/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This file has been modified by Kevin Moore and Dan Nussbaum of the Scalable Systems Research Group at Sun Microsystems Laboratories (http://research.sun.com/scalable/) to support the Adaptive Transactional Memory Test Platform (ATMTP). Please send email to atmtp-interest@sun.com with feedback, questions, or to request future announcements about ATMTP. ---------------------------------------------------------------------- File modification date: 2008-02-23 ---------------------------------------------------------------------- */ // Allows use of times() library call, which determines virtual runtime #include #include #include #include #include "base/stl_helpers.hh" #include "base/str.hh" #include "mem/protocol/RubyRequest.hh" #include "mem/protocol/MachineType.hh" #include "mem/protocol/Protocol.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/profiler/AddressProfiler.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/system/System.hh" #include "mem/ruby/system/System.hh" using namespace std; using m5::stl_helpers::operator<<; static double process_memory_total(); static double process_memory_resident(); Profiler::Profiler(const Params *p) : SimObject(p) { m_inst_profiler_ptr = NULL; m_address_profiler_ptr = NULL; m_real_time_start_time = time(NULL); // Not reset in clearStats() m_stats_period = 1000000; // Default m_periodic_output_file_ptr = &cerr; m_hot_lines = p->hot_lines; m_all_instructions = p->all_instructions; m_num_of_sequencers = p->num_of_sequencers; m_hot_lines = false; m_all_instructions = false; m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers); m_address_profiler_ptr->setHotLines(m_hot_lines); m_address_profiler_ptr->setAllInstructions(m_all_instructions); if (m_all_instructions) { m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers); m_inst_profiler_ptr->setHotLines(m_hot_lines); m_inst_profiler_ptr->setAllInstructions(m_all_instructions); } } Profiler::~Profiler() { if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } } void Profiler::wakeup() { // FIXME - avoid the repeated code vector perProcCycleCount(m_num_of_sequencers); for (int i = 0; i < m_num_of_sequencers; i++) { perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero } ostream &out = *m_periodic_output_file_ptr; out << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl << "mbytes_resident: " << process_memory_resident() << endl << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident() / process_memory_total() << endl; } out << "miss_latency: " << m_allMissLatencyHistogram << endl; out << endl; if (m_all_instructions) { m_inst_profiler_ptr->printStats(out); } //g_system_ptr->getNetwork()->printStats(out); g_eventQueue_ptr->scheduleEvent(this, m_stats_period); } void Profiler::setPeriodicStatsFile(const string& filename) { cout << "Recording periodic statistics to file '" << filename << "' every " << m_stats_period << " Ruby cycles" << endl; if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } m_periodic_output_file_ptr = new ofstream(filename.c_str()); g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::setPeriodicStatsInterval(integer_t period) { cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl; m_stats_period = period; g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::printConfig(ostream& out) const { out << endl; out << "Profiler Configuration" << endl; out << "----------------------" << endl; out << "periodic_stats_period: " << m_stats_period << endl; } void Profiler::print(ostream& out) const { out << "[Profiler]"; } void Profiler::printStats(ostream& out, bool short_stats) { out << endl; if (short_stats) { out << "SHORT "; } out << "Profiler Stats" << endl; out << "--------------" << endl; time_t real_time_current = time(NULL); double seconds = difftime(real_time_current, m_real_time_start_time); double minutes = seconds / 60.0; double hours = minutes / 60.0; double days = hours / 24.0; Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start; if (!short_stats) { out << "Elapsed_time_in_seconds: " << seconds << endl; out << "Elapsed_time_in_minutes: " << minutes << endl; out << "Elapsed_time_in_hours: " << hours << endl; out << "Elapsed_time_in_days: " << days << endl; out << endl; } // print the virtual runtimes as well struct tms vtime; times(&vtime); seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0; minutes = seconds / 60.0; hours = minutes / 60.0; days = hours / 24.0; out << "Virtual_time_in_seconds: " << seconds << endl; out << "Virtual_time_in_minutes: " << minutes << endl; out << "Virtual_time_in_hours: " << hours << endl; out << "Virtual_time_in_days: " << days << endl; out << endl; out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl; out << "Ruby_start_time: " << m_ruby_start << endl; out << "Ruby_cycles: " << ruby_cycles << endl; out << endl; if (!short_stats) { out << "mbytes_resident: " << process_memory_resident() << endl; out << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } out << endl; } vector perProcCycleCount(m_num_of_sequencers); for (int i = 0; i < m_num_of_sequencers; i++) { perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero } out << "ruby_cycles_executed: " << perProcCycleCount << endl; out << endl; if (!short_stats) { out << "Busy Controller Counts:" << endl; for (int i = 0; i < MachineType_NUM; i++) { int size = MachineType_base_count((MachineType)i); for (int j = 0; j < size; j++) { MachineID machID; machID.type = (MachineType)i; machID.num = j; out << machID << ":" << m_busyControllerCount[i][j] << " "; if ((j + 1) % 8 == 0) { out << endl; } } out << endl; } out << endl; out << "Busy Bank Count:" << m_busyBankCount << endl; out << endl; out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl; out << endl; } if (!short_stats) { out << "All Non-Zero Cycle Demand Cache Accesses" << endl; out << "----------------------------------------" << endl; out << "miss_latency: " << m_allMissLatencyHistogram << endl; for (int i = 0; i < m_missLatencyHistograms.size(); i++) { if (m_missLatencyHistograms[i].size() > 0) { out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl; } } for (int i = 0; i < m_machLatencyHistograms.size(); i++) { if (m_machLatencyHistograms[i].size() > 0) { out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl; } } out << "miss_latency_wCC_issue_to_initial_request: " << m_wCCIssueToInitialRequestHistogram << endl; out << "miss_latency_wCC_initial_forward_request: " << m_wCCInitialRequestToForwardRequestHistogram << endl; out << "miss_latency_wCC_forward_to_first_response: " << m_wCCForwardRequestToFirstResponseHistogram << endl; out << "miss_latency_wCC_first_response_to_completion: " << m_wCCFirstResponseToCompleteHistogram << endl; out << "imcomplete_wCC_Times: " << m_wCCIncompleteTimes << endl; out << "miss_latency_dir_issue_to_initial_request: " << m_dirIssueToInitialRequestHistogram << endl; out << "miss_latency_dir_initial_forward_request: " << m_dirInitialRequestToForwardRequestHistogram << endl; out << "miss_latency_dir_forward_to_first_response: " << m_dirForwardRequestToFirstResponseHistogram << endl; out << "miss_latency_dir_first_response_to_completion: " << m_dirFirstResponseToCompleteHistogram << endl; out << "imcomplete_dir_Times: " << m_dirIncompleteTimes << endl; for (int i = 0; i < m_missMachLatencyHistograms.size(); i++) { for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) { if (m_missMachLatencyHistograms[i][j].size() > 0) { out << "miss_latency_" << RubyRequestType(i) << "_" << GenericMachineType(j) << ": " << m_missMachLatencyHistograms[i][j] << endl; } } } out << endl; out << "All Non-Zero Cycle SW Prefetch Requests" << endl; out << "------------------------------------" << endl; out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl; for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) { if (m_SWPrefetchLatencyHistograms[i].size() > 0) { out << "prefetch_latency_" << RubyRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl; } } for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) { if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) { out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl; } } out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl; if (m_all_sharing_histogram.size() > 0) { out << "all_sharing: " << m_all_sharing_histogram << endl; out << "read_sharing: " << m_read_sharing_histogram << endl; out << "write_sharing: " << m_write_sharing_histogram << endl; out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl; out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl; out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl; int64 total_miss = m_cache_to_cache + m_memory_to_cache; out << "all_misses: " << total_miss << endl; out << "cache_to_cache_misses: " << m_cache_to_cache << endl; out << "memory_to_cache_misses: " << m_memory_to_cache << endl; out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl; out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl; out << endl; } if (m_outstanding_requests.size() > 0) { out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl; out << endl; } } if (!short_stats) { out << "Request vs. RubySystem State Profile" << endl; out << "--------------------------------" << endl; out << endl; map::const_iterator i = m_requestProfileMap.begin(); map::const_iterator end = m_requestProfileMap.end(); for (; i != end; ++i) { const string &key = i->first; int count = i->second; double percent = (100.0 * double(count)) / double(m_requests); vector items; tokenize(items, key, ':'); vector::iterator j = items.begin(); vector::iterator end = items.end(); for (; j != end; ++i) out << setw(10) << *j; out << setw(11) << count; out << setw(14) << percent << endl; } out << endl; out << "filter_action: " << m_filter_action_histogram << endl; if (!m_all_instructions) { m_address_profiler_ptr->printStats(out); } if (m_all_instructions) { m_inst_profiler_ptr->printStats(out); } out << endl; out << "Message Delayed Cycles" << endl; out << "----------------------" << endl; out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl; out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl; for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) { out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl; } printResourceUsage(out); } } void Profiler::printResourceUsage(ostream& out) const { out << endl; out << "Resource Usage" << endl; out << "--------------" << endl; integer_t pagesize = getpagesize(); // page size in bytes out << "page_size: " << pagesize << endl; rusage usage; getrusage (RUSAGE_SELF, &usage); out << "user_time: " << usage.ru_utime.tv_sec << endl; out << "system_time: " << usage.ru_stime.tv_sec << endl; out << "page_reclaims: " << usage.ru_minflt << endl; out << "page_faults: " << usage.ru_majflt << endl; out << "swaps: " << usage.ru_nswap << endl; out << "block_inputs: " << usage.ru_inblock << endl; out << "block_outputs: " << usage.ru_oublock << endl; } void Profiler::clearStats() { m_ruby_start = g_eventQueue_ptr->getTime(); m_cycles_executed_at_start.resize(m_num_of_sequencers); for (int i = 0; i < m_num_of_sequencers; i++) { if (g_system_ptr == NULL) { m_cycles_executed_at_start[i] = 0; } else { m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i); } } m_busyControllerCount.resize(MachineType_NUM); // all machines for (int i = 0; i < MachineType_NUM; i++) { int size = MachineType_base_count((MachineType)i); m_busyControllerCount[i].resize(size); for (int j = 0; j < size; j++) { m_busyControllerCount[i][j] = 0; } } m_busyBankCount = 0; m_delayedCyclesHistogram.clear(); m_delayedCyclesNonPFHistogram.clear(); int size = RubySystem::getNetwork()->getNumberOfVirtualNetworks(); m_delayedCyclesVCHistograms.resize(size); for (int i = 0; i < size; i++) { m_delayedCyclesVCHistograms[i].clear(); } m_missLatencyHistograms.resize(RubyRequestType_NUM); for (int i = 0; i < m_missLatencyHistograms.size(); i++) { m_missLatencyHistograms[i].clear(200); } m_machLatencyHistograms.resize(GenericMachineType_NUM+1); for (int i = 0; i < m_machLatencyHistograms.size(); i++) { m_machLatencyHistograms[i].clear(200); } m_missMachLatencyHistograms.resize(RubyRequestType_NUM); for (int i = 0; i < m_missLatencyHistograms.size(); i++) { m_missMachLatencyHistograms[i].resize(GenericMachineType_NUM+1); for (int j = 0; j < m_missMachLatencyHistograms[i].size(); j++) { m_missMachLatencyHistograms[i][j].clear(200); } } m_allMissLatencyHistogram.clear(200); m_wCCIssueToInitialRequestHistogram.clear(200); m_wCCInitialRequestToForwardRequestHistogram.clear(200); m_wCCForwardRequestToFirstResponseHistogram.clear(200); m_wCCFirstResponseToCompleteHistogram.clear(200); m_wCCIncompleteTimes = 0; m_dirIssueToInitialRequestHistogram.clear(200); m_dirInitialRequestToForwardRequestHistogram.clear(200); m_dirForwardRequestToFirstResponseHistogram.clear(200); m_dirFirstResponseToCompleteHistogram.clear(200); m_dirIncompleteTimes = 0; m_SWPrefetchLatencyHistograms.resize(RubyRequestType_NUM); for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) { m_SWPrefetchLatencyHistograms[i].clear(200); } m_SWPrefetchMachLatencyHistograms.resize(GenericMachineType_NUM+1); for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) { m_SWPrefetchMachLatencyHistograms[i].clear(200); } m_allSWPrefetchLatencyHistogram.clear(200); m_sequencer_requests.clear(); m_read_sharing_histogram.clear(); m_write_sharing_histogram.clear(); m_all_sharing_histogram.clear(); m_cache_to_cache = 0; m_memory_to_cache = 0; // clear HashMaps m_requestProfileMap.clear(); // count requests profiled m_requests = 0; m_outstanding_requests.clear(); m_outstanding_persistent_requests.clear(); // Flush the prefetches through the system - used so that there // are no outstanding requests after stats are cleared //g_eventQueue_ptr->triggerAllEvents(); // update the start time m_ruby_start = g_eventQueue_ptr->getTime(); } void Profiler::addAddressTraceSample(const RubyRequest& msg, NodeID