/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This file has been modified by Kevin Moore and Dan Nussbaum of the Scalable Systems Research Group at Sun Microsystems Laboratories (http://research.sun.com/scalable/) to support the Adaptive Transactional Memory Test Platform (ATMTP). Please send email to atmtp-interest@sun.com with feedback, questions, or to request future announcements about ATMTP. ---------------------------------------------------------------------- File modification date: 2008-02-23 ---------------------------------------------------------------------- */ /* * Profiler.C * * Description: See Profiler.h * * $Id$ * */ #include "Profiler.hh" #include "CacheProfiler.hh" #include "AddressProfiler.hh" #include "System.hh" #include "Network.hh" #include "PrioHeap.hh" #include "CacheMsg.hh" #include "Driver.hh" #include "Protocol.hh" #include "util.hh" #include "Map.hh" #include "Debug.hh" #include "MachineType.hh" // #include "TransactionInterfaceManager.hh" #include "interface.hh" //#include "XactVisualizer.hh" //gem5:Arka for decomissioning log_tm //#include "XactProfiler.hh" //gem5:Arka for decomissioning log_tm // extern "C" { // #include "Rock.hh" // } // Allows use of times() library call, which determines virtual runtime #include extern std::ostream * debug_cout_ptr; extern std::ostream * xact_cout_ptr; static double process_memory_total(); static double process_memory_resident(); Profiler::Profiler() : m_conflicting_histogram(-1) { m_requestProfileMap_ptr = new Map; m_L1D_cache_profiler_ptr = new CacheProfiler("L1D_cache"); m_L1I_cache_profiler_ptr = new CacheProfiler("L1I_cache"); m_L2_cache_profiler_ptr = new CacheProfiler("L2_cache"); m_address_profiler_ptr = new AddressProfiler; m_inst_profiler_ptr = NULL; if (PROFILE_ALL_INSTRUCTIONS) { m_inst_profiler_ptr = new AddressProfiler; } //m_xact_profiler_ptr = new XactProfiler; //gem5:Arka for decomissioning og log_tm m_conflicting_map_ptr = new Map; m_real_time_start_time = time(NULL); // Not reset in clearStats() m_stats_period = 1000000; // Default m_periodic_output_file_ptr = &cerr; m_xact_visualizer_ptr = &cout; //---- begin XACT_MEM code m_xactExceptionMap_ptr = new Map; m_procsInXactMap_ptr = new Map; m_abortIDMap_ptr = new Map; m_commitIDMap_ptr = new Map; m_xactRetryIDMap_ptr = new Map; m_xactCyclesIDMap_ptr = new Map; m_xactReadSetIDMap_ptr = new Map; m_xactWriteSetIDMap_ptr = new Map; m_xactLoadMissIDMap_ptr = new Map; m_xactStoreMissIDMap_ptr = new Map; m_xactInstrCountIDMap_ptr = new Map; m_abortPCMap_ptr = new Map; m_abortAddressMap_ptr = new Map; m_nackXIDMap_ptr = new Map; m_nackXIDPairMap_ptr = new Map * >; m_nackPCMap_ptr = new Map; m_watch_address_list_ptr = new Map; m_readSetMatch_ptr = new Map; m_readSetNoMatch_ptr = new Map; m_writeSetMatch_ptr = new Map; m_writeSetNoMatch_ptr = new Map; m_xactReadFilterBitsSetOnCommit = new Map; m_xactReadFilterBitsSetOnAbort = new Map; m_xactWriteFilterBitsSetOnCommit = new Map; m_xactWriteFilterBitsSetOnAbort = new Map; //---- end XACT_MEM code // for MemoryControl: m_memReq = 0; m_memBankBusy = 0; m_memBusBusy = 0; m_memReadWriteBusy = 0; m_memDataBusBusy = 0; m_memTfawBusy = 0; m_memRefresh = 0; m_memRead = 0; m_memWrite = 0; m_memWaitCycles = 0; m_memInputQ = 0; m_memBankQ = 0; m_memArbWait = 0; m_memRandBusy = 0; m_memNotOld = 0; int totalBanks = RubyConfig::banksPerRank() * RubyConfig::ranksPerDimm() * RubyConfig::dimmsPerChannel(); m_memBankCount.setSize(totalBanks); clearStats(); } Profiler::~Profiler() { if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } delete m_address_profiler_ptr; delete m_L1D_cache_profiler_ptr; delete m_L1I_cache_profiler_ptr; delete m_L2_cache_profiler_ptr; //delete m_xact_profiler_ptr; //gem5:Arka for decomissioning of log_tm delete m_requestProfileMap_ptr; delete m_conflicting_map_ptr; } void Profiler::wakeup() { // FIXME - avoid the repeated code Vector perProcInstructionCount; perProcInstructionCount.setSize(RubyConfig::numberOfProcessors()); Vector perProcCycleCount; perProcCycleCount.setSize(RubyConfig::numberOfProcessors()); for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { perProcInstructionCount[i] = g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1; perProcCycleCount[i] = g_system_ptr->getDriver()->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero } integer_t total_misses = m_perProcTotalMisses.sum(); integer_t instruction_executed = perProcInstructionCount.sum(); integer_t simics_cycles_executed = perProcCycleCount.sum(); integer_t transactions_started = m_perProcStartTransaction.sum(); integer_t transactions_ended = m_perProcEndTransaction.sum(); (*m_periodic_output_file_ptr) << "ruby_cycles: " << g_eventQueue_ptr->getTime()-m_ruby_start << endl; (*m_periodic_output_file_ptr) << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl; (*m_periodic_output_file_ptr) << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl; (*m_periodic_output_file_ptr) << "simics_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl; (*m_periodic_output_file_ptr) << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl; (*m_periodic_output_file_ptr) << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl; (*m_periodic_output_file_ptr) << "L1TBE_usage: " << m_L1tbeProfile << endl; (*m_periodic_output_file_ptr) << "L2TBE_usage: " << m_L2tbeProfile << endl; (*m_periodic_output_file_ptr) << "mbytes_resident: " << process_memory_resident() << endl; (*m_periodic_output_file_ptr) << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { (*m_periodic_output_file_ptr) << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } (*m_periodic_output_file_ptr) << "miss_latency: " << m_allMissLatencyHistogram << endl; *m_periodic_output_file_ptr << endl; if (PROFILE_ALL_INSTRUCTIONS) { m_inst_profiler_ptr->printStats(*m_periodic_output_file_ptr); } //g_system_ptr->getNetwork()->printStats(*m_periodic_output_file_ptr); g_eventQueue_ptr->scheduleEvent(this, m_stats_period); } void Profiler::setPeriodicStatsFile(const string& filename) { cout << "Recording periodic statistics to file '" << filename << "' every " << m_stats_period << " Ruby cycles" << endl; if (m_periodic_output_file_ptr != &cerr) { delete m_periodic_output_file_ptr; } m_periodic_output_file_ptr = new ofstream(filename.c_str()); g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::setPeriodicStatsInterval(integer_t period) { cout << "Recording periodic statistics every " << m_stats_period << " Ruby cycles" << endl; m_stats_period = period; g_eventQueue_ptr->scheduleEvent(this, 1); } void Profiler::printConfig(ostream& out) const { out << endl; out << "Profiler Configuration" << endl; out << "----------------------" << endl; out << "periodic_stats_period: " << m_stats_period << endl; } void Profiler::print(ostream& out) const { out << "[Profiler]"; } void Profiler::printStats(ostream& out, bool short_stats) { out << endl; if (short_stats) { out << "SHORT "; } out << "Profiler Stats" << endl; out << "--------------" << endl; time_t real_time_current = time(NULL); double seconds = difftime(real_time_current, m_real_time_start_time); double minutes = seconds/60.0; double hours = minutes/60.0; double days = hours/24.0; Time ruby_cycles = g_eventQueue_ptr->getTime()-m_ruby_start; if (!short_stats) { out << "Elapsed_time_in_seconds: " << seconds << endl; out << "Elapsed_time_in_minutes: " << minutes << endl; out << "Elapsed_time_in_hours: " << hours << endl; out << "Elapsed_time_in_days: " << days << endl; out << endl; } // print the virtual runtimes as well struct tms vtime; times(&vtime); seconds = (vtime.tms_utime + vtime.tms_stime) / 100.0; minutes = seconds / 60.0; hours = minutes / 60.0; days = hours / 24.0; out << "Virtual_time_in_seconds: " << seconds << endl; out << "Virtual_time_in_minutes: " << minutes << endl; out << "Virtual_time_in_hours: " << hours << endl; out << "Virtual_time_in_days: " << hours << endl; out << endl; out << "Ruby_current_time: " << g_eventQueue_ptr->getTime() << endl; out << "Ruby_start_time: " << m_ruby_start << endl; out << "Ruby_cycles: " << ruby_cycles << endl; out << endl; if (!short_stats) { out << "mbytes_resident: " << process_memory_resident() << endl; out << "mbytes_total: " << process_memory_total() << endl; if (process_memory_total() > 0) { out << "resident_ratio: " << process_memory_resident()/process_memory_total() << endl; } out << endl; if(m_num_BA_broadcasts + m_num_BA_unicasts != 0){ out << endl; out << "Broadcast_percent: " << (float)m_num_BA_broadcasts/(m_num_BA_broadcasts+m_num_BA_unicasts) << endl; } } Vector perProcInstructionCount; Vector perProcCycleCount; Vector perProcCPI; Vector perProcMissesPerInsn; Vector perProcInsnPerTrans; Vector perProcCyclesPerTrans; Vector perProcMissesPerTrans; perProcInstructionCount.setSize(RubyConfig::numberOfProcessors()); perProcCycleCount.setSize(RubyConfig::numberOfProcessors()); perProcCPI.setSize(RubyConfig::numberOfProcessors()); perProcMissesPerInsn.setSize(RubyConfig::numberOfProcessors()); perProcInsnPerTrans.setSize(RubyConfig::numberOfProcessors()); perProcCyclesPerTrans.setSize(RubyConfig::numberOfProcessors()); perProcMissesPerTrans.setSize(RubyConfig::numberOfProcessors()); for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { perProcInstructionCount[i] = g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i] + 1; perProcCycleCount[i] = g_system_ptr->getDriver()->getCycleCount(i) - m_cycles_executed_at_start[i] + 1; // The +1 allows us to avoid division by zero perProcCPI[i] = double(ruby_cycles)/perProcInstructionCount[i]; perProcMissesPerInsn[i] = 1000.0 * (double(m_perProcTotalMisses[i]) / double(perProcInstructionCount[i])); int trans = m_perProcEndTransaction[i]; if (trans == 0) { perProcInsnPerTrans[i] = 0; perProcCyclesPerTrans[i] = 0; perProcMissesPerTrans[i] = 0; } else { perProcInsnPerTrans[i] = perProcInstructionCount[i] / double(trans); perProcCyclesPerTrans[i] = ruby_cycles / double(trans); perProcMissesPerTrans[i] = m_perProcTotalMisses[i] / double(trans); } } integer_t total_misses = m_perProcTotalMisses.sum(); integer_t user_misses = m_perProcUserMisses.sum(); integer_t supervisor_misses = m_perProcSupervisorMisses.sum(); integer_t instruction_executed = perProcInstructionCount.sum(); integer_t simics_cycles_executed = perProcCycleCount.sum(); integer_t transactions_started = m_perProcStartTransaction.sum(); integer_t transactions_ended = m_perProcEndTransaction.sum(); double instructions_per_transaction = (transactions_ended != 0) ? double(instruction_executed) / double(transactions_ended) : 0; double cycles_per_transaction = (transactions_ended != 0) ? (RubyConfig::numberOfProcessors() * double(ruby_cycles)) / double(transactions_ended) : 0; double misses_per_transaction = (transactions_ended != 0) ? double(total_misses) / double(transactions_ended) : 0; out << "Total_misses: " << total_misses << endl; out << "total_misses: " << total_misses << " " << m_perProcTotalMisses << endl; out << "user_misses: " << user_misses << " " << m_perProcUserMisses << endl; out << "supervisor_misses: " << supervisor_misses << " " << m_perProcSupervisorMisses << endl; out << endl; out << "instruction_executed: " << instruction_executed << " " << perProcInstructionCount << endl; out << "simics_cycles_executed: " << simics_cycles_executed << " " << perProcCycleCount << endl; out << "cycles_per_instruction: " << (RubyConfig::numberOfProcessors()*double(ruby_cycles))/double(instruction_executed) << " " << perProcCPI << endl; out << "misses_per_thousand_instructions: " << 1000.0 * (double(total_misses) / double(instruction_executed)) << " " << perProcMissesPerInsn << endl; out << endl; out << "transactions_started: " << transactions_started << " " << m_perProcStartTransaction << endl; out << "transactions_ended: " << transactions_ended << " " << m_perProcEndTransaction << endl; out << "instructions_per_transaction: " << instructions_per_transaction << " " << perProcInsnPerTrans << endl; out << "cycles_per_transaction: " << cycles_per_transaction << " " << perProcCyclesPerTrans << endl; out << "misses_per_transaction: " << misses_per_transaction << " " << perProcMissesPerTrans << endl; out << endl; m_L1D_cache_profiler_ptr->printStats(out); m_L1I_cache_profiler_ptr->printStats(out); m_L2_cache_profiler_ptr->printStats(out); out << endl; if (m_memReq || m_memRefresh) { // if there's a memory controller at all long long int total_stalls = m_memInputQ + m_memBankQ + m_memWaitCycles; double stallsPerReq = total_stalls * 1.0 / m_memReq; out << "Memory control:" << endl; out << " memory_total_requests: " << m_memReq << endl; // does not include refreshes out << " memory_reads: " << m_memRead << endl; out << " memory_writes: " << m_memWrite << endl; out << " memory_refreshes: " << m_memRefresh << endl; out << " memory_total_request_delays: " << total_stalls << endl; out << " memory_delays_per_request: " << stallsPerReq << endl; out << " memory_delays_in_input_queue: " << m_memInputQ << endl; out << " memory_delays_behind_head_of_bank_queue: " << m_memBankQ << endl; out << " memory_delays_stalled_at_head_of_bank_queue: " << m_memWaitCycles << endl; // Note: The following "memory stalls" entries are a breakdown of the // cycles which already showed up in m_memWaitCycles. The order is // significant; it is the priority of attributing the cycles. // For example, bank_busy is before arbitration because if the bank was // busy, we didn't even check arbitration. // Note: "not old enough" means that since we grouped waiting heads-of-queues // into batches to avoid starvation, a request in a newer batch // didn't try to arbitrate yet because there are older requests waiting. out << " memory_stalls_for_bank_busy: " << m_memBankBusy << endl; out << " memory_stalls_for_random_busy: " << m_memRandBusy << endl; out << " memory_stalls_for_anti_starvation: " << m_memNotOld << endl; out << " memory_stalls_for_arbitration: " << m_memArbWait << endl; out << " memory_stalls_for_bus: " << m_memBusBusy << endl; out << " memory_stalls_for_tfaw: " << m_memTfawBusy << endl; out << " memory_stalls_for_read_write_turnaround: " << m_memReadWriteBusy << endl; out << " memory_stalls_for_read_read_turnaround: " << m_memDataBusBusy << endl; out << " accesses_per_bank: "; for (int bank=0; bank < m_memBankCount.size(); bank++) { out << m_memBankCount[bank] << " "; //if ((bank % 8) == 7) out << " " << endl; } out << endl; out << endl; } if (!short_stats) { out << "Busy Controller Counts:" << endl; for(int i=0; i < MachineType_NUM; i++) { for(int j=0; j < MachineType_base_count((MachineType)i); j++) { MachineID machID; machID.type = (MachineType)i; machID.num = j; out << machID << ":" << m_busyControllerCount[i][j] << " "; if ((j+1)%8 == 0) { out << endl; } } out << endl; } out << endl; out << "Busy Bank Count:" << m_busyBankCount << endl; out << endl; out << "L1TBE_usage: " << m_L1tbeProfile << endl; out << "L2TBE_usage: " << m_L2tbeProfile << endl; out << "StopTable_usage: " << m_stopTableProfile << endl; out << "sequencer_requests_outstanding: " << m_sequencer_requests << endl; out << "store_buffer_size: " << m_store_buffer_size << endl; out << "unique_blocks_in_store_buffer: " << m_store_buffer_blocks << endl; out << endl; } if (!short_stats) { out << "All Non-Zero Cycle Demand Cache Accesses" << endl; out << "----------------------------------------" << endl; out << "miss_latency: " << m_allMissLatencyHistogram << endl; for(int i=0; i 0) { out << "miss_latency_" << CacheRequestType(i) << ": " << m_missLatencyHistograms[i] << endl; } } for(int i=0; i 0) { out << "miss_latency_" << GenericMachineType(i) << ": " << m_machLatencyHistograms[i] << endl; } } out << "miss_latency_L2Miss: " << m_L2MissLatencyHistogram << endl; out << endl; out << "All Non-Zero Cycle SW Prefetch Requests" << endl; out << "------------------------------------" << endl; out << "prefetch_latency: " << m_allSWPrefetchLatencyHistogram << endl; for(int i=0; i 0) { out << "prefetch_latency_" << CacheRequestType(i) << ": " << m_SWPrefetchLatencyHistograms[i] << endl; } } for(int i=0; i 0) { out << "prefetch_latency_" << GenericMachineType(i) << ": " << m_SWPrefetchMachLatencyHistograms[i] << endl; } } out << "prefetch_latency_L2Miss:" << m_SWPrefetchL2MissLatencyHistogram << endl; out << "multicast_retries: " << m_multicast_retry_histogram << endl; out << "gets_mask_prediction_count: " << m_gets_mask_prediction << endl; out << "getx_mask_prediction_count: " << m_getx_mask_prediction << endl; out << "explicit_training_mask: " << m_explicit_training_mask << endl; out << endl; if (m_all_sharing_histogram.size() > 0) { out << "all_sharing: " << m_all_sharing_histogram << endl; out << "read_sharing: " << m_read_sharing_histogram << endl; out << "write_sharing: " << m_write_sharing_histogram << endl; out << "all_sharing_percent: "; m_all_sharing_histogram.printPercent(out); out << endl; out << "read_sharing_percent: "; m_read_sharing_histogram.printPercent(out); out << endl; out << "write_sharing_percent: "; m_write_sharing_histogram.printPercent(out); out << endl; int64 total_miss = m_cache_to_cache + m_memory_to_cache; out << "all_misses: " << total_miss << endl; out << "cache_to_cache_misses: " << m_cache_to_cache << endl; out << "memory_to_cache_misses: " << m_memory_to_cache << endl; out << "cache_to_cache_percent: " << 100.0 * (double(m_cache_to_cache) / double(total_miss)) << endl; out << "memory_to_cache_percent: " << 100.0 * (double(m_memory_to_cache) / double(total_miss)) << endl; out << endl; } if (m_conflicting_histogram.size() > 0) { out << "conflicting_histogram: " << m_conflicting_histogram << endl; out << "conflicting_histogram_percent: "; m_conflicting_histogram.printPercent(out); out << endl; out << endl; } if (m_outstanding_requests.size() > 0) { out << "outstanding_requests: "; m_outstanding_requests.printPercent(out); out << endl; if (m_outstanding_persistent_requests.size() > 0) { out << "outstanding_persistent_requests: "; m_outstanding_persistent_requests.printPercent(out); out << endl; } out << endl; } } if (XACT_MEMORY){ // Transactional Memory stats out << "Transactional Memory Stats:" << endl; out << "------- xact --------" << endl; out << "xact_size_dist: " << m_xactSizes << endl; out << "xact_instr_count: " << m_xactInstrCount << endl; out << "xact_time_dist: " << m_xactCycles << endl; out << "xact_log_size_dist: " << m_xactLogs << endl; out << "xact_read_set_size_dist: " << m_xactReads << endl; out << "xact_write_set_size_dist: " << m_xactWrites << endl; out << "xact_overflow_read_lines_dist: " << m_xactOverflowReads << endl; out << "xact_overflow_write_lines_dist: " << m_xactOverflowWrites << endl; out << "xact_overflow_read_set_size_dist: " << m_xactOverflowTotalReads << endl; out << "xact_overflow_write_set_size_dist: " << m_xactOverflowTotalWrites << endl; out << "xact_miss_load_dist: " << m_xactLoadMisses << endl; out << "xact_miss_store_dist: " << m_xactStoreMisses << endl; out << "xact_nacked: " << m_xactNacked << endl; out << "xact_retries: " << m_xactRetries << endl; out << "xact_abort_delays: " << m_abortDelays << endl; out << "xact_aborts: " << m_transactionAborts << endl; if (ATMTP_ENABLED) { out << "xact_log_overflows: " << m_transactionLogOverflows << endl; out << "xact_cache_overflows: " << m_transactionCacheOverflows << endl; out << "xact_unsup_inst_aborts: " << m_transactionUnsupInsts << endl; out << "xact_save_rest_aborts: " << m_transactionSaveRestAborts << endl; } out << "xact_writebacks: " << m_transWBs << endl; out << "xact_extra_wbs: " << m_extraWBs << endl; out << "xact_handler_startup_delay: " << m_abortStarupDelay << endl; out << "xact_handler_per_block_delay: " << m_abortPerBlockDelay << endl; out << "xact_inferred_aborts: " << m_inferredAborts << endl; //out << "xact_histogram: " << m_procsInXact << endl; if (!short_stats) { Vector nackedXIDKeys = m_nackXIDMap_ptr->keys(); nackedXIDKeys.sortVector(); out << endl; int total_nacks = 0; out << "------- xact Nacks by XID --------" << endl; for(int i=0; ilookup(key); total_nacks += count; out << "xact " << key << " " << setw(6) << dec << count << endl; } out << "Total Nacks: " << total_nacks << endl; out << "---------------" << endl; out << endl; // Print XID Nack Pairs Vector nackedXIDPairKeys = m_nackXIDPairMap_ptr->keys(); nackedXIDPairKeys.sortVector(); out << endl; total_nacks = 0; out << "------- xact Nacks by XID Pairs --------" << endl; for(int i=0; i * my_map = m_nackXIDPairMap_ptr->lookup(key); Vector my_keys = my_map->keys(); my_keys.sortVector(); for(int j=0; jlookup(nid); total_nacks += count; out << "xact " << key << " nacked by xact " << nid << " " << setw(6) << dec << count << endl; } } out << "Total Nacks: " << total_nacks << endl; out << "---------------" << endl; out << endl; Vector
nackedPCKeys = m_nackPCMap_ptr->keys(); nackedPCKeys.sortVector(); out << endl; out << "------- xact Nacks by PC --------" << endl; for(int i=0; ilookup(key); out << "xact_Nack " << key << " " << setw(4) << dec << count << endl; } out << "---------------" << endl; out << endl; Vector xactExceptionKeys = m_xactExceptionMap_ptr->keys(); xactExceptionKeys.sortVector(); out << "------- xact exceptions --------" << endl; for(int i=0; ilookup(key); out << "xact_exception(" << hex << key << "):" << setw(4) << dec << count << endl; } out << endl; out << "---------------" << endl; out << endl; Vector abortIDKeys = m_abortIDMap_ptr->keys(); abortIDKeys.sortVector(); out << "------- xact abort by XID --------" << endl; for(int i=0; ilookup(abortIDKeys[i]); out << "xact_aborts(" << dec << abortIDKeys[i] << "):" << setw(7) << count << endl; } out << endl; out << "---------------" << endl; out << endl; Vector
abortedPCKeys = m_abortPCMap_ptr->keys(); abortedPCKeys.sortVector(); out << endl; out << "------- xact Aborts by PC --------" << endl; for(int i=0; ilookup(key); out << "xact_abort_pc " << key << setw(4) << dec << count << endl; } out << "---------------" << endl; out << endl; Vector
abortedAddrKeys = m_abortAddressMap_ptr->keys(); abortedAddrKeys.sortVector(); out << endl; out << "------- xact Aborts by Address --------" << endl; for(int i=0; ilookup(key); out << "xact_abort_address " << key << setw(4) << dec << count << endl; } out << "---------------" << endl; out << endl; } // !short_stats Vector commitIDKeys = m_commitIDMap_ptr->keys(); commitIDKeys.sortVector(); out << "------- xact Commit Stats by XID --------" << endl; for(int i=0; ilookup(commitIDKeys[i]); double retry_count = (double)m_xactRetryIDMap_ptr->lookup(commitIDKeys[i]) / count; double cycles_count = (double)m_xactCyclesIDMap_ptr->lookup(commitIDKeys[i]) / count; double readset_count = (double)m_xactReadSetIDMap_ptr->lookup(commitIDKeys[i]) / count; double writeset_count = (double)m_xactWriteSetIDMap_ptr->lookup(commitIDKeys[i]) / count; double loadmiss_count = (double)m_xactLoadMissIDMap_ptr->lookup(commitIDKeys[i]) / count; double storemiss_count = (double)m_xactStoreMissIDMap_ptr->lookup(commitIDKeys[i]) / count; double instr_count = (double)m_xactInstrCountIDMap_ptr->lookup(commitIDKeys[i]) / count; out << "xact_stats id: " << dec << commitIDKeys[i] << " count: " << setw(7) << count << " Cycles: " << setw(7) << cycles_count << " Instr: " << setw(7) << instr_count << " ReadSet: " << setw(7) << readset_count << " WriteSet: " << setw(7) << writeset_count << " LoadMiss: " << setw(7) << loadmiss_count << " StoreMiss: " << setw(7) << storemiss_count << " Retry Count: " << setw(7) << retry_count << endl; } out << endl; out << "---------------" << endl; out << endl; if (!short_stats) { Vector procsInXactKeys = m_procsInXactMap_ptr->keys(); procsInXactKeys.sortVector(); out << "------- xact histogram --------" << endl; for(int i=0; ilookup(procsInXactKeys[i]); int key = procsInXactKeys[i]; out << "xact_histogram(" << dec << key << "):" << setw(8) << count << endl; } out << endl; out << "---------------" << endl; out << endl; // Read/Write set Bloom filter stats //int false_reads = 0; long long int false_reads = m_readSetNoMatch; Vector
