate snoop (sunk into the
ReadRespWithInvalidate), and if we did not process the invalidate of
the ReadRespWithInvalidate, we obtain a load reordering.

A similar scenario can be constructed where the earlier load's address
is computed after ReadRespWithInvalidate arrives for the younger
load. In this case hitExternalSnoop needs to be set to true on the
ReadRespWithInvalidate, so that upon knowing the address of the
earlier load, checkViolations will cause the later load to be
squashed.

Finally we must account for the case where both loads are sent to the
memory subsystem (reordered), a snoop invalidate arrives and correctly
sets the later loads fault to ReExec. However, before the CPU
processes the fault, the later load's ReadResp arrives and the
writeback discards the outstanding fault. We must add a check to
ensure that we do not skip any unprocessed faults.
H A Dlsq_unit_impl.hh10575:a8d612fa170b Tue Dec 02 06:08:00 EST 2014 Marco Elver <Marco.Elver@ARM.com> cpu, o3: Ignored invalidate causing same-address load reordering

In case the memory subsystem sends a combined response with invalidate
(e.g. ReadRespWithInvalidate), we cannot ignore the invalidate part
of the response.

If we were to ignore the invalidate part, under certain circumstances
this effectively leads to reordering of loads to the same address
which is not permitted under any memory consistency model implemented
in gem5.

Consider the case where a later load's address is computed before an
earlier load in program order, and is therefore sent to the memory
subsystem first. At some point the earlier load's address is computed
and in doing so correctly marks the later load as a
possibleLoadViolation. In the meantime some other node writes and
sends invalidations to all other nodes. The invalidation races with
the later load's ReadResp, and arrives before ReadResp and is
deferred. Upon receipt of the ReadResp, the response is changed to
ReadRespWithInvalidate, and sent to the CPU. If we ignore the
invalidate part of the packet, we let the later load read the old
value of the address. Eventually the earlier load's ReadResp arrives,
but with new data. As there was no invalidate snoop (sunk into the
ReadRespWithInvalidate), and if we did not process the invalidate of
the ReadRespWithInvalidate, we obtain a load reordering.

A similar scenario can be constructed where the earlier load's address
is computed after ReadRespWithInvalidate arrives for the younger
load. In this case hitExternalSnoop needs to be set to true on the
ReadRespWithInvalidate, so that upon knowing the address of the
earlier load, checkViolations will cause the later load to be
squashed.

Finally we must account for the case where both loads are sent to the
memory subsystem (reordered), a snoop invalidate arrives and correctly
sets the later loads fault to ReExec. However, before the CPU
processes the fault, the later load's ReadResp arrives and the
writeback discards the outstanding fault. We must add a check to
ensure that we do not skip any unprocessed faults.

Completed in 52 milliseconds