/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This file has been modified by Kevin Moore and Dan Nussbaum of the Scalable Systems Research Group at Sun Microsystems Laboratories (http://research.sun.com/scalable/) to support the Adaptive Transactional Memory Test Platform (ATMTP). Please send email to atmtp-interest@sun.com with feedback, questions, or to request future announcements about ATMTP. ---------------------------------------------------------------------- File modification date: 2008-02-23 ---------------------------------------------------------------------- */ // Allows use of times() library call, which determines virtual runtime #include #include #include #include #include #include #include "base/stl_helpers.hh" #include "base/str.hh" #include "mem/protocol/MachineType.hh" #include "mem/protocol/RubyRequest.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/profiler/AddressProfiler.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/system/Sequencer.hh" #include "mem/ruby/system/System.hh" using namespace std; using m5::stl_helpers::operator<<; static double process_memory_total(); static double process_memory_resident(); Profiler::Profiler(const Params *p) : SimObject(p) { m_inst_profiler_ptr = NULL; m_address_profiler_ptr = NULL; m_real_time_start_time = time(NULL); // Not reset in clearStats() m_hot_lines = p->hot_lines; m_all_instructions = p->all_instructions; m_num_of_sequencers = p->num_of_sequencers; m_hot_lines = false; m_all_instructions = false; m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers); m_address_profiler_ptr->setHotLines(m_hot_lines); m_address_profiler_ptr->setAllInstructions(m_all_instructions); if (m_all_instructions) { m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers); m_inst_profiler_ptr->setHotLines(m_hot_lines); m_inst_profiler_ptr->setAllInstructions(m_all_instructions); } p->ruby_system->registerProfiler(this); } Profiler::~Profiler() { } void Profiler::print(ostream& out) const { out << "[Profiler]"; } void Profiler::printRequestProfile(ostream &out) const { out << "Request vs. RubySystem State Profile" << endl; out << "--------------------------------" << endl; out << endl; map m_requestProfileMap; uint64_t m_requests = 0; for (uint32_t i = 0; i < MachineType_NUM; i++) { for (map::iterator it = g_abs_controls[i].begin(); it != g_abs_controls[i].end(); ++it) { AbstractController *ctr = (*it).second; map mp = ctr->getRequestProfileMap(); for (map::iterator jt = mp.begin(); jt != mp.end(); ++jt) { map::iterator kt = m_requestProfileMap.find((*jt).first); if (kt != m_requestProfileMap.end()) { (*kt).second += (*jt).second; } else { m_requestProfileMap[(*jt).first] = (*jt).second; } } m_requests += ctr->getRequestCount(); } } map::const_iterator i = m_requestProfileMap.begin(); map::const_iterator end = m_requestProfileMap.end(); for (; i != end; ++i) { const string &key = i->first; uint64_t count = i->second; double percent = (100.0 * double(count)) / double(m_requests); vector items; tokenize(items, key, ':'); vector::iterator j = items.begin(); vector::iterator end = items.end(); for (; j != end; ++i) out << setw(10) << *j; out << setw(11) << count; out << setw(14) << percent << endl; } out << endl; } void Profiler::printDelayProfile(ostream &out) const { out << "Message Delayed Cycles" << endl; out << "----------------------" << endl; uint32_t numVNets = Network::getNumberOfVirtualNetworks(); Histogram delayHistogram; std::vector delayVCHistogram(numVNets); for (uint32_t i = 0; i < MachineType_NUM; i++) { for (map::iterator it = g_abs_controls[i].begin(); it != g_abs_controls[i].end(); ++it) { AbstractController *ctr = (*it).second; delayHistogram.add(ctr->getDelayHist()); for (uint32_t i = 0; i < numVNets; i++) { delayVCHistogram[i].add(ctr->getDelayVCHist(i)); } } } out << "Total_delay_cycles: " << delayHistogram << endl; for (int i = 0; i < numVNets; i++) { out << " virtual_network_" << i << "_delay_cycles: " << delayVCHistogram[i] << endl; } } void Profiler::printOutstandingReqProfile(ostream &out) const { Histogram sequencerRequests; for (uint32_t i = 0; i < MachineType_NUM; i++) { for (map::iterator it = g_abs_controls[i].begin(); it != g_abs_controls[i].end(); ++it) { AbstractController *ctr = (*it).second; Sequencer *seq = ctr->getSequencer(); if (seq != NULL) { sequencerRequests.add(seq->getOutstandReqHist()); } } } out << "sequencer_requests_outstanding: " << sequencerRequests << endl; } void Profiler::printMissLatencyProfile(ostream &out) const { // Collate the miss latencies histograms from all the sequencers Histogram latency_hist; std::vector type_latency_hist(RubyRequestType_NUM); Histogram hit_latency_hist; std::vector hit_type_latency_hist(RubyRequestType_NUM); std::vector hit_mach_latency_hist(MachineType_NUM); std::vector > hit_type_mach_latency_hist(RubyRequestType_NUM, std::vector(MachineType_NUM)); Histogram miss_latency_hist; std::vector miss_type_latency_hist(RubyRequestType_NUM); std::vector miss_mach_latency_hist(MachineType_NUM); std::vector > miss_type_mach_latency_hist(RubyRequestType_NUM, std::vector(MachineType_NUM)); std::vector issue_to_initial_delay_hist(MachineType_NUM); std::vector initial_to_forward_delay_hist(MachineType_NUM); std::vector forward_to_first_response_delay_hist(MachineType_NUM); std::vector first_response_to_completion_delay_hist(MachineType_NUM); std::vector incomplete_times(MachineType_NUM); for (uint32_t i = 0; i < MachineType_NUM; i++) { for (map::iterator it = g_abs_controls[i].begin(); it != g_abs_controls[i].end(); ++it) { AbstractController *ctr = (*it).second; Sequencer *seq = ctr->getSequencer(); if (seq != NULL) { // add all the latencies latency_hist.add(seq->getLatencyHist()); hit_latency_hist.add(seq->getHitLatencyHist()); miss_latency_hist.add(seq->getMissLatencyHist()); // add the per request type latencies for (uint32_t j = 0; j < RubyRequestType_NUM; ++j) { type_latency_hist[j] .add(seq->getTypeLatencyHist(j)); hit_type_latency_hist[j] .add(seq->getHitTypeLatencyHist(j)); miss_type_latency_hist[j] .add(seq->getMissTypeLatencyHist(j)); } // add the per machine type miss latencies for (uint32_t j = 0; j < MachineType_NUM; ++j) { hit_mach_latency_hist[j] .add(seq->getHitMachLatencyHist(j)); miss_mach_latency_hist[j] .add(seq->getMissMachLatencyHist(j)); issue_to_initial_delay_hist[j].add( seq->getIssueToInitialDelayHist(MachineType(j))); initial_to_forward_delay_hist[j].add( seq->getInitialToForwardDelayHist(MachineType(j))); forward_to_first_response_delay_hist[j].add(seq-> getForwardRequestToFirstResponseHist(MachineType(j))); first_response_to_completion_delay_hist[j].add(seq-> getFirstResponseToCompletionDelayHist(MachineType(j))); incomplete_times[j] += seq->getIncompleteTimes(MachineType(j)); } // add the per (request, machine) type miss latencies for (uint32_t j = 0; j < RubyRequestType_NUM; j++) { for (uint32_t k = 0; k < MachineType_NUM; k++) { hit_type_mach_latency_hist[j][k].add( seq->getHitTypeMachLatencyHist(j,k)); miss_type_mach_latency_hist[j][k].add( seq->getMissTypeMachLatencyHist(j,k)); } } } } } out << "latency: " << latency_hist << endl; for (int i = 0; i < RubyRequestType_NUM; i++) { if (type_latency_hist[i].size() > 0) { out << "latency: " << RubyRequestType(i) << ": " << type_latency_hist[i] << endl; } } out << "hit latency: " << hit_latency_hist << endl; for (int i = 0; i < RubyRequestType_NUM; i++) { if (hit_type_latency_hist[i].size() > 0) { out << "hit latency: " << RubyRequestType(i) << ": " << hit_type_latency_hist[i] << endl; } } for (int i = 0; i < MachineType_NUM; i++) { if (hit_mach_latency_hist[i].size() > 0) { out << "hit latency: " << MachineType(i) << ": " << hit_mach_latency_hist[i] << endl; } } for (int i = 0; i < RubyRequestType_NUM; i++) { for (int j = 0; j < MachineType_NUM; j++) { if (hit_type_mach_latency_hist[i][j].size() > 0) { out << "hit latency: " << RubyRequestType(i) << ": " << MachineType(j) << ": " << hit_type_mach_latency_hist[i][j] << endl; } } } out << "miss latency: " << miss_latency_hist << endl; for (int i = 0; i < RubyRequestType_NUM; i++) { if (miss_type_latency_hist[i].size() > 0) { out << "miss latency: " << RubyRequestType(i) << ": " << miss_type_latency_hist[i] << endl; } } for (int i = 0; i < MachineType_NUM; i++) { if (miss_mach_latency_hist[i].size() > 0) { out << "miss latency: " << MachineType(i) << ": " << miss_mach_latency_hist[i] << endl; out << "miss latency: " << MachineType(i) << "::issue_to_initial_request: " << issue_to_initial_delay_hist[i] << endl; out << "miss latency: " << MachineType(i) << "::initial_to_forward_request: " << initial_to_forward_delay_hist[i] << endl; out << "miss latency: " << MachineType(i) << "::forward_to_first_response: " << forward_to_first_response_delay_hist[i] << endl; out << "miss latency: " << MachineType(i) << "::first_response_to_completion: " << first_response_to_completion_delay_hist[i] << endl; out << "incomplete times: " << incomplete_times[i] << endl; } } for (int i = 0; i < RubyRequestType_NUM; i++) { for (int j = 0; j < MachineType_NUM; j++) { if (miss_type_mach_latency_hist[i][j].size() > 0) { out << "miss latency: " << RubyRequestType(i) << ": " << MachineType(j) << ": " << miss_type_mach_latency_hist[i][j] << endl; } } } out << endl; } void Profiler::printStats(ostream& out, bool short_stats) { out << endl; if (short_stats) { out << "SHORT "; } out << "Profiler Stats" << endl; out << "--------------" << endl; time_t real_time_current = time(NULL); double seconds = difftime(real_time_current, m_real_time_start_time); double minutes = seconds / 60.0; double hours = minutes / 60.0; double days = hours / 24.0; Cycles ruby_cycles = g_system_ptr->curCycle()-m_ruby_start; if (!short_stats) { out << "Elapsed_time_in_seconds: " << seconds << endl; out << "Elapsed_time_in_minutes: " << minutes << endl; out << "Elapsed_time_in_hours: " << hours << endl; out << "Elapsed_time_in_days: " << days << endl; out << endl; } // print the virtual runtimes as well struct tms vtime; times(&vtime); seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0; minutes = seconds / 60.0; hours = minutes / 60.0; days = hours / 24.0; out << "Virtual_time_in_seconds: " << seconds << endl; out << "Virtual_time_in_minutes: " << minutes << endl; out << "Virtual_time_in_hours: " << hours << endl; out << "Virtual_time_in_days: " << days << endl; out << endl; out << "Ruby_current_time: " << g_system_ptr->curCycle() << endl; out << "Ruby_start_time: " << m_ruby_start << endl; out << "Ruby_cycles: " << ruby_cycles << endl; out << endl; if (!short_stats) { out << "mbytes_resident: " << process_memory_resident() << endl; out << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } out << endl; } if (!short_stats) { out << "Busy Controller Counts:" << endl; for (uint32_t i = 0; i < MachineType_NUM; i++) { uint32_t size = MachineType_base_count((MachineType)i); for (uint32_t j = 0; j < size; j++) { MachineID machID; machID.type = (MachineType)i; machID.num = j; AbstractController *ctr = (*(g_abs_controls[i].find(j))).second; out << machID << ":" << ctr->getFullyBusyCycles() << " "; if ((j + 1) % 8 == 0) { out << endl; } } out << endl; } out << endl; out << "Busy Bank Count:" << m_busyBankCount << endl; out << endl; printOutstandingReqProfile(out); out << endl; } if (!short_stats) { out << "All Non-Zero Cycle Demand Cache Accesses" << endl; out << "----------------------------------------" << endl; printMissLatencyProfile(out); if (m_all_sharing_histogram.size() > 0) { out << "all_sharing: " << m_all_sharing_histogram << endl; out << "read_sharing: " << m_read_sharing_histogram << endl; out << "write_sharing: " << m_write_sharing_histogram << endl; out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl; out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl; out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl; int64 total_miss = m_cache_to_cache + m_memory_to_cache; out << "all_misses: " << total_miss << endl; out << "cache_to_cache_misses: " << m_cache_to_cache << endl; out << "memory_to_cache_misses: " << m_memory_to_cache << endl; out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl; out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl; out << endl; } printRequestProfile(out); if (!m_all_instructions) { m_address_profiler_ptr->printStats(out); } if (m_all_instructions) { m_inst_profiler_ptr->printStats(out); } out << endl; printDelayProfile(out); printResourceUsage(out); } } void Profiler::printResourceUsage(ostream& out) const { out << endl; out << "Resource Usage" << endl; out << "--------------" << endl; int64_t pagesize = getpagesize(); // page size in bytes out << "page_size: " << pagesize << endl; rusage usage; getrusage (RUSAGE_SELF, &usage); out << "user_time: " << usage.ru_utime.tv_sec << endl; out << "system_time: " << usage.ru_stime.tv_sec << endl; out << "page_reclaims: " << usage.ru_minflt << endl; out << "page_faults: " << usage.ru_majflt << endl; out << "swaps: " << usage.ru_nswap << endl; out << "block_inputs: " << usage.ru_inblock << endl; out << "block_outputs: " << usage.ru_oublock << endl; } void Profiler::clearStats() { m_ruby_start = g_system_ptr->curCycle(); m_real_time_start_time = time(NULL); m_busyBankCount = 0; m_read_sharing_histogram.clear(); m_write_sharing_histogram.clear(); m_all_sharing_histogram.clear(); m_cache_to_cache = 0; m_memory_to_cache = 0; // update the start time m_ruby_start = g_system_ptr->curCycle(); } void Profiler::addAddressTraceSample(const RubyRequest& msg, NodeID id) { if (msg.getType() != RubyRequestType_IFETCH) { // Note: The following line should be commented out if you // want to use the special profiling that is part of the GS320 // protocol // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be // profiled by the AddressProfiler m_address_profiler_ptr-> addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false); } } void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner) { Set set_contacted(owner); if (type == AccessType_Write) { set_contacted.addSet(sharers); } set_contacted.remove(requestor); int number_contacted = set_contacted.count(); if (type == AccessType_Write) { m_write_sharing_histogram.add(number_contacted); } else { m_read_sharing_histogram.add(number_contacted); } m_all_sharing_histogram.add(number_contacted); if (number_contacted == 0) { m_memory_to_cache++; } else { m_cache_to_cache++; } } void Profiler::bankBusy() { m_busyBankCount++; } // Helper function static double process_memory_total() { // 4kB page size, 1024*1024 bytes per MB, const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(total_size_in_pages) * MULTIPLIER; // size in megabytes } static double process_memory_resident() { // 4kB page size, 1024*1024 bytes per MB, const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(res_size_in_pages) * MULTIPLIER; // size in megabytes } void Profiler::rubyWatch(int id) { uint64 tr = 0; Address watch_address = Address(tr); DPRINTFN("%7s %3s RUBY WATCH %d\n", g_system_ptr->curCycle(), id, watch_address); // don't care about success or failure m_watch_address_set.insert(watch_address); } bool Profiler::watchAddress(Address addr) { return m_watch_address_set.count(addr) > 0; } Profiler * RubyProfilerParams::create() { return new Profiler(this); }