/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This file has been modified by Kevin Moore and Dan Nussbaum of the Scalable Systems Research Group at Sun Microsystems Laboratories (http://research.sun.com/scalable/) to support the Adaptive Transactional Memory Test Platform (ATMTP). Please send email to atmtp-interest@sun.com with feedback, questions, or to request future announcements about ATMTP. ---------------------------------------------------------------------- File modification date: 2008-02-23 ---------------------------------------------------------------------- */ // Allows use of times() library call, which determines virtual runtime #include #include #include "base/str.hh" #include "mem/gems_common/Map.hh" #include "mem/gems_common/PrioHeap.hh" #include "mem/protocol/CacheMsg.hh" #include "mem/protocol/MachineType.hh" #include "mem/protocol/Protocol.hh" #include "mem/ruby/common/Debug.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/profiler/AddressProfiler.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/system/System.hh" #include "mem/ruby/system/System.hh" using namespace std; extern ostream* debug_cout_ptr; static double process_memory_total(); static double process_memory_resident(); Profiler::Profiler(const Params *p) : SimObject(p) { m_requestProfileMap_ptr = new Map; m_inst_profiler_ptr = NULL; m_address_profiler_ptr = NULL; m_real_time_start_time = time(NULL); // Not reset in clearStats() m_stats_period = 1000000; // Default m_periodic_output_file_ptr = &cerr; m_hot_lines = p->hot_lines; m_all_instructions = p->all_instructions; m_num_of_sequencers = p->num_of_sequencers; m_hot_lines = false; m_all_instructions = false; m_address_profiler_ptr = new AddressProfiler(m_num_of_sequencers); m_address_profiler_ptr->setHotLines(m_hot_lines); m_address_profiler_ptr->setAllInstructions(m_all_instructions); if (m_all_instructions) { m_inst_profiler_ptr = new AddressProfiler(m_num_of_sequencers); m_inst_profiler_ptr->setHotLines(m_hot_lines); m_inst_profiler_ptr->setAllInstructions(m_all_instructions); } } Profiler::~Profiler() { if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } delete m_requestProfileMap_ptr; } void Profiler::wakeup() { // FIXME - avoid the repeated code Vector perProcCycleCount; perProcCycleCount.setSize(m_num_of_sequencers); for (int i = 0; i < m_num_of_sequencers; i++) { perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero } ostream &out = *m_periodic_output_file_ptr; out << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl << "mbytes_resident: " << process_memory_resident() << endl << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident() / process_memory_total() << endl; } out << "miss_latency: " << m_allMissLatencyHistogram << endl; out << endl; if (m_all_instructions) { m_inst_profiler_ptr->printStats(out); } //g_system_ptr->getNetwork()->printStats(out); g_eventQueue_ptr->scheduleEvent(this, m_stats_period); } void Profiler::setPeriodicStatsFile(const string& filename) { cout << "Recording periodic statistics to file '" << filename << "' every " << m_stats_period << " Ruby cycles" << endl; if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } m_periodic_output_file_ptr = new ofstream(filename.c_str()); g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::setPeriodicStatsInterval(integer_t period) { cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl; m_stats_period = period; g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::printConfig(ostream& out) const { out << endl; out << "Profiler Configuration" << endl; out << "----------------------" << endl; out << "periodic_stats_period: " << m_stats_period << endl; } void Profiler::print(ostream& out) const { out << "[Profiler]"; } void Profiler::printStats(ostream& out, bool short_stats) { out << endl; if (short_stats) { out << "SHORT "; } out << "Profiler Stats" << endl; out << "--------------" << endl; time_t real_time_current = time(NULL); double seconds = difftime(real_time_current, m_real_time_start_time); double minutes = seconds / 60.0; double hours = minutes / 60.0; double days = hours / 24.0; Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start; if (!short_stats) { out << "Elapsed_time_in_seconds: " << seconds << endl; out << "Elapsed_time_in_minutes: " << minutes << endl; out << "Elapsed_time_in_hours: " << hours << endl; out << "Elapsed_time_in_days: " << days << endl; out << endl; } // print the virtual runtimes as well struct tms vtime; times(&vtime); seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0; minutes = seconds / 60.0; hours = minutes / 60.0; days = hours / 24.0; out << "Virtual_time_in_seconds: " << seconds << endl; out << "Virtual_time_in_minutes: " << minutes << endl; out << "Virtual_time_in_hours: " << hours << endl; out << "Virtual_time_in_days: " << days << endl; out << endl; out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl; out << "Ruby_start_time: " << m_ruby_start << endl; out << "Ruby_cycles: " << ruby_cycles << endl; out << endl; if (!short_stats) { out << "mbytes_resident: " << process_memory_resident() << endl; out << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } out << endl; } Vector perProcCycleCount; perProcCycleCount.setSize(m_num_of_sequencers); for (int i = 0; i < m_num_of_sequencers; i++) { perProcCycleCount[i] = g_system_ptr->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero } out << "ruby_cycles_executed: " << perProcCycleCount << endl; out << endl; if (!short_stats) { out << "Busy Controller Counts:" << endl; for (int i = 0; i < MachineType_NUM; i++) { int size = MachineType_base_count((MachineType)i); for (int j = 0; j < size; j++) { MachineID machID; machID.type = (MachineType)i; machID.num = j; out << machID << ":" << m_busyControllerCount[i][j] << " "; if ((j + 1) % 8 == 0) { out << endl; } } out << endl; } out << endl; out << "Busy Bank Count:" << m_busyBankCount << endl; out << endl; out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl; out << endl; } if (!short_stats) { out << "All Non-Zero Cycle Demand Cache Accesses" << endl; out << "----------------------------------------" << endl; out << "miss_latency: " << m_allMissLatencyHistogram << endl; for (int i = 0; i < m_missLatencyHistograms.size(); i++) { if (m_missLatencyHistograms[i].size() > 0) { out << "miss_latency_" << RubyRequestType(i) << ": " << m_missLatencyHistograms[i] << endl; } } for (int i = 0; i < m_machLatencyHistograms.size(); i++) { if (m_machLatencyHistograms[i].size() > 0) { out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl; } } out << endl; out << "All Non-Zero Cycle SW Prefetch Requests" << endl; out << "------------------------------------" << endl; out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl; for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) { if (m_SWPrefetchLatencyHistograms[i].size() > 0) { out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl; } } for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) { if (m_SWPrefetchMachLatencyHistograms[i].size() > 0) { out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl; } } out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl; if (m_all_sharing_histogram.size() > 0) { out << "all_sharing: " << m_all_sharing_histogram << endl; out << "read_sharing: " << m_read_sharing_histogram << endl; out << "write_sharing: " << m_write_sharing_histogram << endl; out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl; out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl; out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl; int64 total_miss = m_cache_to_cache + m_memory_to_cache; out << "all_misses: " << total_miss << endl; out << "cache_to_cache_misses: " << m_cache_to_cache << endl; out << "memory_to_cache_misses: " << m_memory_to_cache << endl; out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl; out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl; out << endl; } if (m_outstanding_requests.size() > 0) { out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl; out << endl; } } if (!short_stats) { out << "Request vs. RubySystem State Profile" << endl; out << "--------------------------------" << endl; out << endl; Vector requestProfileKeys = m_requestProfileMap_ptr->keys(); requestProfileKeys.sortVector(); for (int i = 0; i < requestProfileKeys.size(); i++) { int temp_int = m_requestProfileMap_ptr->lookup(requestProfileKeys[i]); double percent = (100.0 * double(temp_int)) / double(m_requests); vector items; tokenize(items, requestProfileKeys[i], ':'); vector::iterator i = items.begin(); vector::iterator end = items.end(); for (; i != end; ++i) out << setw(10) << *i; out << setw(11) << temp_int; out << setw(14) << percent << endl; } out << endl; out << "filter_action: " << m_filter_action_histogram << endl; if (!m_all_instructions) { m_address_profiler_ptr->printStats(out); } if (m_all_instructions) { m_inst_profiler_ptr->printStats(out); } out << endl; out << "Message Delayed Cycles" << endl; out << "----------------------" << endl; out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl; out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl; for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) { out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl; } printResourceUsage(out); } } void Profiler::printResourceUsage(ostream& out) const { out << endl; out << "Resource Usage" << endl; out << "--------------" << endl; integer_t pagesize = getpagesize(); // page size in bytes out << "page_size: " << pagesize << endl; rusage usage; getrusage (RUSAGE_SELF, &usage); out << "user_time: " << usage.ru_utime.tv_sec << endl; out << "system_time: " << usage.ru_stime.tv_sec << endl; out << "page_reclaims: " << usage.ru_minflt << endl; out << "page_faults: " << usage.ru_majflt << endl; out << "swaps: " << usage.ru_nswap << endl; out << "block_inputs: " << usage.ru_inblock << endl; out << "block_outputs: " << usage.ru_oublock << endl; } void Profiler::clearStats() { m_ruby_start = g_eventQueue_ptr->getTime(); m_cycles_executed_at_start.setSize(m_num_of_sequencers); for (int i = 0; i < m_num_of_sequencers; i++) { if (g_system_ptr == NULL) { m_cycles_executed_at_start[i] = 0; } else { m_cycles_executed_at_start[i] = g_system_ptr->getCycleCount(i); } } m_busyControllerCount.setSize(MachineType_NUM); // all machines for (int i = 0; i < MachineType_NUM; i++) { int size = MachineType_base_count((MachineType)i); m_busyControllerCount[i].setSize(size); for (int j = 0; j < size; j++) { m_busyControllerCount[i][j] = 0; } } m_busyBankCount = 0; m_delayedCyclesHistogram.clear(); m_delayedCyclesNonPFHistogram.clear(); int size = RubySystem::getNetwork()->getNumberOfVirtualNetworks(); m_delayedCyclesVCHistograms.setSize(size); for (int i = 0; i < size; i++) { m_delayedCyclesVCHistograms[i].clear(); } m_missLatencyHistograms.setSize(RubyRequestType_NUM); for (int i = 0; i < m_missLatencyHistograms.size(); i++) { m_missLatencyHistograms[i].clear(200); } m_machLatencyHistograms.setSize(GenericMachineType_NUM+1); for (int i = 0; i < m_machLatencyHistograms.size(); i++) { m_machLatencyHistograms[i].clear(200); } m_allMissLatencyHistogram.clear(200); m_SWPrefetchLatencyHistograms.setSize(CacheRequestType_NUM); for (int i = 0; i < m_SWPrefetchLatencyHistograms.size(); i++) { m_SWPrefetchLatencyHistograms[i].clear(200); } m_SWPrefetchMachLatencyHistograms.setSize(GenericMachineType_NUM+1); for (int i = 0; i < m_SWPrefetchMachLatencyHistograms.size(); i++) { m_SWPrefetchMachLatencyHistograms[i].clear(200); } m_allSWPrefetchLatencyHistogram.clear(200); m_sequencer_requests.clear(); m_read_sharing_histogram.clear(); m_write_sharing_histogram.clear(); m_all_sharing_histogram.clear(); m_cache_to_cache = 0; m_memory_to_cache = 0; // clear HashMaps m_requestProfileMap_ptr->clear(); // count requests profiled m_requests = 0; m_outstanding_requests.clear(); m_outstanding_persistent_requests.clear(); // Flush the prefetches through the system - used so that there // are no outstanding requests after stats are cleared //g_eventQueue_ptr->triggerAllEvents(); // update the start time m_ruby_start = g_eventQueue_ptr->getTime(); } void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id) { if (msg.getType() != CacheRequestType_IFETCH) { // Note: The following line should be commented out