fp_read_keys = m_readSetNoMatch_ptr->keys(); out << "------- xact read set false positives -------" << endl; for(int i=0; i < fp_read_keys.size(); ++i){ int count = m_readSetNoMatch_ptr->lookup(fp_read_keys[i]); //out << "read_false_positive( " << fp_read_keys[i] << " ): " // << setw(8) << dec << count << endl; false_reads += count; } out << "Total read set false positives : " << setw(8) << false_reads << endl; out << "-----------------------" << endl; out << endl; //int matching_reads = 0; long long int matching_reads = m_readSetMatch; long long int empty_checks = m_readSetEmptyChecks; Vector
read_keys = m_readSetMatch_ptr->keys(); out << "------- xact read set matches -------" << endl; for(int i=0; i < read_keys.size(); ++i){ int count = m_readSetMatch_ptr->lookup(read_keys[i]); //out << "read_match( " << read_keys[i] << " ): " // << setw(8) << dec << count << endl; matching_reads += count; } out << "Total read set matches : " << setw(8) << matching_reads << endl; out << "Total read set empty checks : " << setw(8) << empty_checks << endl; double false_positive_pct = 0.0; if((false_reads + matching_reads)> 0){ false_positive_pct = (1.0*false_reads)/(false_reads+matching_reads)*100.0; } out << "Read set false positives rate : " << false_positive_pct << "%" << endl; out << "-----------------------" << endl; out << endl; // for write set //int false_writes = 0; long long int false_writes = m_writeSetNoMatch; Vector
fp_write_keys = m_writeSetNoMatch_ptr->keys(); out << "------- xact write set false positives -------" << endl; for(int i=0; i < fp_write_keys.size(); ++i){ int count = m_writeSetNoMatch_ptr->lookup(fp_write_keys[i]); //out << "write_false_positive( " << fp_write_keys[i] << " ): " // << setw(8) << dec << count << endl; false_writes += count; } out << "Total write set false positives : " << setw(8) << false_writes << endl; out << "-----------------------" << endl; out << endl; //int matching_writes = 0; long long int matching_writes = m_writeSetMatch; empty_checks = m_writeSetEmptyChecks; Vector
write_keys = m_writeSetMatch_ptr->keys(); out << "------- xact write set matches -------" << endl; for(int i=0; i < write_keys.size(); ++i){ int count = m_writeSetMatch_ptr->lookup(write_keys[i]); //out << "write_match( " << write_keys[i] << " ): " // << setw(8) << dec << count << endl; matching_writes += count; } out << "Total write set matches : " << setw(8) << matching_writes << endl; out << "Total write set empty checks : " << setw(8) << empty_checks << endl; false_positive_pct = 0.0; if((matching_writes+false_writes) > 0){ false_positive_pct = (1.0*false_writes)/(false_writes+matching_writes)*100.0; } out << "Write set false positives rate : " << false_positive_pct << "%" << endl; out << "-----------------------" << endl; out << endl; out << "----- Xact Signature Stats ------" << endl; Vector xids = m_xactReadFilterBitsSetOnCommit->keys(); for(int i=0; i < xids.size(); ++i){ int xid = xids[i]; out << "xid " << xid << " Read set bits set on commit: " << (m_xactReadFilterBitsSetOnCommit->lookup(xid)) << endl; } xids = m_xactWriteFilterBitsSetOnCommit->keys(); for(int i=0; i < xids.size(); ++i){ int xid = xids[i]; out << "xid " << xid << " Write set bits set on commit: " << (m_xactWriteFilterBitsSetOnCommit->lookup(xid)) << endl; } xids = m_xactReadFilterBitsSetOnAbort->keys(); for(int i=0; i < xids.size(); ++i){ int xid = xids[i]; out << "xid " << xid << " Read set bits set on abort: " << (m_xactReadFilterBitsSetOnAbort->lookup(xid)) << endl; } xids = m_xactWriteFilterBitsSetOnAbort->keys(); for(int i=0; i < xids.size(); ++i){ int xid = xids[i]; out << "xid " << xid << " Write set bits set on abort: " << (m_xactWriteFilterBitsSetOnAbort->lookup(xid)) << endl; } out << endl; cout << "------- WATCHPOINTS --------" << endl; cout << "False Triggers : " << m_watchpointsFalsePositiveTrigger << endl; cout << "True Triggers : " << m_watchpointsTrueTrigger << endl; cout << "Total Triggers : " << m_watchpointsTrueTrigger + m_watchpointsFalsePositiveTrigger << endl; cout << "---------------" << endl; cout << endl; } // !short_stats //m_xact_profiler_ptr->printStats(out, short_stats); // gem5:Arka for decomissioning of log_tm } // XACT_MEMORY if (!short_stats) { out << "Request vs. RubySystem State Profile" << endl; out << "--------------------------------" << endl; out << endl; Vector requestProfileKeys = m_requestProfileMap_ptr->keys(); requestProfileKeys.sortVector(); for(int i=0; ilookup(requestProfileKeys[i]); double percent = (100.0*double(temp_int))/double(m_requests); while (requestProfileKeys[i] != "") { out << setw(10) << string_split(requestProfileKeys[i], ':'); } out << setw(11) << temp_int; out << setw(14) << percent << endl; } out << endl; out << "filter_action: " << m_filter_action_histogram << endl; if (!PROFILE_ALL_INSTRUCTIONS) { m_address_profiler_ptr->printStats(out); } if (PROFILE_ALL_INSTRUCTIONS) { m_inst_profiler_ptr->printStats(out); } out << endl; out << "Message Delayed Cycles" << endl; out << "----------------------" << endl; out << "Total_delay_cycles: " << m_delayedCyclesHistogram << endl; out << "Total_nonPF_delay_cycles: " << m_delayedCyclesNonPFHistogram << endl; for (int i = 0; i < m_delayedCyclesVCHistograms.size(); i++) { out << " virtual_network_" << i << "_delay_cycles: " << m_delayedCyclesVCHistograms[i] << endl; } printResourceUsage(out); } } void Profiler::printResourceUsage(ostream& out) const { out << endl; out << "Resource Usage" << endl; out << "--------------" << endl; integer_t pagesize = getpagesize(); // page size in bytes out << "page_size: " << pagesize << endl; rusage usage; getrusage (RUSAGE_SELF, &usage); out << "user_time: " << usage.ru_utime.tv_sec << endl; out << "system_time: " << usage.ru_stime.tv_sec << endl; out << "page_reclaims: " << usage.ru_minflt << endl; out << "page_faults: " << usage.ru_majflt << endl; out << "swaps: " << usage.ru_nswap << endl; out << "block_inputs: " << usage.ru_inblock << endl; out << "block_outputs: " << usage.ru_oublock << endl; } void Profiler::clearStats() { m_num_BA_unicasts = 0; m_num_BA_broadcasts = 0; m_ruby_start = g_eventQueue_ptr->getTime(); m_instructions_executed_at_start.setSize(RubyConfig::numberOfProcessors()); m_cycles_executed_at_start.setSize(RubyConfig::numberOfProcessors()); for (int i=0; i < RubyConfig::numberOfProcessors(); i++) { if (g_system_ptr == NULL) { m_instructions_executed_at_start[i] = 0; m_cycles_executed_at_start[i] = 0; } else { m_instructions_executed_at_start[i] = g_system_ptr->getDriver()->getInstructionCount(i); m_cycles_executed_at_start[i] = g_system_ptr->getDriver()->getCycleCount(i); } } m_perProcTotalMisses.setSize(RubyConfig::numberOfProcessors()); m_perProcUserMisses.setSize(RubyConfig::numberOfProcessors()); m_perProcSupervisorMisses.setSize(RubyConfig::numberOfProcessors()); m_perProcStartTransaction.setSize(RubyConfig::numberOfProcessors()); m_perProcEndTransaction.setSize(RubyConfig::numberOfProcessors()); for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { m_perProcTotalMisses[i] = 0; m_perProcUserMisses[i] = 0; m_perProcSupervisorMisses[i] = 0; m_perProcStartTransaction[i] = 0; m_perProcEndTransaction[i] = 0; } m_busyControllerCount.setSize(MachineType_NUM); // all machines for(int i=0; i < MachineType_NUM; i++) { m_busyControllerCount[i].setSize(MachineType_base_count((MachineType)i)); for(int j=0; j < MachineType_base_count((MachineType)i); j++) { m_busyControllerCount[i][j] = 0; } } m_busyBankCount = 0; m_delayedCyclesHistogram.clear(); m_delayedCyclesNonPFHistogram.clear(); m_delayedCyclesVCHistograms.setSize(NUMBER_OF_VIRTUAL_NETWORKS); for (int i = 0; i < NUMBER_OF_VIRTUAL_NETWORKS; i++) { m_delayedCyclesVCHistograms[i].clear(); } m_gets_mask_prediction.clear(); m_getx_mask_prediction.clear(); m_explicit_training_mask.clear(); m_missLatencyHistograms.setSize(CacheRequestType_NUM); for(int i=0; iclear(); // count requests profiled m_requests = 0; // Conflicting requests m_conflicting_map_ptr->clear(); m_conflicting_histogram.clear(); m_outstanding_requests.clear(); m_outstanding_persistent_requests.clear(); m_L1D_cache_profiler_ptr->clearStats(); m_L1I_cache_profiler_ptr->clearStats(); m_L2_cache_profiler_ptr->clearStats(); //m_xact_profiler_ptr->clearStats(); //gem5:Arka for decomissiong of log_tm //---- begin XACT_MEM code ASSERT(m_xactExceptionMap_ptr != NULL); ASSERT(m_procsInXactMap_ptr != NULL); ASSERT(m_abortIDMap_ptr != NULL); ASSERT(m_abortPCMap_ptr != NULL); ASSERT( m_nackXIDMap_ptr != NULL); ASSERT(m_nackPCMap_ptr != NULL); m_abortStarupDelay = -1; m_abortPerBlockDelay = -1; m_transWBs = 0; m_extraWBs = 0; m_transactionAborts = 0; m_transactionLogOverflows = 0; m_transactionCacheOverflows = 0; m_transactionUnsupInsts = 0; m_transactionSaveRestAborts = 0; m_inferredAborts = 0; m_xactNacked = 0; m_xactLogs.clear(); m_xactCycles.clear(); m_xactReads.clear(); m_xactWrites.clear(); m_xactSizes.clear(); m_abortDelays.clear(); m_xactRetries.clear(); m_xactOverflowReads.clear(); m_xactOverflowWrites.clear(); m_xactLoadMisses.clear(); m_xactStoreMisses.clear(); m_xactOverflowTotalReads.clear(); m_xactOverflowTotalWrites.clear(); m_xactExceptionMap_ptr->clear(); m_procsInXactMap_ptr->clear(); m_abortIDMap_ptr->clear(); m_commitIDMap_ptr->clear(); m_xactRetryIDMap_ptr->clear(); m_xactCyclesIDMap_ptr->clear(); m_xactReadSetIDMap_ptr->clear(); m_xactWriteSetIDMap_ptr->clear(); m_xactLoadMissIDMap_ptr->clear(); m_xactStoreMissIDMap_ptr->clear(); m_xactInstrCountIDMap_ptr->clear(); m_abortPCMap_ptr->clear(); m_abortAddressMap_ptr->clear(); m_nackXIDMap_ptr->clear(); m_nackXIDPairMap_ptr->clear(); m_nackPCMap_ptr->clear(); m_xactReadFilterBitsSetOnCommit->clear(); m_xactReadFilterBitsSetOnAbort->clear(); m_xactWriteFilterBitsSetOnCommit->clear(); m_xactWriteFilterBitsSetOnAbort->clear(); m_readSetEmptyChecks = 0; m_readSetMatch = 0; m_readSetNoMatch = 0; m_writeSetEmptyChecks = 0; m_writeSetMatch = 0; m_writeSetNoMatch = 0; m_xact_visualizer_last = 0; m_watchpointsFalsePositiveTrigger = 0; m_watchpointsTrueTrigger = 0; //---- end XACT_MEM code // for MemoryControl: m_memReq = 0; m_memBankBusy = 0; m_memBusBusy = 0; m_memTfawBusy = 0; m_memReadWriteBusy = 0; m_memDataBusBusy = 0; m_memRefresh = 0; m_memRead = 0; m_memWrite = 0; m_memWaitCycles = 0; m_memInputQ = 0; m_memBankQ = 0; m_memArbWait = 0; m_memRandBusy = 0; m_memNotOld = 0; for (int bank=0; bank < m_memBankCount.size(); bank++) { m_memBankCount[bank] = 0; } // Flush the prefetches through the system - used so that there are no outstanding requests after stats are cleared //g_eventQueue_ptr->triggerAllEvents(); // update the start time m_ruby_start = g_eventQueue_ptr->getTime(); } void Profiler::addPrimaryStatSample(const CacheMsg& msg, NodeID id) { if (Protocol::m_TwoLevelCache) { if (msg.getType() == CacheRequestType_IFETCH) { addL1IStatSample(msg, id); } else { addL1DStatSample(msg, id); } // profile the address after an L1 miss (outside of the processor for CMP) if (Protocol::m_CMP) { addAddressTraceSample(msg, id); } } else { addL2StatSample(CacheRequestType_to_GenericRequestType(msg.getType()), msg.getAccessMode(), msg.getSize(), msg.getPrefetch(), id); addAddressTraceSample(msg, id); } } void Profiler::profileConflictingRequests(const Address& addr) { assert(addr == line_address(addr)); Time last_time = m_ruby_start; if (m_conflicting_map_ptr->exist(addr)) { Time last_time = m_conflicting_map_ptr->lookup(addr); } Time current_time = g_eventQueue_ptr->getTime(); assert (current_time - last_time > 0); m_conflicting_histogram.add(current_time - last_time); m_conflicting_map_ptr->add(addr, current_time); } void Profiler::addSecondaryStatSample(CacheRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id) { addSecondaryStatSample(CacheRequestType_to_GenericRequestType(requestType), type, msgSize, pfBit, id); } void Profiler::addSecondaryStatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id) { addL2StatSample(requestType, type, msgSize, pfBit, id); } void Profiler::addL2StatSample(GenericRequestType requestType, AccessModeType type, int msgSize, PrefetchBit pfBit, NodeID id) { m_perProcTotalMisses[id]++; if (type == AccessModeType_SupervisorMode) { m_perProcSupervisorMisses[id]++; } else { m_perProcUserMisses[id]++; } m_L2_cache_profiler_ptr->addStatSample(requestType, type, msgSize, pfBit); } void Profiler::addL1DStatSample(const CacheMsg& msg, NodeID id) { m_L1D_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()), msg.getAccessMode(), msg.getSize(), msg.getPrefetch()); } void Profiler::addL1IStatSample(const CacheMsg& msg, NodeID id) { m_L1I_cache_profiler_ptr->addStatSample(CacheRequestType_to_GenericRequestType(msg.getType()), msg.getAccessMode(), msg.getSize(), msg.getPrefetch()); } void Profiler::addAddressTraceSample(const CacheMsg& msg, NodeID id) { if (msg.getType() != CacheRequestType_IFETCH) { // Note: The following line should be commented out if you want to // use the special profiling that is part of the GS320 protocol // NOTE: Unless PROFILE_HOT_LINES or PROFILE_ALL_INSTRUCTIONS are enabled, nothing will be profiled by the AddressProfiler m_address_profiler_ptr->addTraceSample(msg.getAddress(), msg.getProgramCounter(), msg.getType(), msg.getAccessMode(), id, false); } } void Profiler::profileSharing(const Address& addr, AccessType type, NodeID requestor, const Set& sharers, const Set& owner) { Set set_contacted(owner); if (type == AccessType_Write) { set_contacted.addSet(sharers); } set_contacted.remove(requestor); int number_contacted = set_contacted.count(); if (type == AccessType_Write) { m_write_sharing_histogram.add(number_contacted); } else { m_read_sharing_histogram.add(number_contacted); } m_all_sharing_histogram.add(number_contacted); if (number_contacted == 0) { m_memory_to_cache++; } else { m_cache_to_cache++; } } void Profiler::profileMsgDelay(int virtualNetwork, int delayCycles) { assert(virtualNetwork < m_delayedCyclesVCHistograms.size()); m_delayedCyclesHistogram.add(delayCycles); m_delayedCyclesVCHistograms[virtualNetwork].add(delayCycles); if (virtualNetwork != 0) { m_delayedCyclesNonPFHistogram.add(delayCycles); } } // profiles original cache requests including PUTs void Profiler::profileRequest(const string& requestStr) { m_requests++; if (m_requestProfileMap_ptr->exist(requestStr)) { (m_requestProfileMap_ptr->lookup(requestStr))++; } else { m_requestProfileMap_ptr->add(requestStr, 1); } } void Profiler::recordPrediction(bool wasGood, bool wasPredicted) { m_predictionOpportunities++; if(wasPredicted){ m_predictions++; if(wasGood){ m_goodPredictions++; } } } void