/* * Copyright (c) 2012 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2009 Advanced Micro Devices, Inc. * Copyright (c) 2011 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu/testers/rubytest/RubyTester.hh" #include "debug/Config.hh" #include "debug/Ruby.hh" #include "mem/protocol/AccessPermission.hh" #include "mem/ruby/slicc_interface/AbstractController.hh" #include "mem/ruby/system/RubyPort.hh" #include "sim/system.hh" RubyPort::RubyPort(const Params *p) : MemObject(p), m_version(p->version), m_controller(NULL), m_mandatory_q_ptr(NULL), pio_port(csprintf("%s-pio-port", name()), this), m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0), drainEvent(NULL), ruby_system(p->ruby_system), system(p->system), waitingOnSequencer(false), access_phys_mem(p->access_phys_mem) { assert(m_version != -1); // create the slave ports based on the number of connected ports for (size_t i = 0; i < p->port_slave_connection_count; ++i) { slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i), this, ruby_system, access_phys_mem)); } // create the master ports based on the number of connected ports for (size_t i = 0; i < p->port_master_connection_count; ++i) { master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i), this)); } } void RubyPort::init() { assert(m_controller != NULL); m_mandatory_q_ptr = m_controller->getMandatoryQueue(); } MasterPort & RubyPort::getMasterPort(const std::string &if_name, int idx) { if (if_name == "pio_port") { return pio_port; } // used by the x86 CPUs to connect the interrupt PIO and interrupt slave // port if (if_name != "master") { // pass it along to our super class return MemObject::getMasterPort(if_name, idx); } else { if (idx >= static_cast(master_ports.size())) { panic("RubyPort::getMasterPort: unknown index %d\n", idx); } return *master_ports[idx]; } } SlavePort & RubyPort::getSlavePort(const std::string &if_name, int idx) { // used by the CPUs to connect the caches to the interconnect, and // for the x86 case also the interrupt master if (if_name != "slave") { // pass it along to our super class return MemObject::getSlavePort(if_name, idx); } else { if (idx >= static_cast(slave_ports.size())) { panic("RubyPort::getSlavePort: unknown index %d\n", idx); } return *slave_ports[idx]; } } RubyPort::PioPort::PioPort(const std::string &_name, RubyPort *_port) : QueuedMasterPort(_name, _port, queue), queue(*_port, *this), ruby_port(_port) { DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name); } RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port, RubySystem *_system, bool _access_phys_mem) : QueuedSlavePort(_name, _port, queue), queue(*_port, *this), ruby_port(_port), ruby_system(_system), _onRetryList(false), access_phys_mem(_access_phys_mem) { DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name); } Tick RubyPort::PioPort::recvAtomic(PacketPtr pkt) { panic("RubyPort::PioPort::recvAtomic() not implemented!\n"); return 0; } Tick RubyPort::M5Port::recvAtomic(PacketPtr pkt) { panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); return 0; } bool RubyPort::PioPort::recvTiming(PacketPtr pkt) { // In FS mode, ruby memory will receive pio responses from devices // and it must forward these responses back to the particular CPU. DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr()); assert(pkt->isResponse()); // First we must retrieve the request port from the sender State RubyPort::SenderState *senderState = safe_cast(pkt->senderState); M5Port *port = senderState->port; assert(port != NULL); // pop the sender state from the packet pkt->senderState = senderState->saved; delete senderState; port->sendTiming(pkt); return true; } bool RubyPort::M5Port::recvTiming(PacketPtr pkt) { DPRINTF(RubyPort, "Timing access caught for address %#x\n", pkt->getAddr()); //dsm: based on SimpleTimingPort::recvTiming(pkt); // The received packets should only be M5 requests, which should never // get nacked. There used to be code to hanldle nacks here, but // I'm pretty sure it didn't work correctly with the drain code, // so that would need to be fixed if we ever added it back. assert(pkt->isRequest()); if (pkt->memInhibitAsserted()) { warn("memInhibitAsserted???"); // snooper will supply based on copy of packet // still target's responsibility to delete packet delete pkt; return true; } // Save the port in the sender state object to be used later to // route the response pkt->senderState = new SenderState(this, pkt->senderState); // Check for pio requests and directly send them to the dedicated // pio port. if (!isPhysMemAddress(pkt->getAddr())) { assert(ruby_port->pio_port.isConnected()); DPRINTF(RubyPort, "Request for address 0x%#x is assumed to be a pio request\n", pkt->getAddr()); return