id) { if (msg.getType() != RubyRequestType_IFETCH) { // Note: The following line should be commented out if you // want to use the special profiling that is part of the GS320 // protocol // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be // profiled by the AddressProfiler m_address_profiler_ptr-> addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false); } } void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner) { Set set_contacted(owner); if (type == AccessType_Write) { set_contacted.addSet(sharers); } set_contacted.remove(requestor); int number_contacted = set_contacted.count(); if (type == AccessType_Write) { m_write_sharing_histogram.add(number_contacted); } else { m_read_sharing_histogram.add(number_contacted); } m_all_sharing_histogram.add(number_contacted); if (number_contacted == 0) { m_memory_to_cache++; } else { m_cache_to_cache++; } } void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) { assert(virtualNetwork < m_delayedCyclesVCHistograms.size()); m_delayedCyclesHistogram.add(delayCycles); m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles); if (virtualNetwork != 0) { m_delayedCyclesNonPFHistogram.add(delayCycles); } } // profiles original cache requests including PUTs void Profiler::profileRequest(const string& requestStr) { m_requests++; // if it doesn't exist, conveniently, it will be created with the // default value which is 0 m_requestProfileMap[requestStr]++; } void Profiler::controllerBusy(MachineID machID) { m_busyControllerCount[(int)machID.type][(int)machID.num]++; } void Profiler::profilePFWait(Time waitTime) { m_prefetchWaitHistogram.add(waitTime); } void Profiler::bankBusy() { m_busyBankCount++; } // non-zero cycle demand request void Profiler::missLatency(Time cycles, RubyRequestType type, const GenericMachineType respondingMach) { m_allMissLatencyHistogram.add(cycles); m_missLatencyHistograms[type].add(cycles); m_machLatencyHistograms[respondingMach].add(cycles); m_missMachLatencyHistograms[type][respondingMach].add(cycles); } void Profiler::missLatencyWcc(Time issuedTime, Time initialRequestTime, Time forwardRequestTime, Time firstResponseTime, Time completionTime) { if ((issuedTime <= initialRequestTime) && (initialRequestTime <= forwardRequestTime) && (forwardRequestTime <= firstResponseTime) && (firstResponseTime <= completionTime)) { m_wCCIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime); m_wCCInitialRequestToForwardRequestHistogram.add(forwardRequestTime - initialRequestTime); m_wCCForwardRequestToFirstResponseHistogram.add(firstResponseTime - forwardRequestTime); m_wCCFirstResponseToCompleteHistogram.add(completionTime - firstResponseTime); } else { m_wCCIncompleteTimes++; } } void Profiler::missLatencyDir(Time issuedTime, Time initialRequestTime, Time forwardRequestTime, Time firstResponseTime, Time completionTime) { if ((issuedTime <= initialRequestTime) && (initialRequestTime <= forwardRequestTime) && (forwardRequestTime <= firstResponseTime) && (firstResponseTime <= completionTime)) { m_dirIssueToInitialRequestHistogram.add(initialRequestTime - issuedTime); m_dirInitialRequestToForwardRequestHistogram.add(forwardRequestTime - initialRequestTime); m_dirForwardRequestToFirstResponseHistogram.add(firstResponseTime - forwardRequestTime); m_dirFirstResponseToCompleteHistogram.add(completionTime - firstResponseTime); } else { m_dirIncompleteTimes++; } } // non-zero cycle prefetch request void Profiler::swPrefetchLatency(Time cycles, RubyRequestType type, const GenericMachineType respondingMach) { m_allSWPrefetchLatencyHistogram.add(cycles); m_SWPrefetchLatencyHistograms[type].add(cycles); m_SWPrefetchMachLatencyHistograms[respondingMach].add(cycles); if (respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) { m_SWPrefetchL2MissLatencyHistogram.add(cycles); } } // Helper function static double process_memory_total() { // 4kB page size, 1024*1024 bytes per MB, const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(total_size_in_pages) * MULTIPLIER; // size in megabytes } static double process_memory_resident() { // 4kB page size, 1024*1024 bytes per MB, const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(res_size_in_pages) * MULTIPLIER; // size in megabytes } void Profiler::rubyWatch(int id) { uint64 tr = 0; Address watch_address = Address(tr); DPRINTFN("%7s %3s RUBY WATCH %d\n", g_eventQueue_ptr->getTime(), id, watch_address); // don't care about success or failure m_watch_address_set.insert(watch_address); } bool Profiler::watchAddress(Address addr) { return m_watch_address_set.count(addr) > 0; } Profiler * RubyProfilerParams::create() { return new Profiler(this); }