/***************************************************************************** Licensed to Accellera Systems Initiative Inc. (Accellera) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Accellera licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *****************************************************************************/ #ifndef __SIMPLE_AT_TARGET1_H__ #define __SIMPLE_AT_TARGET1_H__ #include "tlm.h" #include "tlm_utils/simple_target_socket.h" //#include #include #include #include //#include class SimpleATTarget1 : public sc_core::sc_module { public: typedef tlm::tlm_generic_payload transaction_type; typedef tlm::tlm_phase phase_type; typedef tlm::tlm_sync_enum sync_enum_type; typedef tlm_utils::simple_target_socket target_socket_type; public: target_socket_type socket; public: SC_HAS_PROCESS(SimpleATTarget1); SimpleATTarget1(sc_core::sc_module_name name) : sc_core::sc_module(name), socket("socket"), ACCEPT_DELAY(25, sc_core::SC_NS), RESPONSE_DELAY(100, sc_core::SC_NS) { // register nb_transport method socket.register_nb_transport_fw(this, &SimpleATTarget1::myNBTransport); SC_METHOD(endRequest) sensitive << mEndRequestEvent; dont_initialize(); SC_METHOD(beginResponse) sensitive << mBeginResponseEvent; dont_initialize(); SC_METHOD(endResponse) sensitive << mEndResponseEvent; dont_initialize(); } // // Simple AT target // - Request is accepted after ACCEPT delay (relative to end of prev request // phase) // - Response is started after RESPONSE delay (relative to end of prev resp // phase) // sync_enum_type myNBTransport(transaction_type& trans, phase_type& phase, sc_core::sc_time& t) { if (phase == tlm::BEGIN_REQ) { // transactions may be kept in queue after the initiator has send END_REQ trans.acquire(); sc_dt::uint64 address = trans.get_address(); assert(address < 400); unsigned int& data = *reinterpret_cast(trans.get_data_ptr()); if (trans.get_command() == tlm::TLM_WRITE_COMMAND) { std::cout << name() << ": Received write request: A = 0x" << std::hex << (unsigned int)address << ", D = 0x" << data << std::dec << " @ " << sc_core::sc_time_stamp() << std::endl; *reinterpret_cast(&mMem[address]) = data; } else { std::cout << name() << ": Received read request: A = 0x" << std::hex << (unsigned int)address << std::dec << " @ " << sc_core::sc_time_stamp() << std::endl; data = *reinterpret_cast(&mMem[address]); } // Notify end of request phase after ACCEPT delay if (mEndRequestQueue.empty()) { mEndRequestEvent.notify(t + ACCEPT_DELAY); } mEndRequestQueue.push(&trans); // AT-noTA target // - always return false // - seperate call to indicate end of phase (do not update phase or t) return tlm::TLM_ACCEPTED; } else if (phase == tlm::END_RESP) { // response phase ends after t mEndResponseEvent.notify(t); return tlm::TLM_COMPLETED; } // Not possible assert(0); exit(1); // return tlm::TLM_COMPLETED; //unreachable code } void endRequest() { assert(!mEndRequestQueue.empty()); // end request phase of oldest transaction phase_type phase = tlm::END_REQ; sc_core::sc_time t = sc_core::SC_ZERO_TIME; transaction_type* trans = mEndRequestQueue.front(); assert(trans); mEndRequestQueue.pop(); #if ( ! NDEBUG ) sync_enum_type r = socket->nb_transport_bw(*trans, phase, t); #endif /* ! NDEBUG */ assert(r == tlm::TLM_ACCEPTED); // FIXME: initiator should return TLM_ACCEPTED? assert(t == sc_core::SC_ZERO_TIME); // t must be SC_ZERO_TIME // Notify end of request phase for next transaction after ACCEPT delay if (!mEndRequestQueue.empty()) { mEndRequestEvent.notify(ACCEPT_DELAY); } if (mResponseQueue.empty()) { // Start processing transaction // Notify begin of response phase after RESPONSE delay mBeginResponseEvent.notify(RESPONSE_DELAY); } mResponseQueue.push(trans); } void beginResponse() { assert(!mResponseQueue.empty()); // start response phase of oldest transaction phase_type phase = tlm::BEGIN_RESP; sc_core::sc_time t = sc_core::SC_ZERO_TIME; transaction_type* trans = mResponseQueue.front(); assert(trans); // Set response data trans->set_response_status(tlm::TLM_OK_RESPONSE); if (trans->get_command() == tlm::TLM_READ_COMMAND) { sc_dt::uint64 address = trans->get_address(); assert(address < 400); *reinterpret_cast(trans->get_data_ptr()) = *reinterpret_cast(&mMem[address]); } switch (socket->nb_transport_bw(*trans, phase, t)) { case tlm::TLM_COMPLETED: // response phase ends after t mEndResponseEvent.notify(t); break; case tlm::TLM_ACCEPTED: case tlm::TLM_UPDATED: // initiator will call nb_transport to indicate end of response phase break; default: assert(0); exit(1); }; } void endResponse() { assert(!mResponseQueue.empty()); mResponseQueue.front()->release(); mResponseQueue.pop(); if (!mResponseQueue.empty()) { // Start processing next transaction // Notify begin of response phase after RESPONSE delay mBeginResponseEvent.notify(RESPONSE_DELAY); } } private: const sc_core::sc_time ACCEPT_DELAY; const sc_core::sc_time RESPONSE_DELAY; private: unsigned char mMem[400]; std::queue mEndRequestQueue; sc_core::sc_event mEndRequestEvent; std::queue mResponseQueue; sc_core::sc_event mBeginResponseEvent; sc_core::sc_event mEndResponseEvent; }; #endif