ruby_port->pio_port.sendNextCycle(pkt); } assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= RubySystem::getBlockSizeBytes()); // Submit the ruby request RequestStatus requestStatus = ruby_port->makeRequest(pkt); // If the request successfully issued then we should return true. // Otherwise, we need to delete the senderStatus we just created and return // false. if (requestStatus == RequestStatus_Issued) { DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr()); return true; } // // Unless one is using the ruby tester, record the stalled M5 port for // later retry when the sequencer becomes free. // if (!ruby_port->m_usingRubyTester) { ruby_port->addToRetryList(this); } DPRINTF(RubyPort, "Request for address %#x did not issue because %s\n", pkt->getAddr(), RequestStatus_to_string(requestStatus)); SenderState* senderState = safe_cast(pkt->senderState); pkt->senderState = senderState->saved; delete senderState; return false; } bool RubyPort::M5Port::doFunctionalRead(PacketPtr pkt) { Address address(pkt->getAddr()); Address line_address(address); line_address.makeLineAddress(); AccessPermission access_perm = AccessPermission_NotPresent; int num_controllers = ruby_system->m_abs_cntrl_vec.size(); DPRINTF(RubyPort, "Functional Read request for %s\n",address); unsigned int num_ro = 0; unsigned int num_rw = 0; unsigned int num_busy = 0; unsigned int num_backing_store = 0; unsigned int num_invalid = 0; // In this loop we count the number of controllers that have the given // address in read only, read write and busy states. for (int i = 0; i < num_controllers; ++i) { access_perm = ruby_system->m_abs_cntrl_vec[i]-> getAccessPermission(line_address); if (access_perm == AccessPermission_Read_Only) num_ro++; else if (access_perm == AccessPermission_Read_Write) num_rw++; else if (access_perm == AccessPermission_Busy) num_busy++; else if (access_perm == AccessPermission_Backing_Store) // See RubySlicc_Exports.sm for details, but Backing_Store is meant // to represent blocks in memory *for Broadcast/Snooping protocols*, // where memory has no idea whether it has an exclusive copy of data // or not. num_backing_store++; else if (access_perm == AccessPermission_Invalid || access_perm == AccessPermission_NotPresent) num_invalid++; } assert(num_rw <= 1); uint8* data = pkt->getPtr(true); unsigned int size_in_bytes = pkt->getSize(); unsigned startByte = address.getAddress() - line_address.getAddress(); // This if case is meant to capture what happens in a Broadcast/Snoop // protocol where the block does not exist in the cache hierarchy. You // only want to read from the Backing_Store memory if there is no copy in // the cache hierarchy, otherwise you want to try to read the RO or RW // copies existing in the cache hierarchy (covered by the else statement). // The reason is because the Backing_Store memory could easily be stale, if // there are copies floating around the cache hierarchy, so you want to read // it only if it's not in the cache hierarchy at all. if (num_invalid == (num_controllers - 1) && num_backing_store == 1) { DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n"); for (int i = 0; i < num_controllers; ++i) { access_perm = ruby_system->m_abs_cntrl_vec[i] ->getAccessPermission(line_address); if (access_perm == AccessPermission_Backing_Store) { DataBlock& block = ruby_system->m_abs_cntrl_vec[i] ->getDataBlock(line_address); DPRINTF(RubyPort, "reading from %s block %s\n", ruby_system->m_abs_cntrl_vec[i]->name(), block); for (unsigned i = 0; i < size_in_bytes; ++i) { data[i] = block.getByte(i + startByte); } return true; } } } else { // In Broadcast/Snoop protocols, this covers if you know the block // exists somewhere in the caching hierarchy, then you want to read any // valid RO or RW block. In directory protocols, same thing, you want // to read any valid readable copy of the block. DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n", num_busy, num_ro, num_rw); // In this loop, we try to figure which controller has a read only or // a read write copy of the given address. Any valid copy would suffice // for a functional read. for(int i = 0;i < num_controllers;++i) { access_perm = ruby_system->m_abs_cntrl_vec[i] ->getAccessPermission(line_address); if(access_perm == AccessPermission_Read_Only || access_perm == AccessPermission_Read_Write) { DataBlock& block = ruby_system->m_abs_cntrl_vec[i] ->getDataBlock(line_address); DPRINTF(RubyPort, "reading from %s block %s\n", ruby_system->m_abs_cntrl_vec[i]->name(), block); for (unsigned i = 0; i < size_in_bytes; ++i) { data[i] = block.getByte(i + startByte); } return true; } } } return false; } bool RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt) { Address addr(pkt->getAddr()); Address line_addr = line_address(addr); AccessPermission