/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/libruby.hh" #include "mem/ruby/common/Global.hh" #include "mem/ruby/system/Sequencer.hh" #include "mem/ruby/system/System.hh" #include "mem/protocol/Protocol.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/system/CacheMemory.hh" #include "mem/protocol/CacheMsg.hh" #include "mem/ruby/recorder/Tracer.hh" #include "mem/ruby/common/SubBlock.hh" #include "mem/protocol/Protocol.hh" #include "mem/gems_common/Map.hh" #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/slicc_interface/AbstractController.hh" //Sequencer::Sequencer(int core_id, MessageBuffer* mandatory_q) #define LLSC_FAIL -2 long int already = 0; Sequencer::Sequencer(const string & name) :RubyPort(name) { } void Sequencer::init(const vector & argv) { m_deadlock_check_scheduled = false; m_outstanding_count = 0; m_max_outstanding_requests = 0; m_deadlock_threshold = 0; m_version = -1; m_instCache_ptr = NULL; m_dataCache_ptr = NULL; m_controller = NULL; m_atomic_reads = 0; m_atomic_writes = 0; for (size_t i=0; igetMandatoryQueue(); } else if ( argv[i] == "icache") m_instCache_ptr = RubySystem::getCache(argv[i+1]); else if ( argv[i] == "dcache") m_dataCache_ptr = RubySystem::getCache(argv[i+1]); else if ( argv[i] == "version") m_version = atoi(argv[i+1].c_str()); else if ( argv[i] == "max_outstanding_requests") m_max_outstanding_requests = atoi(argv[i+1].c_str()); else if ( argv[i] == "deadlock_threshold") m_deadlock_threshold = atoi(argv[i+1].c_str()); else { cerr << "WARNING: Sequencer: Unkown configuration parameter: " << argv[i] << endl; assert(false); } } assert(m_max_outstanding_requests > 0); assert(m_deadlock_threshold > 0); assert(m_version > -1); assert(m_instCache_ptr != NULL); assert(m_dataCache_ptr != NULL); assert(m_controller != NULL); } Sequencer::~Sequencer() { } void Sequencer::wakeup() { // Check for deadlock of any of the requests Time current_time = g_eventQueue_ptr->getTime(); // Check across all outstanding requests int total_outstanding = 0; Vector
keys = m_readRequestTable.keys(); for (int i=0; iissue_time >= m_deadlock_threshold) { WARN_MSG("Possible Deadlock detected"); WARN_EXPR(request); WARN_EXPR(m_version); WARN_EXPR(request->ruby_request.paddr); WARN_EXPR(keys.size()); WARN_EXPR(current_time); WARN_EXPR(request->issue_time); WARN_EXPR(current_time - request->issue_time); ERROR_MSG("Aborting"); } } keys = m_writeRequestTable.keys(); for (int i=0; iissue_time >= m_deadlock_threshold) { WARN_MSG("Possible Deadlock detected"); WARN_EXPR(request); WARN_EXPR(m_version); WARN_EXPR(current_time); WARN_EXPR(request->issue_time); WARN_EXPR(current_time - request->issue_time); WARN_EXPR(keys.size()); ERROR_MSG("Aborting"); } } total_outstanding += m_writeRequestTable.size() + m_readRequestTable.size(); assert(m_outstanding_count == total_outstanding); if (m_outstanding_count > 0) { // If there are still outstanding requests, keep checking g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold); } else { m_deadlock_check_scheduled = false; } } void Sequencer::printProgress(ostream& out) const{ /* int total_demand = 0; out << "Sequencer Stats Version " << m_version << endl; out << "Current time = " << g_eventQueue_ptr->getTime() << endl; out << "---------------" << endl; out << "outstanding requests" << endl; Vector
rkeys = m_readRequestTable.keys(); int read_size = rkeys.size(); out << "proc " << m_version << " Read Requests = " << read_size << endl; // print the request table for(int i=0; i < read_size; ++i){ SequencerRequest * request = m_readRequestTable.lookup(rkeys[i]); out << "\tRequest[ " << i << " ] = " << request->type << " Address " << rkeys[i] << " Posted " << request->issue_time << " PF " << PrefetchBit_No << endl; total_demand++; } Vector