if you // want to use the special profiling that is part of the GS320 // protocol // NOTE: Unless PROFILE_HOT_LINES is enabled, nothing will be // profiled by the AddressProfiler m_address_profiler_ptr-> addTraceSample(msg.getLineAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false); } } void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner) { Set set_contacted(owner); if (type == AccessType_Write) { set_contacted.addSet(sharers); } set_contacted.remove(requestor); int number_contacted = set_contacted.count(); if (type == AccessType_Write) { m_write_sharing_histogram.add(number_contacted); } else { m_read_sharing_histogram.add(number_contacted); } m_all_sharing_histogram.add(number_contacted); if (number_contacted == 0) { m_memory_to_cache++; } else { m_cache_to_cache++; } } void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) { assert(virtualNetwork < m_delayedCyclesVCHistograms.size()); m_delayedCyclesHistogram.add(delayCycles); m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles); if (virtualNetwork != 0) { m_delayedCyclesNonPFHistogram.add(delayCycles); } } // profiles original cache requests including PUTs void Profiler::profileRequest(const string& requestStr) { m_requests++; if (m_requestProfileMap_ptr->exist(requestStr)) { (m_requestProfileMap_ptr->lookup(requestStr))++; } else { m_requestProfileMap_ptr->add(requestStr, 1); } } void Profiler::controllerBusy(MachineID machID) { m_busyControllerCount[(int)machID.type][(int)machID.num]++; } void Profiler::profilePFWait(Time waitTime) { m_prefetchWaitHistogram.add(waitTime); } void Profiler::bankBusy() { m_busyBankCount++; } // non-zero cycle demand request void Profiler::missLatency(Time t, RubyRequestType type) { m_allMissLatencyHistogram.add(t); m_missLatencyHistograms[type].add(t); } // non-zero cycle prefetch request void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach) { m_allSWPrefetchLatencyHistogram.add(t); m_SWPrefetchLatencyHistograms[type].add(t); m_SWPrefetchMachLatencyHistograms[respondingMach].add(t); if (respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) { m_SWPrefetchL2MissLatencyHistogram.add(t); } } void Profiler::profileTransition(const string& component, NodeID version, Address addr, const string& state, const string& event, const string& next_state, const string& note) { const int EVENT_SPACES = 20; const int ID_SPACES = 3; const int TIME_SPACES = 7; const int COMP_SPACES = 10; const int STATE_SPACES = 6; if (g_debug_ptr->getDebugTime() <= 0 || g_eventQueue_ptr->getTime() < g_debug_ptr->getDebugTime()) return; ostream &out = *debug_cout_ptr; out.flags(ios::right); out << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; out << setw(ID_SPACES) << version << " "; out << setw(COMP_SPACES) << component; out << setw(EVENT_SPACES) << event << " "; out.flags(ios::right); out << setw(STATE_SPACES) << state; out << ">"; out.flags(ios::left); out << setw(STATE_SPACES) << next_state; out << " " << addr << " " << note; out << endl; } // Helper function static double process_memory_total() { // 4kB page size, 1024*1024 bytes per MB, const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(total_size_in_pages) * MULTIPLIER; // size in megabytes } static double process_memory_resident() { // 4kB page size, 1024*1024 bytes per MB, const double MULTIPLIER = 4096.0 / (1024.0 * 1024.0); ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(res_size_in_pages) * MULTIPLIER; // size in megabytes } void Profiler::rubyWatch(int id) { uint64 tr = 0; Address watch_address = Address(tr); const int ID_SPACES = 3; const int TIME_SPACES = 7; ostream &out = *debug_cout_ptr; out.flags(ios::right); out << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; out << setw(ID_SPACES) << id << " " << "RUBY WATCH " << watch_address << endl; if (!m_watch_address_list_ptr->exist(watch_address)) { m_watch_address_list_ptr->add(watch_address, 1); } } bool Profiler::watchAddress(Address addr) { if (m_watch_address_list_ptr->exist(addr)) return true; else return false; } Profiler * RubyProfilerParams::create() { return new Profiler(this); }