access_perm = AccessPermission_NotPresent; int num_controllers = ruby_system->m_abs_cntrl_vec.size(); DPRINTF(RubyPort, "Functional Write request for %s\n",addr); unsigned int num_ro = 0; unsigned int num_rw = 0; unsigned int num_busy = 0; unsigned int num_backing_store = 0; unsigned int num_invalid = 0; // In this loop we count the number of controllers that have the given // address in read only, read write and busy states. for(int i = 0;i < num_controllers;++i) { access_perm = ruby_system->m_abs_cntrl_vec[i]-> getAccessPermission(line_addr); if (access_perm == AccessPermission_Read_Only) num_ro++; else if (access_perm == AccessPermission_Read_Write) num_rw++; else if (access_perm == AccessPermission_Busy) num_busy++; else if (access_perm == AccessPermission_Backing_Store) // See RubySlicc_Exports.sm for details, but Backing_Store is meant // to represent blocks in memory *for Broadcast/Snooping protocols*, // where memory has no idea whether it has an exclusive copy of data // or not. num_backing_store++; else if (access_perm == AccessPermission_Invalid || access_perm == AccessPermission_NotPresent) num_invalid++; } // If the number of read write copies is more than 1, then there is bug in // coherence protocol. Otherwise, if all copies are in stable states, i.e. // num_busy == 0, we update all the copies. If there is at least one copy // in busy state, then we check if there is read write copy. If yes, then // also we let the access go through. Or, if there is no copy in the cache // hierarchy at all, we still want to do the write to the memory // (Backing_Store) instead of failing. DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n", num_busy, num_ro, num_rw); assert(num_rw <= 1); uint8* data = pkt->getPtr(true); unsigned int size_in_bytes = pkt->getSize(); unsigned startByte = addr.getAddress() - line_addr.getAddress(); if ((num_busy == 0 && num_ro > 0) || num_rw == 1 || (num_invalid == (num_controllers - 1) && num_backing_store == 1)) { for(int i = 0; i < num_controllers;++i) { access_perm = ruby_system->m_abs_cntrl_vec[i]-> getAccessPermission(line_addr); if(access_perm == AccessPermission_Read_Only || access_perm == AccessPermission_Read_Write|| access_perm == AccessPermission_Maybe_Stale || access_perm == AccessPermission_Backing_Store) { DataBlock& block = ruby_system->m_abs_cntrl_vec[i] ->getDataBlock(line_addr); DPRINTF(RubyPort, "%s\n",block); for (unsigned i = 0; i < size_in_bytes; ++i) { block.setByte(i + startByte, data[i]); } DPRINTF(RubyPort, "%s\n",block); } } return true; } return false; } void RubyPort::M5Port::recvFunctional(PacketPtr pkt) { DPRINTF(RubyPort, "Functional access caught for address %#x\n", pkt->getAddr()); // Check for pio requests and directly send them to the dedicated // pio port. if (!isPhysMemAddress(pkt->getAddr())) { assert(ruby_port->pio_port.isConnected()); DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n", pkt->getAddr()); panic("RubyPort::PioPort::recvFunctional() not implemented!\n"); } assert(pkt->getAddr() + pkt->getSize() <= line_address(Address(pkt->getAddr())).getAddress() + RubySystem::getBlockSizeBytes()); bool accessSucceeded = false; bool needsResponse = pkt->needsResponse(); // Do the functional access on ruby memory if (pkt->isRead()) { accessSucceeded = doFunctionalRead(pkt); } else if (pkt->isWrite()) { accessSucceeded = doFunctionalWrite(pkt); } else { panic("RubyPort: unsupported functional command %s\n", pkt->cmdString()); } // Unless the requester explicitly said otherwise, generate an error if // the functional request failed if (!accessSucceeded && !pkt->suppressFuncError()) { fatal("Ruby functional %s failed for address %#x\n", pkt->isWrite() ? "write" : "read", pkt->getAddr()); } if (access_phys_mem) { // The attached physmem contains the official version of data. // The following command performs the real functional access. // This line should be removed once Ruby supplies the official version // of data. ruby_port->system->physmem->doFunctionalAccess(pkt); } // turn packet around to go back to requester if response expected if (needsResponse) { pkt->setFunctionalResponseStatus(accessSucceeded); // @todo There should not be a reverse call since the response is // communicated through the packet pointer // DPRINTF(RubyPort, "Sending packet back over port\n"); // sendFunctional(pkt); } DPRINTF(RubyPort, "Functional access %s!