wkeys = m_writeRequestTable.keys(); int write_size = wkeys.size(); out << "proc " << m_version << " Write Requests = " << write_size << endl; // print the request table for(int i=0; i < write_size; ++i){ CacheMsg & request = m_writeRequestTable.lookup(wkeys[i]); out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << wkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl; if( request.getPrefetch() == PrefetchBit_No ){ total_demand++; } } out << endl; out << "Total Number Outstanding: " << m_outstanding_count << endl; out << "Total Number Demand : " << total_demand << endl; out << "Total Number Prefetches : " << m_outstanding_count - total_demand << endl; out << endl; out << endl; */ } void Sequencer::printConfig(ostream& out) const { out << "Seqeuncer config: " << m_name << endl; out << " controller: " << m_controller->getName() << endl; out << " version: " << m_version << endl; out << " max_outstanding_requests: " << m_max_outstanding_requests << endl; out << " deadlock_threshold: " << m_deadlock_threshold << endl; } // Insert the request on the correct request table. Return true if // the entry was already present. bool Sequencer::insertRequest(SequencerRequest* request) { int total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size(); assert(m_outstanding_count == total_outstanding); // See if we should schedule a deadlock check if (m_deadlock_check_scheduled == false) { g_eventQueue_ptr->scheduleEvent(this, m_deadlock_threshold); m_deadlock_check_scheduled = true; } Address line_addr(request->ruby_request.paddr); line_addr.makeLineAddress(); if ((request->ruby_request.type == RubyRequestType_ST) || (request->ruby_request.type == RubyRequestType_RMW_Read) || (request->ruby_request.type == RubyRequestType_RMW_Write) || (request->ruby_request.type == RubyRequestType_Locked_Read) || (request->ruby_request.type == RubyRequestType_Locked_Write)) { if (m_writeRequestTable.exist(line_addr)) { m_writeRequestTable.lookup(line_addr) = request; // return true; assert(0); // drh5: isn't this an error? do you lose the initial request? } m_writeRequestTable.allocate(line_addr); m_writeRequestTable.lookup(line_addr) = request; m_outstanding_count++; } else { if (m_readRequestTable.exist(line_addr)) { m_readRequestTable.lookup(line_addr) = request; // return true; assert(0); // drh5: isn't this an error? do you lose the initial request? } m_readRequestTable.allocate(line_addr); m_readRequestTable.lookup(line_addr) = request; m_outstanding_count++; } g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count); total_outstanding = m_writeRequestTable.size() + m_readRequestTable.size(); assert(m_outstanding_count == total_outstanding); return false; } void Sequencer::removeRequest(SequencerRequest* srequest) { assert(m_outstanding_count == m_writeRequestTable.size() + m_readRequestTable.size()); const RubyRequest & ruby_request = srequest->ruby_request; Address line_addr(ruby_request.paddr); line_addr.makeLineAddress(); if ((ruby_request.type == RubyRequestType_ST) || (ruby_request.type == RubyRequestType_RMW_Read) || (ruby_request.type == RubyRequestType_RMW_Write) || (ruby_request.type == RubyRequestType_Locked_Read) || (ruby_request.type == RubyRequestType_Locked_Write)) { m_writeRequestTable.deallocate(line_addr); } else { m_readRequestTable.deallocate(line_addr); } m_outstanding_count--; assert(m_outstanding_count == m_writeRequestTable.size() + m_readRequestTable.size()); } void Sequencer::writeCallback(const Address& address, DataBlock& data) { assert(address == line_address(address)); assert(m_writeRequestTable.exist(line_address(address))); SequencerRequest* request = m_writeRequestTable.lookup(address); removeRequest(request); assert((request->ruby_request.type == RubyRequestType_ST) || (request->ruby_request.type == RubyRequestType_RMW_Read) || (request->ruby_request.type == RubyRequestType_RMW_Write) || (request->ruby_request.type == RubyRequestType_Locked_Read) || (request->ruby_request.type == RubyRequestType_Locked_Write)); // POLINA: the assumption is that atomics are