#include "arch/isa_traits.hh" #include "base/loader/object_file.hh" #include "base/loader/symtab.hh" #include "base/trace.hh" #include "cpu/exec_context.hh" #include "mem/mem_object.hh" #include "mem/physical.hh" #include "sim/builder.hh" #include "sim/byteswap.hh" #include "sim/system.hh" #if FULL_SYSTEM #include "arch/vtophys.hh" #include "base/remote_gdb.hh" #include "kern/kernel_stats.hh" #endif using namespace std; using namespace TheISA; vector System::systemList; int System::numSystemsRunning = 0; System::System(Params *p) : SimObject(p->name), physmem(p->physmem), numcpus(0), #if FULL_SYSTEM init_param(p->init_param), #else page_ptr(0), #endif _params(p) { // add self to global system list systemList.push_back(this); #if FULL_SYSTEM kernelSymtab = new SymbolTable; debugSymbolTable = new SymbolTable; /** * Get a functional port to memory */ Port *mem_port; mem_port = physmem->getPort("functional"); functionalPort.setPeer(mem_port); mem_port->setPeer(&functionalPort); mem_port = physmem->getPort("functional"); virtPort.setPeer(mem_port); mem_port->setPeer(&virtPort); /** * Load the kernel code into memory */ // Load kernel code kernel = createObjectFile(params()->kernel_path); if (kernel == NULL) fatal("Could not load kernel file %s", params()->kernel_path); // Load program sections into memory kernel->loadSections(&functionalPort, LoadAddrMask); // setup entry points kernelStart = kernel->textBase(); kernelEnd = kernel->bssBase() + kernel->bssSize(); kernelEntry = kernel->entryPoint(); // load symbols if (!kernel->loadGlobalSymbols(kernelSymtab)) panic("could not load kernel symbols\n"); if (!kernel->loadLocalSymbols(kernelSymtab)) panic("could not load kernel local symbols\n"); if (!kernel->loadGlobalSymbols(debugSymbolTable)) panic("could not load kernel symbols\n"); if (!kernel->loadLocalSymbols(debugSymbolTable)) panic("could not load kernel local symbols\n"); DPRINTF(Loader, "Kernel start = %#x\n", kernelStart); DPRINTF(Loader, "Kernel end = %#x\n", kernelEnd); DPRINTF(Loader, "Kernel entry = %#x\n", kernelEntry); DPRINTF(Loader, "Kernel loaded...\n"); kernelBinning = new Kernel::Binning(this); #endif // FULL_SYSTEM // increment the number of running systms numSystemsRunning++; } System::~System() { #if FULL_SYSTEM delete kernelSymtab; delete kernel; delete kernelBinning; #else panic("System::fixFuncEventAddr needs to be rewritten " "to work with syscall emulation"); #endif // FULL_SYSTEM} } #if FULL_SYSTEM int rgdb_wait = -1; #endif // FULL_SYSTEM int System::registerExecContext(ExecContext *xc, int id) { if (id == -1) { for (id = 0; id < execContexts.size(); id++) { if (!execContexts[id]) break; } } if (execContexts.size() <= id) execContexts.resize(id + 1); if (execContexts[id]) panic("Cannot have two CPUs with the same id (%d)\n", id); execContexts[id] = xc; numcpus++; #if FULL_SYSTEM RemoteGDB *rgdb = new RemoteGDB(this, xc); GDBListener *gdbl = new GDBListener(rgdb, 7000 + id); gdbl->listen(); /** * Uncommenting this line waits for a remote debugger to connect * to the simulator before continuing. */ if (rgdb_wait != -1 && rgdb_wait == id) gdbl->accept(); if (remoteGDB.size() <= id) { remoteGDB.resize(id + 1); } remoteGDB[id] = rgdb; #endif // FULL_SYSTEM return id; } void System::startup() { int i; for (i = 0; i < execContexts.size(); i++) execContexts[i]->activate(0); } void System::replaceExecContext(ExecContext *xc, int id) { if (id >= execContexts.size()) { panic("replaceExecContext: bad id, %d >= %d\n", id, execContexts.size()); } execContexts[id] = xc; #if FULL_SYSTEM remoteGDB[id]->replaceExecContext(xc); #endif // FULL_SYSTEM } #if !FULL_SYSTEM Addr System::new_page() { Addr return_addr = page_ptr << LogVMPageSize; ++page_ptr; return return_addr; } #endif void System::regStats() { #if FULL_SYSTEM kernelBinning->regStats(name() + ".kern"); #endif // FULL_SYSTEM } void System::serialize(ostream &os) { #if FULL_SYSTEM kernelBinning->serialize(os); kernelSymtab->serialize("kernel_symtab", os); #endif // FULL_SYSTEM } void System::unserialize(Checkpoint *cp, const string §ion) { #if FULL_SYSTEM kernelBinning->unserialize(cp, section); kernelSymtab->unserialize("kernel_symtab", cp, section); #endif // FULL_SYSTEM } void System::printSystems() { vector::iterator i = systemList.begin(); vector::iterator end = systemList.end(); for (; i != end; ++i) { System *sys = *i; cerr << "System " << sys->name() << ": " << hex << sys << endl; } } extern "C" void printSystems() { System::printSystems(); } #if FULL_SYSTEM // In full system mode, only derived classes (e.g. AlphaLinuxSystem) // can be created directly. DEFINE_SIM_OBJECT_CLASS_NAME("System", System) #else BEGIN_DECLARE_SIM_OBJECT_PARAMS(System) SimObjectParam physmem; END_DECLARE_SIM_OBJECT_PARAMS(System) BEGIN_INIT_SIM_OBJECT_PARAMS(System) INIT_PARAM(physmem, "physical memory") END_INIT_SIM_OBJECT_PARAMS(System) CREATE_SIM_OBJECT(System) { System::Params *p = new System::Params; p->name = getInstanceName(); p->physmem = physmem; return new System(p); } REGISTER_SIM_OBJECT("System", System) #endif