Profiler::profileFilterAction(int action) { m_filter_action_histogram.add(action); } void Profiler::profileMulticastRetry(const Address& addr, int count) { m_multicast_retry_histogram.add(count); } void Profiler::startTransaction(int cpu) { m_perProcStartTransaction[cpu]++; } void Profiler::endTransaction(int cpu) { m_perProcEndTransaction[cpu]++; } void Profiler::controllerBusy(MachineID machID) { m_busyControllerCount[(int)machID.type][(int)machID.num]++; } void Profiler::profilePFWait(Time waitTime) { m_prefetchWaitHistogram.add(waitTime); } void Profiler::bankBusy() { m_busyBankCount++; } // non-zero cycle demand request void Profiler::missLatency(Time t, CacheRequestType type, GenericMachineType respondingMach) { m_allMissLatencyHistogram.add(t); m_missLatencyHistograms[type].add(t); m_machLatencyHistograms[respondingMach].add(t); if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) { m_L2MissLatencyHistogram.add(t); } } // non-zero cycle prefetch request void Profiler::swPrefetchLatency(Time t, CacheRequestType type, GenericMachineType respondingMach) { m_allSWPrefetchLatencyHistogram.add(t); m_SWPrefetchLatencyHistograms[type].add(t); m_SWPrefetchMachLatencyHistograms[respondingMach].add(t); if(respondingMach == GenericMachineType_Directory || respondingMach == GenericMachineType_NUM) { m_SWPrefetchL2MissLatencyHistogram.add(t); } } void Profiler::profileTransition(const string& component, NodeID id, NodeID version, Address addr, const string& state, const string& event, const string& next_state, const string& note) { const int EVENT_SPACES = 20; const int ID_SPACES = 3; const int TIME_SPACES = 7; const int COMP_SPACES = 10; const int STATE_SPACES = 6; if ((g_debug_ptr->getDebugTime() > 0) && (g_eventQueue_ptr->getTime() >= g_debug_ptr->getDebugTime())) { (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << id << " "; (* debug_cout_ptr) << setw(ID_SPACES) << version << " "; (* debug_cout_ptr) << setw(COMP_SPACES) << component; (* debug_cout_ptr) << setw(EVENT_SPACES) << event << " "; for (int i=0; i < RubyConfig::numberOfProcessors(); i++) { if (i == id) { (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(STATE_SPACES) << state; (* debug_cout_ptr) << ">"; (* debug_cout_ptr).flags(ios::left); (* debug_cout_ptr) << setw(STATE_SPACES) << next_state; } else { // cout << setw(STATE_SPACES) << " " << " " << setw(STATE_SPACES) << " "; } } (* debug_cout_ptr) << " " << addr << " " << note; (* debug_cout_ptr) << endl; } } // Helper function static double process_memory_total() { const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB, ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(total_size_in_pages)*MULTIPLIER; // size in megabytes } static double process_memory_resident() { const double MULTIPLIER = 4096.0/(1024.0*1024.0); // 4kB page size, 1024*1024 bytes per MB, ifstream proc_file; proc_file.open("/proc/self/statm"); int total_size_in_pages = 0; int res_size_in_pages = 0; proc_file >> total_size_in_pages; proc_file >> res_size_in_pages; return double(res_size_in_pages)*MULTIPLIER; // size in megabytes } void Profiler::profileGetXMaskPrediction(const Set& pred_set) { m_getx_mask_prediction.add(pred_set.count()); } void Profiler::profileGetSMaskPrediction(const Set& pred_set) { m_gets_mask_prediction.add(pred_set.count()); } void Profiler::profileTrainingMask(const Set& pred_set) { m_explicit_training_mask.add(pred_set.count()); } int64 Profiler::getTotalInstructionsExecuted() const { int64 sum = 1; // Starting at 1 allows us to avoid division by zero for(int i=0; i < RubyConfig::numberOfProcessors(); i++) { sum += (g_system_ptr->getDriver()->getInstructionCount(i) - m_instructions_executed_at_start[i]); } return sum; } int64 Profiler::getTotalTransactionsExecuted() const { int64 sum = m_perProcEndTransaction.sum(); if (sum > 0) { return sum; } else { return 1; // Avoid division by zero errors } } // The following case statement converts CacheRequestTypes to GenericRequestTypes // allowing all profiling to be done with a single enum type instead of slow strings GenericRequestType Profiler::CacheRequestType_to_GenericRequestType(const CacheRequestType& type) { switch (type) { case CacheRequestType_LD: return GenericRequestType_LD; break; case CacheRequestType_ST: return GenericRequestType_ST; break; case CacheRequestType_ATOMIC: return GenericRequestType_ATOMIC; break; case CacheRequestType_IFETCH: return GenericRequestType_IFETCH; break; case CacheRequestType_LD_XACT: return GenericRequestType_LD_XACT; break; case CacheRequestType_LDX_XACT: return GenericRequestType_LDX_XACT; break; case CacheRequestType_ST_XACT: return GenericRequestType_ST_XACT; break; case CacheRequestType_NULL: return GenericRequestType_NULL; break; default: ERROR_MSG("Unexpected cache request type"); } } //---- begin Transactional Memory CODE void Profiler::profileTransaction(int size, int logSize, int readS, int writeS, int overflow_readS, int overflow_writeS, int retries, int useful_cycles, bool nacked, int loadMisses, int storeMisses, int instrCount, int xid){ m_xactLogs.add(logSize); m_xactSizes.add(size); m_xactReads.add(readS); m_xactWrites.add(writeS); m_xactRetries.add(retries); m_xactCycles.add(useful_cycles); m_xactLoadMisses.add(loadMisses); m_xactStoreMisses.add(storeMisses); m_xactInstrCount.add(instrCount); // was this transaction nacked? if(nacked){ m_xactNacked++; } // for overflowed transactions if(overflow_readS > 0 || overflow_writeS > 0){ m_xactOverflowReads.add(overflow_readS); m_xactOverflowWrites.add(overflow_writeS); m_xactOverflowTotalReads.add(readS); m_xactOverflowTotalWrites.add(writeS); } // Record commits by xid if(!m_commitIDMap_ptr->exist(xid)){ m_commitIDMap_ptr->add(xid, 1); m_xactRetryIDMap_ptr->add(xid, retries); m_xactCyclesIDMap_ptr->add(xid, useful_cycles); m_xactReadSetIDMap_ptr->add(xid, readS); m_xactWriteSetIDMap_ptr->add(xid, writeS); m_xactLoadMissIDMap_ptr->add(xid, loadMisses); m_xactStoreMissIDMap_ptr->add(xid, storeMisses); m_xactInstrCountIDMap_ptr->add(xid, instrCount); } else { (m_commitIDMap_ptr->lookup(xid))++; (m_xactRetryIDMap_ptr->lookup(xid)) += retries; (m_xactCyclesIDMap_ptr->lookup(xid)) += useful_cycles; (m_xactReadSetIDMap_ptr->lookup(xid)) += readS; (m_xactWriteSetIDMap_ptr->lookup(xid)) += writeS; (m_xactLoadMissIDMap_ptr->lookup(xid)) += loadMisses; (m_xactStoreMissIDMap_ptr->lookup(xid)) += storeMisses; (m_xactInstrCountIDMap_ptr->lookup(xid)) += instrCount; } } void Profiler::profileBeginTransaction(NodeID id, int tid, int xid, int thread, Address pc, bool isOpen){ //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 2)){ const char* openStr = isOpen ? " OPEN" : " CLOSED"; const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " XACT BEGIN " << xid << " PC 0x" << hex << pc.getAddress() << dec << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << openStr << endl; } } void Profiler::profileCommitTransaction(NodeID id, int tid, int xid, int thread, Address pc, bool isOpen){ //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 2)){ const char* openStr = isOpen ? " OPEN" : " CLOSED"; const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " XACT COMMIT " << xid << " PC 0x" << hex << pc.getAddress() << dec << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << openStr << endl; } } // for profiling overflows void Profiler::profileLoadOverflow(NodeID id, int tid, int xid, int thread, Address addr, bool l1_overflow){ //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; string overflow_str = " XACT LOAD L1 OVERFLOW "; if(!l1_overflow){ overflow_str = " XACT LOAD L2 OVERFLOW "; } // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << overflow_str << xid << " ADDR " << addr << endl; } } // for profiling