/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This file has been modified by Kevin Moore and Dan Nussbaum of the Scalable Systems Research Group at Sun Microsystems Laboratories (http://research.sun.com/scalable/) to support the Adaptive Transactional Memory Test Platform (ATMTP). Please send email to atmtp-interest@sun.com with feedback, questions, or to request future announcements about ATMTP. ---------------------------------------------------------------------- File modification date: 2008-02-23 ---------------------------------------------------------------------- */ /* * Profiler.C * * Description: See Profiler.h * * $Id$ * */ #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/profiler/CacheProfiler.hh" #include "mem/ruby/profiler/AddressProfiler.hh" #include "mem/ruby/system/System.hh" #include "mem/ruby/network/Network.hh" #include "mem/gems_common/PrioHeap.hh" #include "mem/protocol/CacheMsg.hh" #include "mem/ruby/common/Driver.hh" #include "mem/protocol/Protocol.hh" #include "mem/gems_common/util.hh" #include "mem/gems_common/Map.hh" #include "mem/ruby/common/Debug.hh" #include "mem/protocol/MachineType.hh" // Allows use of times() library call, which determines virtual runtime #include extern std::ostream * debug_cout_ptr; static double process_memory_total(); static double process_memory_resident(); Profiler::Profiler() : m_conflicting_histogram(-1) { m_requestProfileMap_ptr = new Map; m_L1D_cache_profiler_ptr = new CacheProfiler("L1D_cache"); m_L1I_cache_profiler_ptr = new CacheProfiler("L1I_cache"); m_L2_cache_profiler_ptr = new CacheProfiler("L2_cache"); m_address_profiler_ptr = new AddressProfiler; m_inst_profiler_ptr = NULL; if (PROFILE_ALL_INSTRUCTIONS) { m_inst_profiler_ptr = new AddressProfiler; } m_conflicting_map_ptr = new Map; m_real_time_start_time = time(NULL); // Not reset in clearStats() m_stats_period = 1000000; // Default m_periodic_output_file_ptr = &cerr; // for MemoryControl: m_memReq = 0; m_memBankBusy = 0; m_memBusBusy = 0; m_memReadWriteBusy = 0; m_memDataBusBusy = 0; m_memTfawBusy = 0; m_memRefresh = 0; m_memRead = 0; m_memWrite = 0; m_memWaitCycles = 0; m_memInputQ = 0; m_memBankQ = 0; m_memArbWait = 0; m_memRandBusy = 0; m_memNotOld = 0; int totalBanks = RubyConfig::banksPerRank() * RubyConfig::ranksPerDimm() * RubyConfig::dimmsPerChannel(); m_memBankCount.setSize(totalBanks); clearStats(); } Profiler::~Profiler() { if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } delete m_address_profiler_ptr; delete m_L1D_cache_profiler_ptr; delete m_L1I_cache_profiler_ptr; delete m_L2_cache_profiler_ptr; delete m_requestProfileMap_ptr; delete m_conflicting_map_ptr; } void Profiler::wakeup() { // FIXME - avoid the repeated code Vector perProcInstructionCount; perProcInstructionCount.setSize(RubyConfig::numberOfProcessors()); Vector perProcCycleCount; perProcCycleCount.setSize(RubyConfig::numberOfProcessors()); for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { perProcInstructionCount[i] = g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1; perProcCycleCount[i] = g_system_ptr->getDriver()->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero } integer_t total_misses = m_perProcTotalMisses.sum(); integer_t instruction_executed = perProcInstructionCount.sum(); integer_t cycles_executed = perProcCycleCount.sum(); integer_t transactions_started = m_perProcStartTransaction.sum(); integer_t transactions_ended = m_perProcEndTransaction.sum(); (*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl; (*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl; (*m_periodic_output_file_ptr) << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl; (*m_periodic_output_file_ptr) << "cycles_executed: " << cycles_executed << " " << perProcCycleCount << endl; (*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl; (*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl; (*m_periodic_output_file_ptr) << "L1TBE_usage: " << m_L1tbeProfile << endl; (*m_periodic_output_file_ptr) << "L2TBE_usage: " << m_L2tbeProfile << endl; (*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl; (*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { (*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } (*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl; *m_periodic_output_file_ptr << endl; if (PROFILE_ALL_INSTRUCTIONS) { m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr); } //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr); g_eventQueue_ptr->scheduleEvent(this, m_stats_period); } void Profiler::setPeriodicStatsFile(const string& filename) { cout << "Recording periodic statistics to file '" << filename << "' every " << m_stats_period << " Ruby cycles" << endl; if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } m_periodic_output_file_ptr = new ofstream(filename.c_str()); g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::setPeriodicStatsInterval(integer_t period) { cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl; m_stats_period = period; g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::printConfig(ostream& out) const { out << endl; out << "Profiler Configuration" << endl; out << "----------------------" << endl; out << "periodic_stats_period: " << m_stats_period << endl; } void Profiler::print(ostream& out) const { out << "[Profiler]"; } void Profiler::printStats(ostream& out, bool short_stats) { out << endl; if (short_stats) { out << "SHORT "; } out << "Profiler Stats" << endl; out << "--------------" << endl; time_t real_time_current = time(NULL); double seconds = difftime(real_time_current, m_real_time_start_time); double minutes = seconds/60.0; double hours = minutes/60.0; double days = hours/24.0; Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start; if (!short_stats) { out << "Elapsed_time_in_seconds: " << seconds << endl; out << "Elapsed_time_in_minutes: " << minutes << endl; out << "Elapsed_time_in_hours: " << hours << endl; out << "Elapsed_time_in_days: " << days << endl; out << endl; } // print the virtual runtimes as well struct tms vtime; times(&vtime); seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0; minutes = seconds / 60.0; hours = minutes / 60.0; days = hours / 24.0; out << "Virtual_time_in_seconds: " << seconds << endl; out << "Virtual_time_in_minutes: " << minutes << endl; out << "Virtual_time_in_hours: " << hours << endl; out << "Virtual_time_in_days: " << hours << endl; out << endl; out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl; out << "Ruby_start_time: " << m_ruby_start << endl; out << "Ruby_cycles: " << ruby_cycles << endl; out << endl; if (!short_stats) { out << "mbytes_resident: " << process_memory_resident() << endl; out << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } out << endl; if(m_num_BA_broadcasts + m_num_BA_unicasts != 0){ out << endl; out << "Broadcast_percent: " << (float)m_num_BA_broadcasts/(m_num_BA_broadcasts+m_num_BA_unicasts) << endl; } } Vector perProcInstructionCount; Vector perProcCycleCount; Vector perProcCPI; Vector perProcMissesPerInsn; Vector perProcInsnPerTrans; Vector perProcCyclesPerTrans; Vector perProcMissesPerTrans; perProcInstructionCount.setSize(RubyConfig::numberOfProcessors()); perProcCycleCount.setSize(RubyConfig::numberOfProcessors()); perProcCPI.setSize(RubyConfig::numberOfProcessors()); perProcMissesPerInsn.setSize(RubyConfig::numberOfProcessors()); perProcInsnPerTrans.setSize(RubyConfig::numberOfProcessors()); perProcCyclesPerTrans.setSize(RubyConfig::numberOfProcessors()); perProcMissesPerTrans.setSize(RubyConfig::numberOfProcessors()); for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { perProcInstructionCount[i] = g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1; perProcCycleCount[i] = g_system_ptr->getDriver()->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero perProcCPI[i] = double(ruby_cycles)/perProcInstructionCount[i]; perProcMissesPerInsn[i] = 1000.0 * (double(m_perProcTotalMisses[i]) / double(perProcInstructionCount[i])); int trans = m_perProcEndTransaction[i]; if (trans == 0) { perProcInsnPerTrans[i] = 0; perProcCyclesPerTrans[i] = 0; perProcMissesPerTrans[i] = 0; } else { perProcInsnPerTrans[i] = perProcInstructionCount[i] / double(trans); perProcCyclesPerTrans[i] = ruby_cycles / double(trans); perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans); } } integer_t total_misses = m_perProcTotalMisses.sum(); integer_t user_misses = m_perProcUserMisses.sum(); integer_t supervisor_misses = m_perProcSupervisorMisses.sum(); integer_t instruction_executed = perProcInstructionCount.sum(); integer_t cycles_executed = perProcCycleCount.sum(); integer_t transactions_started = m_perProcStartTransaction.sum(); integer_t transactions_ended = m_perProcEndTransaction.sum(); double instructions_per_transaction = (transactions_ended != 0) ? double(instruction_executed) / double(transactions_ended) : 0; double cycles_per_transaction = (transactions_ended != 0) ? (RubyConfig::numberOfProcessors() * double(ruby_cycles)) / double(transactions_ended) : 0; double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0; out << "Total_misses: " << total_misses << endl; out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl; out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl; out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl; out << endl; out << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl; out << "cycles_executed: " << cycles_executed << " " << perProcCycleCount << endl; out << "cycles_per_instruction: " << (RubyConfig::numberOfProcessors()*double(ruby_cycles))/double(instruction_executed) << " " << perProcCPI << endl; out << "misses_per_thousand_instructions: " << 1000.0 * (double(total_misses) / double(instruction_executed)) << " " << perProcMissesPerInsn << endl; out << endl; out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl; out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl; out << "instructions_per_transaction: " << instructions_per_transaction << " " << perProcInsnPerTrans << endl; out << "cycles_per_transaction: " << cycles_per_transaction << " " << perProcCyclesPerTrans << endl; out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl; out << endl; m_L1D_cache_profiler_ptr->printStats(out); m_L1I_cache_profiler_ptr->printStats(out); m_L2_cache_profiler_ptr->printStats(out); out << endl; if (m_memReq || m_memRefresh) { // if there's a memory controller at all long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles; double stallsPerReq = total_stalls * 1.0 / m_memReq; out << "Memory control:" << endl; out << " memory_total_requests: " << m_memReq << endl; // does not include refreshes out << " memory_reads: " << m_memRead << endl; out << " memory_writes: " << m_memWrite << endl; out << " memory_refreshes: " << m_memRefresh << endl; out << " memory_total_request_delays: " << total_stalls << endl; out << " memory_delays_per_request: " << stallsPerReq << endl; out << " memory_delays_in_input_queue: " << m_memInputQ << endl; out << " memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl; out << " memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl; // Note: The following "memory stalls" entries are a breakdown of the // cycles which already showed up in m_memWaitCycles. The order is // significant; it is the priority of attributing the cycles. // For example, bank_busy is before arbitration because if the bank was // busy, we didn't even check arbitration. // Note: "not old enough" means that since we grouped waiting heads-of-queues // into batches to avoid starvation, a request in a newer batch // didn't try to arbitrate yet because there are older requests waiting. out << " memory_stalls_for_bank_busy: " << m_memBankBusy << endl; out << " memory_stalls_for_random_busy: " << m_memRandBusy << endl; out << " memory_stalls_for_anti_starvation: " << m_memNotOld << endl; out << " memory_stalls_for_arbitration: " << m_memArbWait << endl; out << " memory_stalls_for_bus: " << m_memBusBusy << endl; out << " memory_stalls_for_tfaw: " << m_memTfawBusy << endl; out << " memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl; out << " memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl; out << " accesses_per_bank: "; for (int bank=0; bank < m_memBankCount.size(); bank++) { out << m_memBankCount[bank] << " "; //if ((bank % 8) == 7) out << " " << endl; } out << endl; out << endl; } if (!short_stats) { out << "Busy Controller Counts:" << endl; for(int i=0; i < MachineType_NUM; i++) { for(int j=0; j < MachineType_base_count((MachineType)i); j++) { MachineID