/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * Copyright (c) 2010 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Nathan Binkert */ /* @file * User Console Definitions */ #ifndef __SIM_OBJECT_HH__ #define __SIM_OBJECT_HH__ #include #include #include #include #include #include "params/SimObject.hh" #include "sim/eventq.hh" #include "sim/serialize.hh" class BaseCPU; class Event; /* * Abstract superclass for simulation objects. Represents things that * correspond to physical components and can be specified via the * config file (CPUs, caches, etc.). */ class SimObject : public EventManager, public Serializable { public: enum State { Running, Draining, Drained }; private: State state; protected: void changeState(State new_state) { state = new_state; } public: State getState() { return state; } private: typedef std::vector SimObjectList; // list of all instantiated simulation objects static SimObjectList simObjectList; protected: const SimObjectParams *_params; public: typedef SimObjectParams Params; const Params *params() const { return _params; } SimObject(const Params *_params); virtual ~SimObject() {} public: virtual const std::string name() const { return params()->name; } // The following SimObject initialization methods are called from // the instantiate() method in src/python/m5/simulate.py. See // that function for details on how/when these methods are // invoked. /** * init() is called after all C++ SimObjects have been created and * all ports are connected. Initializations that are independent * of unserialization but rely on a fully instantiated and * connected SimObject graph should be done here. */ virtual void init(); /** * loadState() is called on each SimObject when restoring from a * checkpoint. The default implementation simply calls * unserialize() if there is a corresponding section in the * checkpoint. However, objects can override loadState() to get * other behaviors, e.g., doing other programmed initializations * after unserialize(), or complaining if no checkpoint section is * found. */ virtual void loadState(Checkpoint *cp); /** * initState() is called on each SimObject when *not* restoring * from a checkpoint. This provides a hook for state * initializations that are only required for a "cold start". */ virtual void initState(); // register statistics for this object virtual void regStats(); virtual void regFormulas(); virtual void resetStats(); /** * startup() is the final initialization call before simulation. * All state is initialized (including unserialized state, if any, * such as the curTick() value), so this is the appropriate place to * schedule initial event(s) for objects that need them. */ virtual void startup(); // static: call nameOut() & serialize() on all SimObjects static void serializeAll(std::ostream &); static void unserializeAll(Checkpoint *cp); // Methods to drain objects in order to take checkpoints // Or switch from timing -> atomic memory model // Drain returns 0 if the simobject can drain immediately or // the number of times the drain_event's process function will be called // before the object will be done draining. Normally this should be 1 virtual unsigned int drain(Event *drain_event); virtual void resume(); virtual void setMemoryMode(State new_mode); virtual void switchOut(); virtual void takeOverFrom(BaseCPU *cpu); #ifdef DEBUG public: bool doDebugBreak; static void debugObjectBreak(const std::string &objs); #endif /** * Find the SimObject with the given name and return a pointer to * it. Primarily used for interactive debugging. Argument is * char* rather than std::string to make it callable from gdb. */ static SimObject *find(const char *name); }; #endif // __SIM_OBJECT_HH__