overflows void Profiler::profileStoreOverflow(NodeID id, int tid, int xid, int thread, Address addr, bool l1_overflow){ //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; string overflow_str = " XACT STORE L1 OVERFLOW "; if(!l1_overflow){ overflow_str = " XACT STORE L2 OVERFLOW "; } // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << overflow_str << xid << " ADDR " << addr << endl; } } void Profiler::profileLoadTransaction(NodeID id, int tid, int xid, int thread, Address addr, Address logicalAddress, Address pc){ //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 3)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " XACT LOAD " << xid << " " << addr << " VA " << logicalAddress << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" //<< " VAL 0x" << hex << SIMICS_read_physical_memory(proc_no, SIMICS_translate_data_address(proc_no, logicalAddress), 4) << dec << " VAL 0x" << hex << g_system_ptr->getDriver()->readPhysicalMemory(proc_no, addr.getAddress(), 4) << dec << endl; } } void Profiler::profileLoad(NodeID id, int tid, int xid, int thread, Address addr, Address logicalAddress, Address pc){ if(PROFILE_NONXACT){ const int ID_SPACES = 3; const int TIME_SPACES = 7; // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " LOAD " << xid << " " << addr << " VA " << logicalAddress << " PC " << pc //<< " VAL 0x" << hex << SIMICS_read_physical_memory(proc_no, SIMICS_translate_data_address(proc_no, logicalAddress), 4) << dec << " VAL 0x" << hex << g_system_ptr->getDriver()->readPhysicalMemory(proc_no, addr.getAddress(), 4) << dec << endl; } } void Profiler::profileStoreTransaction(NodeID id, int tid, int xid, int thread, Address addr, Address logicalAddress, Address pc){ //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 3)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " XACT STORE " << xid << " " << addr << " VA " << logicalAddress << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } } void Profiler::profileStore(NodeID id, int tid, int xid, int thread, Address addr, Address logicalAddress, Address pc){ if(PROFILE_NONXACT){ const int ID_SPACES = 3; const int TIME_SPACES = 7; // The actual processor number int proc_no = id*RubyConfig::numberofSMTThreads() + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " STORE " << xid << " " << addr << " VA " << logicalAddress << " PC " << pc << endl; } } void Profiler::profileNack(NodeID id, int tid, int xid, int thread, int nacking_thread, NodeID nackedBy, Address addr, Address logicalAddress, Address pc, uint64 seq_ts, uint64 nack_ts, bool possibleCycle){ int nid = 0; // g_system_ptr->getChip(nackedBy/RubyConfig::numberOfProcsPerChip())->getTransactionInterfaceManager(nackedBy%RubyConfig::numberOfProcsPerChip())->getXID(nacking_thread); assert(0); //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); // The actual processor number int proc_no = id*g_NUM_SMT_THREADS + thread; int nack_proc_no = nackedBy*g_NUM_SMT_THREADS + nacking_thread; Address nack_pc = SIMICS_get_program_counter(nack_proc_no); (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " XACT NACK " << xid << " by " << nack_proc_no << " [ " << nackedBy << ", " << nacking_thread << " ]" << " NID: " << nid << " " << addr << " VA " << logicalAddress << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << " NackerPC " << nack_pc << " my_ts " << seq_ts << " nack_ts " << nack_ts << " possible_cycle " << possibleCycle << endl; } // Record nacks by xid if(!m_nackXIDMap_ptr->exist(xid)){ m_nackXIDMap_ptr->add(xid, 1); } else { (m_nackXIDMap_ptr->lookup(xid))++; } // Record nack ID pairs by xid if(!m_nackXIDPairMap_ptr->exist(xid)){ Map * new_map = new Map; new_map->add(nid, 1); m_nackXIDPairMap_ptr->add(xid, new_map); } else{ // retrieve existing map Map * my_map = m_nackXIDPairMap_ptr->lookup(xid); if(!my_map->exist(nid)){ my_map->add(nid, 1); } else{ (my_map->lookup(nid))++; } } // Record nacks by pc if(!m_nackPCMap_ptr->exist(pc)){ m_nackPCMap_ptr->add(pc, 1); } else { (m_nackPCMap_ptr->lookup(pc))++; } } void Profiler::profileExposedConflict(NodeID id, int xid, int thread, Address addr, Address pc){ //if(PROFILE_XACT){ const int ID_SPACES = 3; const int TIME_SPACES = 7; // The actual processor number int proc_no = id*g_NUM_SMT_THREADS + thread; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " " << " EXPOSED ACTION CONFLICT " << xid << " ADDR " << addr << " PC " << pc << endl; //} } void Profiler::profileInferredAbort(){ m_inferredAborts++; } void Profiler::profileAbortDelayConstants(int startupDelay, int perBlock){ m_abortStarupDelay = startupDelay; m_abortPerBlockDelay = perBlock; } void Profiler::profileAbortTransaction(NodeID id, int tid, int xid, int thread, int delay, int abortingThread, int abortingProc, Address addr, Address pc){ const int ID_SPACES = 3; const int TIME_SPACES = 7; int abortingXID = -1; // The actual processor number int proc_no = id*g_NUM_SMT_THREADS + thread; // we are passed in physical proc number. Compute logical abort proc_no int logical_abort_proc_no = abortingProc/g_NUM_SMT_THREADS; if(abortingProc >= 0){ AbstractChip * c = g_system_ptr->getChip(logical_abort_proc_no/RubyConfig::numberOfProcsPerChip()); abortingXID = 0; // c->getTransactionInterfaceManager(logical_abort_proc_no%RubyConfig::numberOfProcsPerChip())->getXID(abortingThread); assert(0); } //- if(PROFILE_XACT){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << "]" << " TID " << tid << " XACT ABORT " << xid << " caused by " << abortingProc << " [ " << logical_abort_proc_no << ", " << abortingThread << " ]" << " xid: " << abortingXID << " " << " address: " << addr << " delay: " << delay << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionAborts++; // Record aborts by xid if(!m_abortIDMap_ptr->exist(xid)){ m_abortIDMap_ptr->add(xid, 1); } else { (m_abortIDMap_ptr->lookup(xid))++; } m_abortDelays.add(delay); // Record aborts by pc if(!m_abortPCMap_ptr->exist(pc)){ m_abortPCMap_ptr->add(pc, 1); } else { (m_abortPCMap_ptr->lookup(pc))++; } // Record aborts by address if(!m_abortAddressMap_ptr->exist(addr)){ m_abortAddressMap_ptr->add(addr, 1); } else { (m_abortAddressMap_ptr->lookup(addr))++; } } void Profiler::profileTransWB(){ m_transWBs++; } void Profiler::profileExtraWB(){ m_extraWBs++; } void Profiler::profileXactChange(int procs, int cycles){ if(!m_procsInXactMap_ptr->exist(procs)){ m_procsInXactMap_ptr->add(procs, cycles); } else { (m_procsInXactMap_ptr->lookup(procs)) += cycles; } } void Profiler::profileReadSet(Address addr, bool bf_filter_result, bool perfect_filter_result, NodeID id, int thread){ // do NOT count instances when signature is empty! if(!bf_filter_result && !perfect_filter_result){ m_readSetEmptyChecks++; return; } if(bf_filter_result != perfect_filter_result){ m_readSetNoMatch++; /* // we have a false positive if(!m_readSetNoMatch_ptr->exist(addr)){ m_readSetNoMatch_ptr->add(addr, 1); } else{ (m_readSetNoMatch_ptr->lookup(addr))++; } */ } else{ m_readSetMatch++; /* // Bloom filter agrees with perfect filter if(!m_readSetMatch_ptr->exist(addr)){ m_readSetMatch_ptr->add(addr, 1); } else{ (m_readSetMatch_ptr->lookup(addr))++; } */ } } void Profiler::profileRemoteReadSet(Address addr, bool bf_filter_result, bool perfect_filter_result, NodeID id, int thread){ if(bf_filter_result != perfect_filter_result){ // we have a false positive if(!m_remoteReadSetNoMatch_ptr->exist(addr)){ m_remoteReadSetNoMatch_ptr->add(addr, 1); } else{ (m_remoteReadSetNoMatch_ptr->lookup(addr))++; } } else{ // Bloom filter agrees with perfect filter if(!m_remoteReadSetMatch_ptr->exist(addr)){ m_remoteReadSetMatch_ptr->add(addr, 1); } else{ (m_remoteReadSetMatch_ptr->lookup(addr))++; } } } void Profiler::profileWriteSet(Address addr, bool