machID; machID.type = (MachineType)i; machID.num = j; out << machID << ":" << m_busyControllerCount[i][j] << " "; if ((j+1)%8 == 0) { out << endl; } } out << endl; } out << endl; out << "Busy Bank Count:" << m_busyBankCount << endl; out << endl; out << "L1TBE_usage: " << m_L1tbeProfile << endl; out << "L2TBE_usage: " << m_L2tbeProfile << endl; out << "StopTable_usage: " << m_stopTableProfile << endl; out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl; out << "store_buffer_size: " << m_store_buffer_size << endl; out << "unique_blocks_in_store_buffer: " << m_store_buffer_blocks << endl; out << endl; } if (!short_stats) { out << "All Non-Zero Cycle Demand Cache Accesses" << endl; out << "----------------------------------------" << endl; out << "miss_latency: " << m_allMissLatencyHistogram << endl; for(int i=0; i 0) { out << "miss_latency_" << CacheRequestType(i) << ": " << m_missLatencyHistograms[i] << endl; } } for(int i=0; i 0) { out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl; } } out << "miss_latency_L2Miss: " << m_L2MissLatencyHistogram << endl; out << endl; out << "All Non-Zero Cycle SW Prefetch Requests" << endl; out << "------------------------------------" << endl; out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl; for(int i=0; i 0) { out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl; } } for(int i=0; i 0) { out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl; } } out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl; out << "multicast_retries: " << m_multicast_retry_histogram << endl; out << "gets_mask_prediction_count: " << m_gets_mask_prediction << endl; out << "getx_mask_prediction_count: " << m_getx_mask_prediction << endl; out << "explicit_training_mask: " << m_explicit_training_mask << endl; out << endl; if (m_all_sharing_histogram.size() > 0) { out << "all_sharing: " << m_all_sharing_histogram << endl; out << "read_sharing: " << m_read_sharing_histogram << endl; out << "write_sharing: " << m_write_sharing_histogram << endl; out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl; out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl; out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl; int64 total_miss = m_cache_to_cache + m_memory_to_cache; out << "all_misses: " << total_miss << endl; out << "cache_to_cache_misses: " << m_cache_to_cache << endl; out << "memory_to_cache_misses: " << m_memory_to_cache << endl; out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl; out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl; out << endl; } if (m_conflicting_histogram.size() > 0) { out << "conflicting_histogram: " << m_conflicting_histogram << endl; out << "conflicting_histogram_percent: "; m_conflicting_histogram.printPercent(out); out << endl; out << endl; } if (m_outstanding_requests.size() > 0) { out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl; if (m_outstanding_persistent_requests.size() > 0) { out << "outstanding_persistent_requests: "; m_outstanding_persistent_requests.printPercent(out); out << endl; } out << endl; } } if (!short_stats) { out << "Request vs. RubySystem State Profile" << endl; out << "--------------------------------" << endl; out << endl; Vector requestProfileKeys = m_requestProfileMap_ptr->keys(); requestProfileKeys.sortVector(); for(int i=0; ilookup(requestProfileKeys[i]); double percent = (100.0*double(temp_int))/double(m_requests); while (requestProfileKeys[i] != "") { out << setw(10) << string_split(requestProfileKeys[i], ':'); } out << setw(11) << temp_int; out << setw(14) << percent << endl; } out << endl; out << "filter_action: " << m_filter_action_histogram << endl; if (!PROFILE_ALL_INSTRUCTIONS) { m_address_profiler_ptr->printStats(out); } if (PROFILE_ALL_INSTRUCTIONS) { m_inst_profiler_ptr->printStats(out); } out << endl; out << "Message Delayed Cycles" << endl; out << "----------------------" << endl; out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl; out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl; for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) { out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl; } printResourceUsage(out); } } void Profiler::printResourceUsage(ostream& out) const { out << endl; out << "Resource Usage" << endl; out << "--------------" << endl; integer_t pagesize = getpagesize(); // page size in bytes out << "page_size: " << pagesize << endl; rusage usage; getrusage (RUSAGE_SELF, &usage); out << "user_time: " << usage.ru_utime.tv_sec << endl; out << "system_time: " << usage.ru_stime.tv_sec << endl; out << "page_reclaims: " << usage.ru_minflt << endl; out << "page_faults: " << usage.ru_majflt << endl; out << "swaps: " << usage.ru_nswap << endl; out << "block_inputs: " << usage.ru_inblock << endl; out << "block_outputs: " << usage.ru_oublock << endl; } void Profiler::clearStats() { m_num_BA_unicasts = 0; m_num_BA_broadcasts = 0; m_ruby_start = g_eventQueue_ptr->getTime(); m_instructions_executed_at_start.setSize(RubyConfig::numberOfProcessors()); m_cycles_executed_at_start.setSize(RubyConfig::numberOfProcessors()); for (int i=0; i < RubyConfig::numberOfProcessors(); i++) { if (g_system_ptr == NULL) { m_instructions_executed_at_start[i] = 0; m_cycles_executed_at_start[i] = 0; } else { m_instructions_executed_at_start[i] = g_system_ptr->getDriver()->getInstructionCount(i); m_cycles_executed_at_start[i] = g_system_ptr->getDriver()->getCycleCount(i); } } m_perProcTotalMisses.setSize(RubyConfig::numberOfProcessors()); m_perProcUserMisses.setSize(RubyConfig::numberOfProcessors()); m_perProcSupervisorMisses.setSize(RubyConfig::numberOfProcessors()); m_perProcStartTransaction.setSize(RubyConfig::numberOfProcessors()); m_perProcEndTransaction.setSize(RubyConfig::numberOfProcessors()); for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { m_perProcTotalMisses[i] = 0; m_perProcUserMisses[i] = 0; m_perProcSupervisorMisses[i] = 0; m_perProcStartTransaction[i] = 0; m_perProcEndTransaction[i] = 0; } m_busyControllerCount.setSize(MachineType_NUM); // all machines for(int i=0; i < MachineType_NUM; i++) { m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i)); for(int j=0; j < MachineType_base_count((MachineType)i); j++) { m_busyControllerCount[i][j] = 0; } } m_busyBankCount = 0; m_delayedCyclesHistogram.clear(); m_delayedCyclesNonPFHistogram.clear(); m_delayedCyclesVCHistograms.setSize(NUMBER_OF_VIRTUAL_NETWORKS); for (int i = 0; i < NUMBER_OF_VIRTUAL_NETWORKS; i++) { m_delayedCyclesVCHistograms[i].clear(); } m_gets_mask_prediction.clear(); m_getx_mask_prediction.clear(); m_explicit_training_mask.clear(); m_missLatencyHistograms.setSize(CacheRequestType_NUM); for(int i=0; iclear(); // count requests profiled m_requests = 0; // Conflicting requests m_conflicting_map_ptr->clear(); m_conflicting_histogram.clear(); m_outstanding_requests.clear(); m_outstanding_persistent_requests.clear(); m_L1D_cache_profiler_ptr->clearStats(); m_L1I_cache_profiler_ptr->clearStats(); m_L2_cache_profiler_ptr->clearStats(); // for MemoryControl: m_memReq = 0; m_memBankBusy = 0; m_memBusBusy = 0; m_memTfawBusy = 0; m_memReadWriteBusy = 0; m_memDataBusBusy = 0; m_memRefresh = 0; m_memRead = 0; m_memWrite = 0; m_memWaitCycles = 0; m_memInputQ = 0; m_memBankQ = 0; m_memArbWait = 0; m_memRandBusy = 0; m_memNotOld = 0; for (int bank=0; bank < m_memBankCount.size(); bank++) { m_memBankCount[bank] = 0; } // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared //g_eventQueue_ptr->triggerAllEvents(); // update the start time m_ruby_start = g_eventQueue_ptr->getTime(); } void Profiler::addPrimaryStatSample(const CacheMsg& msg, NodeID id) { if (Protocol::m_TwoLevelCache) { if (msg.getType() == CacheRequestType_IFETCH) { addL1IStatSample(msg, id); } else { addL1DStatSample(msg, id); } // profile the address after an L1 miss (outside of the processor for CMP) if (Protocol::m_CMP) { addAddressTraceSample(msg, id); } } else { addL2StatSample(CacheRequestType_to_GenericRequestType(msg.getType()), msg.getAccessMode(), msg.getSize(), msg.getPrefetch(), id); addAddressTraceSample(msg, id); } } void Profiler::profileConflictingRequests(const Address& addr) { assert(addr == line_address(addr)); Time last_time = m_ruby_start; if (m_conflicting_map_ptr->exist(addr)) { last_time = m_conflicting_map_ptr->lookup(addr); } Time current_time = g_eventQueue_ptr->getTime(); assert (current_time - last_time > 0); m_conflicting_histogram.add(current_time - last_time); m_conflicting_map_ptr->add(addr, current_time); } void Profiler::addSecondaryStatSample(CacheRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id) { addSecondaryStatSample(CacheRequestType_to_GenericRequestType(requestType), type, msgSize, pfBit, id); } void Profiler::addSecondaryStatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id) { addL2StatSample(requestType, type, msgSize, pfBit, id); } void Profiler::addL2StatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id) { m_perProcTotalMisses[id]++; if (type == AccessModeType_SupervisorMode) { m_perProcSupervisorMisses[id]++; } else { m_perProcUserMisses[id]++; } m_L2_cache_profiler_ptr->addStatSample(requestType, type, msgSize, pfBit); } void Profiler::addL1DStatSample(const CacheMsg& msg, NodeID id) { m_L1D_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()), msg.getAccessMode(), msg.getSize(), msg.getPrefetch()); } void Profiler::addL1IStatSample(const CacheMsg& msg, NodeID id) { m_L1I_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()), msg.getAccessMode(), msg.getSize(), msg.getPrefetch()); } void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id) { if (msg.getType() != CacheRequestType_IFETCH) { // Note: The following line should be commented out if you want to // use the special profiling that is part of the GS320 protocol // NOTE: Unless PROFILE_HOT_LINES or PROFILE_ALL_INSTRUCTIONS are enabled, nothing will be profiled by the AddressProfiler m_address_profiler_ptr->addTraceSample(msg.getAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false); } } void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner) { Set set_contacted(owner); if (type == AccessType_Write) { set_contacted.addSet(sharers); } set_contacted.remove(requestor); int number_contacted = set_contacted.count(); if (type == AccessType_Write) { m_write_sharing_histogram.add(number_contacted); } else { m_read_sharing_histogram.add(number_contacted); } m_all_sharing_histogram.add(number_contacted); if (number_contacted == 0) { m_memory_to_cache++; } else { m_cache_to_cache++; } } void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) { assert(virtualNetwork < m_delayedCyclesVCHistograms.size()); m_delayedCyclesHistogram.add(delayCycles); m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles); if (virtualNetwork != 0) { m_delayedCyclesNonPFHistogram.add(delayCycles); } } // profiles original cache requests including PUTs void Profiler::profileRequest(const string& requestStr) { m_requests++; if (m_requestProfileMap_ptr->exist(requestStr)) { (m_requestProfileMap_ptr->lookup(requestStr))++; } else { m_requestProfileMap_ptr->add(requestStr, 1); } } void Profiler::recordPrediction(bool wasGood, bool wasPredicted) { m_predictionOpportunities++; if(wasPredicted){ m_predictions++; if(wasGood){ m_goodPredictions++; } } } void Profiler::profileFilterAction(int action) { m_filter_action_histogram.add(action); } void Profiler::profileMulticastRetry(const Address& addr, int count) { m_multicast_retry_histogram.add(count); } void Profiler::startTransaction(int cpu) { m_perProcStartTransaction[cpu]++; } void Profiler::endTransaction(int cpu) { m_perProcEndTransaction[cpu]++; } void Profiler::controllerBusy(MachineID machID) { m_busyControllerCount[(int)machID.type][(int)machID.num]++; } void Profiler::profilePFWait(Time waitTime) { m_prefetchWaitHistogram.add(waitTime); } void Profiler::bankBusy() { m_busyBankCount++; } // non-zero cycle demand request void Profiler::missLatency(Time t, CacheRequestType type, GenericMachineType respondingMach) { m_allMissLatencyHistogram.add(t); m_missLatencyHistograms[type].add(t); m_machLatencyHistograms[respondingMach].add(t); if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) { m_L2MissLatencyHistogram.add(t); } } // non-zero cycle prefetch request void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach) { m_allSWPrefetchLatencyHistogram.add(t); m_SWPrefetchLatencyHistograms[type].add(t); m_SWPrefetchMachLatencyHistograms[respondingMach].add(t); if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) { m_SWPrefetchL2MissLatencyHistogram.add(t); } } void