\n", accessSucceeded ? "successful":"failed"); } void RubyPort::ruby_hit_callback(PacketPtr pkt) { // Retrieve the request port from the sender State RubyPort::SenderState *senderState = safe_cast(pkt->senderState); M5Port *port = senderState->port; assert(port != NULL); // pop the sender state from the packet pkt->senderState = senderState->saved; delete senderState; port->hitCallback(pkt); // // If we had to stall the M5Ports, wake them up because the sequencer // likely has free resources now. // if (waitingOnSequencer) { // // Record the current list of ports to retry on a temporary list before // calling sendRetry on those ports. sendRetry will cause an // immediate retry, which may result in the ports being put back on the // list. Therefore we want to clear the retryList before calling // sendRetry. // std::list curRetryList(retryList); retryList.clear(); waitingOnSequencer = false; for (std::list::iterator i = curRetryList.begin(); i != curRetryList.end(); ++i) { DPRINTF(RubyPort, "Sequencer may now be free. SendRetry to port %s\n", (*i)->name()); (*i)->onRetryList(false); (*i)->sendRetry(); } } testDrainComplete(); } void RubyPort::testDrainComplete() { //If we weren't able to drain before, we might be able to now. if (drainEvent != NULL) { unsigned int drainCount = getDrainCount(drainEvent); DPRINTF(Config, "Drain count: %u\n", drainCount); if (drainCount == 0) { drainEvent->process(); // Clear the drain event once we're done with it. drainEvent = NULL; } } } unsigned int RubyPort::getDrainCount(Event *de) { int count = 0; // // If the sequencer is not empty, then requests need to drain. // The outstandingCount is the number of requests outstanding and thus the // number of times M5's timing port will process the drain event. // count += outstandingCount(); DPRINTF(Config, "outstanding count %d\n", outstandingCount()); // To simplify the draining process, the sequencer's deadlock detection // event should have been descheduled. assert(isDeadlockEventScheduled() == false); if (pio_port.isConnected()) { count += pio_port.drain(de); DPRINTF(Config, "count after pio check %d\n", count); } for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { count += (*p)->drain(de); DPRINTF(Config, "count after slave port check %d\n", count); } for (std::vector::iterator p = master_ports.begin(); p != master_ports.end(); ++p) { count += (*p)->drain(de); DPRINTF(Config, "count after master port check %d\n", count); } DPRINTF(Config, "final count %d\n", count); return count; } unsigned int RubyPort::drain(Event *de) { if (isDeadlockEventScheduled()) { descheduleDeadlockEvent(); } int count = getDrainCount(de); // Set status if (count != 0) { drainEvent = de; changeState(SimObject::Draining); return count; } changeState(SimObject::Drained); return 0; } void RubyPort::M5Port::hitCallback(PacketPtr pkt) { bool needsResponse = pkt->needsResponse(); // // Unless specified at configuraiton, all responses except failed SC // and Flush operations access M5 physical memory. // bool accessPhysMem = access_phys_mem; if (pkt->isLLSC()) { if (pkt->isWrite()) { if (pkt->req->getExtraData() != 0) { // // Successful SC packets convert to normal writes // pkt->convertScToWrite(); } else { // // Failed SC packets don't access physical memory and thus // the RubyPort itself must convert it to a response. // accessPhysMem = false; } } else { // // All LL packets convert to normal loads so that M5 PhysMem does // not lock the blocks. // pkt->convertLlToRead(); } } // // Flush requests don't access physical memory // if (pkt->isFlush()) { accessPhysMem = false; } DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); if (accessPhysMem) { ruby_port->system->physmem->doAtomicAccess(pkt); } else if (needsResponse) { pkt->makeResponse(); } // turn packet around to go back to requester if response expected if (needsResponse) { DPRINTF(RubyPort, "Sending packet back over port\n"); sendNextCycle(pkt); } else { delete pkt; } DPRINTF(RubyPort, "Hit callback done!\n"); } bool RubyPort::M5Port::sendNextCycle(PacketPtr pkt) { //minimum latency, must be > 0 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock())); return true; } bool RubyPort::PioPort::sendNextCycle(PacketPtr pkt) { //minimum latency, must be > 0 queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock())); return true; } AddrRangeList RubyPort::M5Port::getAddrRanges() { // at the moment the assumption is that the master does not care AddrRangeList ranges; return ranges; } bool RubyPort::M5Port::isPhysMemAddress(Addr addr) { return ruby_port->system->isMemory(addr); } unsigned RubyPort::M5Port::deviceBlockSize() const { return (unsigned) RubySystem::getBlockSizeBytes(); } void RubyPort::ruby_eviction_callback(const Address& address) { DPRINTF(RubyPort, "Sending invalidations.\n"); // should this really be using funcMasterId? Request req(address.getAddress(), 0, 0, Request::funcMasterId); for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { if ((*p)->getMasterPort().isSnooping()) { Packet *pkt = new Packet(&req, MemCmd::InvalidationReq, -1); (*p)->sendNextCycle(pkt); } } }