only on data cache and not instruction cache if (request->ruby_request.type == RubyRequestType_Locked_Read) { m_dataCache_ptr->setLocked(address, m_version); } else if (request->ruby_request.type == RubyRequestType_RMW_Read) { m_controller->set_atomic(address); } else if (request->ruby_request.type == RubyRequestType_RMW_Write) { m_controller->clear_atomic(address); } hitCallback(request, data); } void Sequencer::readCallback(const Address& address, DataBlock& data) { assert(address == line_address(address)); assert(m_readRequestTable.exist(line_address(address))); SequencerRequest* request = m_readRequestTable.lookup(address); removeRequest(request); assert((request->ruby_request.type == RubyRequestType_LD) || (request->ruby_request.type == RubyRequestType_RMW_Read) || (request->ruby_request.type == RubyRequestType_IFETCH)); hitCallback(request, data); } void Sequencer::hitCallback(SequencerRequest* srequest, DataBlock& data) { const RubyRequest & ruby_request = srequest->ruby_request; Address request_address(ruby_request.paddr); Address request_line_address(ruby_request.paddr); request_line_address.makeLineAddress(); RubyRequestType type = ruby_request.type; Time issued_time = srequest->issue_time; // Set this cache entry to the most recently used if (type == RubyRequestType_IFETCH) { if (m_instCache_ptr->isTagPresent(request_line_address) ) m_instCache_ptr->setMRU(request_line_address); } else { if (m_dataCache_ptr->isTagPresent(request_line_address) ) m_dataCache_ptr->setMRU(request_line_address); } assert(g_eventQueue_ptr->getTime() >= issued_time); Time miss_latency = g_eventQueue_ptr->getTime() - issued_time; // Profile the miss latency for all non-zero demand misses if (miss_latency != 0) { g_system_ptr->getProfiler()->missLatency(miss_latency, type); if (Debug::getProtocolTrace()) { g_system_ptr->getProfiler()->profileTransition("Seq", m_version, Address(ruby_request.paddr), "", "Done", "", int_to_string(miss_latency)+" cycles"); } } /* if (request.getPrefetch() == PrefetchBit_Yes) { return; // Ignore the prefetch } */ // update the data if (ruby_request.data != NULL) { if ((type == RubyRequestType_LD) || (type == RubyRequestType_IFETCH) || (type == RubyRequestType_RMW_Read)) { memcpy(ruby_request.data, data.getData(request_address.getOffset(), ruby_request.len), ruby_request.len); } else { data.setData(ruby_request.data, request_address.getOffset(), ruby_request.len); } } m_hit_callback(srequest->id); delete srequest; } // Returns true if the sequencer already has a load or store outstanding int Sequencer::isReady(const RubyRequest& request) { if( m_writeRequestTable.exist(line_address(Address(request.paddr))) || m_readRequestTable.exist(line_address(Address(request.paddr))) ){ return LIBRUBY_ALIASED_REQUEST; } if (m_outstanding_count >= m_max_outstanding_requests) { return LIBRUBY_BUFFER_FULL; } return 1; } bool Sequencer::empty() const { return (m_writeRequestTable.size() == 0) && (m_readRequestTable.size() == 0); } int64_t Sequencer::makeRequest(const RubyRequest & request) { assert(Address(request.paddr).getOffset() + request.len <= RubySystem::getBlockSizeBytes()); int ready = isReady(request); if (ready > 0) { int64_t id = makeUniqueRequestID(); SequencerRequest *srequest = new SequencerRequest(request, id, g_eventQueue_ptr->getTime()); bool found = insertRequest(srequest); if (!found) { if (request.type == RubyRequestType_Locked_Write) { // NOTE: it is OK to check the locked flag here as the mandatory queue will be checked first // ensuring that nothing comes between checking the flag and servicing the store if (!m_dataCache_ptr->isLocked(line_address(Address(request.paddr)), m_version)) { return LLSC_FAIL; } else { m_dataCache_ptr->clearLocked(line_address(Address(request.paddr))); } } issueRequest(request); // TODO: issue hardware prefetches here return id; } else { assert(0); } } else { return ready; } } void