Profiler::profileTransition(const string& component, NodeID id, NodeID version, Address addr, const string& state, const string& event, const string& next_state, const string& note) { const int EVENT_SPACES = 20; const int ID_SPACES = 3; const int TIME_SPACES = 7; const int COMP_SPACES = 10; const int STATE_SPACES = 6; if ((g_debug_ptr->getDebugTime() > 0) && (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) { (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << id << " "; (* debug_cout_ptr) << setw(ID_SPACES) << version << " "; (* debug_cout_ptr) << setw(COMP_SPACES) << component; (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " "; for (int i=0; i < RubyConfig::numberOfProcessors(); i++) { if (i == id) { (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(STATE_SPACES) << state; (* debug_cout_ptr) << ">"; (* debug_cout_ptr).flags(ios::left); (* debug_cout_ptr) << setw(STATE_SPACES) << next_state; } else { // cout << setw(STATE_SPACES) << " " << " " << setw(STATE_SPACES) << " "; } } (* debug_cout_ptr) << " " << addr << " " << note; (* debug_cout_ptr) << endl; } } // Helper function static double process_memory_total() { const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB, ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(total_size_in_pages)*MULTIPLIER; // size in megabytes } static double process_memory_resident() { const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB, ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(res_size_in_pages)*MULTIPLIER; // size in megabytes } void Profiler::profileGetXMaskPrediction(const Set& pred_set) { m_getx_mask_prediction.add(pred_set.count()); } void Profiler::profileGetSMaskPrediction(const Set& pred_set) { m_gets_mask_prediction.add(pred_set.count()); } void Profiler::profileTrainingMask(const Set& pred_set) { m_explicit_training_mask.add(pred_set.count()); } // For MemoryControl: void Profiler::profileMemReq(int bank) { m_memReq++; m_memBankCount[bank]++; } void Profiler::profileMemBankBusy() { m_memBankBusy++; } void Profiler::profileMemBusBusy() { m_memBusBusy++; } void Profiler::profileMemReadWriteBusy() { m_memReadWriteBusy++; } void Profiler::profileMemDataBusBusy() { m_memDataBusBusy++; } void Profiler::profileMemTfawBusy() { m_memTfawBusy++; } void Profiler::profileMemRefresh() { m_memRefresh++; } void Profiler::profileMemRead() { m_memRead++; } void Profiler::profileMemWrite() { m_memWrite++; } void Profiler::profileMemWaitCycles(int cycles) { m_memWaitCycles += cycles; } void Profiler::profileMemInputQ(int cycles) { m_memInputQ += cycles; } void Profiler::profileMemBankQ(int cycles) { m_memBankQ += cycles; } void Profiler::profileMemArbWait(int cycles) { m_memArbWait += cycles; } void Profiler::profileMemRandBusy() { m_memRandBusy++; } void Profiler::profileMemNotOld() { m_memNotOld++; } int64 Profiler::getTotalInstructionsExecuted() const { int64 sum = 1; // Starting at 1 allows us to avoid division by zero for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { sum += (g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i]); } return sum; } int64 Profiler::getTotalTransactionsExecuted() const { int64 sum = m_perProcEndTransaction.sum(); if (sum > 0) { return sum; } else { return 1; // Avoid division by zero errors } } // The following case statement converts CacheRequestTypes to GenericRequestTypes // allowing all profiling to be done with a single enum type instead of slow strings GenericRequestType Profiler::CacheRequestType_to_GenericRequestType(const CacheRequestType& type) { switch (type) { case CacheRequestType_LD: return GenericRequestType_LD; break; case CacheRequestType_ST: return GenericRequestType_ST; break; case CacheRequestType_ATOMIC: return GenericRequestType_ATOMIC; break; case CacheRequestType_IFETCH: return GenericRequestType_IFETCH; break; case CacheRequestType_LD_XACT: return GenericRequestType_LD_XACT; break; case CacheRequestType_LDX_XACT: return GenericRequestType_LDX_XACT; break; case CacheRequestType_ST_XACT: return GenericRequestType_ST_XACT; break; case CacheRequestType_NULL: return GenericRequestType_NULL; break; default: ERROR_MSG("Unexpected cache request type"); } }