/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert * Steve Reinhardt * Ali Saidi */ #include #include #include #include "base/intmath.hh" #include "base/loader/object_file.hh" #include "base/loader/symtab.hh" #include "base/statistics.hh" #include "config/full_system.hh" #include "cpu/exec_context.hh" #include "mem/page_table.hh" #include "mem/physical.hh" #include "mem/translating_port.hh" #include "sim/builder.hh" #include "sim/process.hh" #include "sim/stats.hh" #include "sim/syscall_emul.hh" #include "sim/system.hh" using namespace std; using namespace TheISA; // // The purpose of this code is to fake the loader & syscall mechanism // when there's no OS: thus there's no resone to use it in FULL_SYSTEM // mode when we do have an OS // #if FULL_SYSTEM #error "process.cc not compatible with FULL_SYSTEM" #endif // current number of allocated processes int num_processes = 0; Process::Process(const string &nm, System *_system, int stdin_fd, // initial I/O descriptors int stdout_fd, int stderr_fd) : SimObject(nm), system(_system) { // initialize first 3 fds (stdin, stdout, stderr) fd_map[STDIN_FILENO] = stdin_fd; fd_map[STDOUT_FILENO] = stdout_fd; fd_map[STDERR_FILENO] = stderr_fd; // mark remaining fds as free for (int i = 3; i <= MAX_FD; ++i) { fd_map[i] = -1; } mmap_start = mmap_end = 0; nxm_start = nxm_end = 0; pTable = new PageTable(system); // other parameters will be initialized when the program is loaded } void Process::regStats() { using namespace Stats; num_syscalls .name(name() + ".PROG:num_syscalls") .desc("Number of system calls") ; } // // static helper functions // int Process::openInputFile(const string &filename) { int fd = open(filename.c_str(), O_RDONLY); if (fd == -1) { perror(NULL); cerr << "unable to open \"" << filename << "\" for reading\n"; fatal("can't open input file"); } return fd; } int Process::openOutputFile(const string &filename) { int fd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0774); if (fd == -1) { perror(NULL); cerr << "unable to open \"" << filename << "\" for writing\n"; fatal("can't open output file"); } return fd; } int Process::registerExecContext(ExecContext *xc) { // add to list int myIndex = execContexts.size(); execContexts.push_back(xc); // return CPU number to caller return myIndex; } void Process::startup() { if (execContexts.empty()) fatal("Process %s is not associated with any CPUs!\n", name()); // first exec context for this process... initialize & enable ExecContext *xc = execContexts[0]; // mark this context as active so it will start ticking. xc->activate(0); Port *mem_port; mem_port = system->physmem->getPort("functional"); initVirtMem = new TranslatingPort("process init port", pTable, true); mem_port->setPeer(initVirtMem); initVirtMem->setPeer(mem_port); } void Process::replaceExecContext(ExecContext *xc, int xcIndex) { if (xcIndex >= execContexts.size()) { panic("replaceExecContext: bad xcIndex, %d >= %d\n", xcIndex, execContexts.size()); } execContexts[xcIndex] = xc; } // map simulator fd sim_fd to target fd tgt_fd void Process::dup_fd(int sim_fd, int tgt_fd) { if (tgt_fd < 0 || tgt_fd > MAX_FD) panic("Process::dup_fd tried to dup past MAX_FD (%d)", tgt_fd); fd_map[tgt_fd] = sim_fd; } // generate new target fd for sim_fd int Process::alloc_fd(int sim_fd) { // in case open() returns an error, don't allocate a new fd if (sim_fd == -1) return -1; // find first free target fd for (int free_fd = 0; free_fd < MAX_FD; ++free_fd) { if (fd_map[free_fd] == -1) { fd_map[free_fd] = sim_fd; return free_fd; } } panic("Process::alloc_fd: out of file descriptors!"); } // free target fd (e.g., after close) void Process::free_fd(int tgt_fd) { if (fd_map[tgt_fd] == -1) warn("Process::free_fd: request to free unused fd %d", tgt_fd); fd_map[tgt_fd] = -1; } // look up simulator fd for given target fd int Process::sim_fd(int tgt_fd) { if (tgt_fd > MAX_FD) return -1; return fd_map[tgt_fd]; } // // need to declare these here since there is no concrete Process type // that can be constructed (i.e., no REGISTER_SIM_OBJECT() macro call, // which is where these get declared for concrete types). // DEFINE_SIM_OBJECT_CLASS_NAME("Process", Process) //////////////////////////////////////////////////////////////////////// // // LiveProcess member definitions // //////////////////////////////////////////////////////////////////////// void copyStringArray(vector &strings, Addr array_ptr, Addr data_ptr, TranslatingPort* memPort) { Addr data_ptr_swap; for (int i = 0; i < strings.size(); ++i) { data_ptr_swap = htog(data_ptr); memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap, sizeof(Addr)); memPort->writeString(data_ptr, strings[i].c_str()); array_ptr += sizeof(Addr); data_ptr += strings[i].size() + 1; } // add NULL terminator data_ptr = 0; memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, sizeof(Addr)); } LiveProcess::LiveProcess(const string &nm, ObjectFile *_objFile, System *_system, int stdin_fd, int stdout_fd, int stderr_fd, vector &_argv, vector &_envp) : Process(nm, _system, stdin_fd, stdout_fd, stderr_fd), objFile(_objFile), argv(_argv), envp(_envp) { prog_fname = argv[0]; // load up symbols, if any... these may be used for debugging or // profiling. if (!debugSymbolTable) { debugSymbolTable = new SymbolTable(); if (!objFile->loadGlobalSymbols(debugSymbolTable) || !objFile->loadLocalSymbols(debugSymbolTable)) { // didn't load any symbols delete debugSymbolTable; debugSymbolTable = NULL; } } } void LiveProcess::argsInit(int intSize, int pageSize) { Process::startup(); // load object file into target memory objFile->loadSections(initVirtMem); // Calculate how much space we need for arg & env arrays. int argv_array_size = intSize * (argv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int space_needed = argv_array_size + envp_array_size + arg_data_size + env_data_size; // for SimpleScalar compatibility if (space_needed < 16384) space_needed = 16384; // set bottom of stack stack_min = stack_base - space_needed; // align it stack_min &= ~(intSize-1); stack_size = stack_base - stack_min; // map memory pTable->allocate(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize)); // map out initial stack contents Addr argv_array_base = stack_min + intSize; // room for argc Addr envp_array_base = argv_array_base + argv_array_size; Addr arg_data_base = envp_array_base + envp_array_size; Addr env_data_base = arg_data_base + arg_data_size; // write contents to stack uint64_t argc = argv.size(); if (intSize == 8) argc = htog((uint64_t)argc); else if (intSize == 4) argc = htog((uint32_t)argc); else panic("Unknown int size"); initVirtMem->writeBlob(stack_min, (uint8_t*)&argc, intSize); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); execContexts[0]->setIntReg(ArgumentReg0, argc); execContexts[0]->setIntReg(ArgumentReg1, argv_array_base); execContexts[0]->setIntReg(StackPointerReg, stack_min); Addr prog_entry = objFile->entryPoint(); execContexts[0]->setPC(prog_entry); execContexts[0]->setNextPC(prog_entry + sizeof(MachInst)); execContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst))); num_processes++; } void LiveProcess::syscall(int64_t callnum, ExecContext *xc) { num_syscalls++; SyscallDesc *desc = getDesc(callnum); if (desc == NULL) fatal("Syscall %d out of range", callnum); desc->doSyscall(callnum, this, xc); } DEFINE_SIM_OBJECT_CLASS_NAME("LiveProcess", LiveProcess);