Sequencer::issueRequest(const RubyRequest& request) { // TODO: get rid of CacheMsg, CacheRequestType, and AccessModeTYpe, & have SLICC use RubyRequest and subtypes natively CacheRequestType ctype; switch(request.type) { case RubyRequestType_IFETCH: if (m_atomic_reads > 0 && m_atomic_writes == 0) { m_controller->reset_atomics(); m_atomic_writes = 0; m_atomic_reads = 0; } else if (m_atomic_writes > 0) { assert(m_atomic_reads > m_atomic_writes); cerr << "WARNING: Expected: " << m_atomic_reads << " RMW_Writes, but only received: " << m_atomic_writes << endl; assert(false); } ctype = CacheRequestType_IFETCH; break; case RubyRequestType_LD: if (m_atomic_reads > 0 && m_atomic_writes == 0) { m_controller->reset_atomics(); m_atomic_writes = 0; m_atomic_reads = 0; } else if (m_atomic_writes > 0) { assert(m_atomic_reads > m_atomic_writes); cerr << "WARNING: Expected: " << m_atomic_reads << " RMW_Writes, but only received: " << m_atomic_writes << endl; assert(false); } ctype = CacheRequestType_LD; break; case RubyRequestType_ST: if (m_atomic_reads > 0 && m_atomic_writes == 0) { m_controller->reset_atomics(); m_atomic_writes = 0; m_atomic_reads = 0; } else if (m_atomic_writes > 0) { assert(m_atomic_reads > m_atomic_writes); cerr << "WARNING: Expected: " << m_atomic_reads << " RMW_Writes, but only received: " << m_atomic_writes << endl; assert(false); } ctype = CacheRequestType_ST; break; case RubyRequestType_Locked_Read: case RubyRequestType_Locked_Write: ctype = CacheRequestType_ATOMIC; break; case RubyRequestType_RMW_Read: assert(m_atomic_writes == 0); m_atomic_reads++; ctype = CacheRequestType_ATOMIC; break; case RubyRequestType_RMW_Write: assert(m_atomic_reads > 0); assert(m_atomic_writes < m_atomic_reads); m_atomic_writes++; if (m_atomic_reads == m_atomic_writes) { m_atomic_reads = 0; m_atomic_writes = 0; } ctype = CacheRequestType_ATOMIC; break; default: assert(0); } AccessModeType amtype; switch(request.access_mode){ case RubyAccessMode_User: amtype = AccessModeType_UserMode; break; case RubyAccessMode_Supervisor: amtype = AccessModeType_SupervisorMode; break; case RubyAccessMode_Device: amtype = AccessModeType_UserMode; break; default: assert(0); } Address line_addr(request.paddr); line_addr.makeLineAddress(); CacheMsg msg(line_addr, Address(request.paddr), ctype, Address(request.pc), amtype, request.len, PrefetchBit_No, request.proc_id); if (Debug::getProtocolTrace()) { g_system_ptr->getProfiler()->profileTransition("Seq", m_version, Address(request.paddr), "", "Begin", "", RubyRequestType_to_string(request.type)); } if (g_system_ptr->getTracer()->traceEnabled()) { g_system_ptr->getTracer()->traceRequest(m_name, line_addr, Address(request.pc), request.type, g_eventQueue_ptr->getTime()); } Time latency = 0; // initialzed to an null value if (request.type == RubyRequestType_IFETCH) latency = m_instCache_ptr->getLatency(); else latency = m_dataCache_ptr->getLatency(); // Send the message to the cache controller assert(latency > 0); m_mandatory_q_ptr->enqueue(msg, latency); } /* bool Sequencer::tryCacheAccess(const Address& addr, CacheRequestType type, AccessModeType access_mode, int size, DataBlock*& data_ptr) { if (type == CacheRequestType_IFETCH) { return m_instCache_ptr->tryCacheAccess(line_address(addr), type, data_ptr); } else { return m_dataCache_ptr->tryCacheAccess(line_address(addr), type, data_ptr); } } */ void Sequencer::print(ostream& out) const { out << "[Sequencer: " << m_version << ", outstanding requests: " << m_outstanding_count; out << ", read request table: " << m_readRequestTable << ", write request table: " << m_writeRequestTable; out << "]"; } // this can be called from setState whenever coherence permissions are upgraded // when invoked, coherence violations will be checked for the given block void Sequencer::checkCoherence(const Address& addr) { #ifdef CHECK_COHERENCE g_system_ptr->checkGlobalCoherenceInvariant(addr); #endif }