bf_filter_result, bool perfect_filter_result, NodeID id, int thread){ // do NOT count instances when signature is empty! if(!bf_filter_result && !perfect_filter_result){ m_writeSetEmptyChecks++; return; } if(bf_filter_result != perfect_filter_result){ m_writeSetNoMatch++; /* // we have a false positive if(!m_writeSetNoMatch_ptr->exist(addr)){ m_writeSetNoMatch_ptr->add(addr, 1); } else{ (m_writeSetNoMatch_ptr->lookup(addr))++; } */ } else{ m_writeSetMatch++; /* // Bloom filter agrees with perfect filter if(!m_writeSetMatch_ptr->exist(addr)){ m_writeSetMatch_ptr->add(addr, 1); } else{ (m_writeSetMatch_ptr->lookup(addr))++; } */ } } void Profiler::profileRemoteWriteSet(Address addr, bool bf_filter_result, bool perfect_filter_result, NodeID id, int thread){ if(bf_filter_result != perfect_filter_result){ // we have a false positive if(!m_remoteWriteSetNoMatch_ptr->exist(addr)){ m_remoteWriteSetNoMatch_ptr->add(addr, 1); } else{ (m_remoteWriteSetNoMatch_ptr->lookup(addr))++; } } else{ // Bloom filter agrees with perfect filter if(!m_remoteWriteSetMatch_ptr->exist(addr)){ m_remoteWriteSetMatch_ptr->add(addr, 1); } else{ (m_remoteWriteSetMatch_ptr->lookup(addr))++; } } } void Profiler::profileTransactionLogOverflow(NodeID id, Address addr, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << id << " " << " XACT LOG OVERFLOW" << " ADDR " << addr << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionLogOverflows++; } void Profiler::profileTransactionCacheOverflow(NodeID id, Address addr, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << id << " " << " XACT CACHE OVERFLOW " << " ADDR " << addr << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionCacheOverflows++; } void Profiler::profileGetCPS(NodeID id, uint32 cps, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ const int ID_SPACES = 3; const int TIME_SPACES = 7; physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << id << " " << " XACT GET CPS" << " PC " << pc << " *PC 0x" << hex << myInst << dec << " '" << myInstStr << "'" << " CPS 0x" << hex << cps << dec << endl; } } //---- end Transactional Memory CODE void Profiler::profileExceptionStart(bool xact, NodeID id, int thread, int val, int trap_level, uinteger_t pc, uinteger_t npc){ if(xact){ if(!m_xactExceptionMap_ptr->exist(val)){ m_xactExceptionMap_ptr->add(val, 1); } else { (m_xactExceptionMap_ptr->lookup(val))++; } } if (!xact && !PROFILE_NONXACT) return; if(PROFILE_EXCEPTIONS){ const int ID_SPACES = 3; const int TIME_SPACES = 7; // The actual processor number int proc_no = id*g_NUM_SMT_THREADS + thread; // get the excepting instruction const char * instruction; physical_address_t addr = SIMICS_translate_address( proc_no, Address(pc)); if(val != 0x64 && addr != 0x0){ // ignore instruction TLB miss instruction = SIMICS_disassemble_physical( proc_no, addr ); } (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << " ]" << " "; if (xact) (* debug_cout_ptr) << " XACT Exception("; else (* debug_cout_ptr) << " Exception("; (* debug_cout_ptr) << hex << val << dec << ")_START--Trap Level " << trap_level << "--(PC=0x" << hex << pc << ", " << npc << ")" << dec; if(val != 0x64 && addr != 0x0){ (* debug_cout_ptr) << " instruction = " << instruction; } else{ (* debug_cout_ptr) << " instruction = INSTRUCTION TLB MISS"; } (* debug_cout_ptr) << dec << endl; } } void Profiler::profileExceptionDone(bool xact, NodeID id, int thread, int val, int trap_level, uinteger_t pc, uinteger_t npc, uinteger_t tpc, uinteger_t tnpc){ if (!xact && !PROFILE_NONXACT) return; if (PROFILE_EXCEPTIONS){ const int ID_SPACES = 3; const int TIME_SPACES = 7; // The actual processor number int proc_no = id*g_NUM_SMT_THREADS + thread; // get the excepting instruction const char * instruction; instruction = SIMICS_disassemble_physical( proc_no, SIMICS_translate_address( proc_no, Address(pc) ) ); (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << proc_no << " [" << id << "," << thread << " ]" << " "; if (xact) (* debug_cout_ptr) << " XACT Exception("; else (* debug_cout_ptr) << " Exception("; (* debug_cout_ptr) << hex << val << dec << ")_DONE--Trap Level " << trap_level << "--(PC=0x" << hex << pc << ", " << npc << dec << ")" << "--(TPC=0x" << hex << tpc << ", " << tnpc << dec << ")" << endl; } } void Profiler::rubyWatch(int id){ int rn_g1 = SIMICS_get_register_number(id, "g1"); uint64 tr = SIMICS_read_register(id, rn_g1); Address watch_address = Address(tr); const int ID_SPACES = 3; const int TIME_SPACES = 7; (* debug_cout_ptr).flags(ios::right); (* debug_cout_ptr) << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; (* debug_cout_ptr) << setw(ID_SPACES) << id << " " << "RUBY WATCH " << watch_address << endl; if(!m_watch_address_list_ptr->exist(watch_address)){ m_watch_address_list_ptr->add(watch_address, 1); } } bool Profiler::watchAddress(Address addr){ if (m_watch_address_list_ptr->exist(addr)) return true; else return false; } void Profiler::profileReadFilterBitsSet(int xid, int bits, bool isCommit) { if (isCommit) { if(!m_xactReadFilterBitsSetOnCommit->exist(xid)){ Histogram hist; hist.add(bits); m_xactReadFilterBitsSetOnCommit->add(xid, hist); } else{ (m_xactReadFilterBitsSetOnCommit->lookup(xid)).add(bits); } } else { if(!m_xactReadFilterBitsSetOnAbort->exist(xid)){ Histogram hist; hist.add(bits); m_xactReadFilterBitsSetOnAbort->add(xid, hist); } else{ (m_xactReadFilterBitsSetOnAbort->lookup(xid)).add(bits); } } } void Profiler::profileWriteFilterBitsSet(int xid, int bits, bool isCommit) { if (isCommit) { if(!m_xactWriteFilterBitsSetOnCommit->exist(xid)){ Histogram hist; hist.add(bits); m_xactWriteFilterBitsSetOnCommit->add(xid, hist); } else{ (m_xactWriteFilterBitsSetOnCommit->lookup(xid)).add(bits); } } else { if(!m_xactWriteFilterBitsSetOnAbort->exist(xid)){ Histogram hist; hist.add(bits); m_xactWriteFilterBitsSetOnAbort->add(xid, hist); } else{ (m_xactWriteFilterBitsSetOnAbort->lookup(xid)).add(bits); } } } /* //gem5:Arka for decomissioning log_tm void Profiler::setXactVisualizerFile(char * filename){ if ( (filename == NULL) || (!strcmp(filename, "none")) ) { m_xact_visualizer_ptr = &cout; return; } if (m_xact_visualizer.is_open() ) { m_xact_visualizer.close (); } m_xact_visualizer.open (filename, std::ios::out); if (! m_xact_visualizer.is_open() ) { cerr << "setXactVisualizer: can't open file " << filename << endl; } else { m_xact_visualizer_ptr = &m_xact_visualizer; } cout << "setXactVisualizer file " << filename << endl; } void Profiler::printTransactionState(bool can_skip){ if (!XACT_VISUALIZER) return; int num_processors = RubyConfig::numberOfProcessors() * RubyConfig::numberofSMTThreads(); if (!g_system_ptr->getXactVisualizer()->existXactActivity() && can_skip) return; if (can_skip && ((g_eventQueue_ptr->getTime()/10000) <= m_xact_visualizer_last)) return; Vector xactStateVector = g_system_ptr->getXactVisualizer()->getTransactionStateVector(); for (int i = 0 ; i < num_processors; i++){ (* m_xact_visualizer_ptr) << xactStateVector[i] << " "; } (* m_xact_visualizer_ptr) << " " << g_eventQueue_ptr->getTime() << endl; m_xact_visualizer_last = g_eventQueue_ptr->getTime() / 10000; } */ void Profiler::watchpointsFalsePositiveTrigger() { m_watchpointsFalsePositiveTrigger++; } void Profiler::watchpointsTrueTrigger() { m_watchpointsTrueTrigger++; } // For MemoryControl: void Profiler::profileMemReq(int bank) { m_memReq++; m_memBankCount[bank]++; } void Profiler::profileMemBankBusy() { m_memBankBusy++; } void Profiler::profileMemBusBusy() { m_memBusBusy++; } void Profiler::profileMemReadWriteBusy() { m_memReadWriteBusy++; } void Profiler::profileMemDataBusBusy() { m_memDataBusBusy++; } void Profiler::profileMemTfawBusy() { m_memTfawBusy++; } void Profiler::profileMemRefresh() { m_memRefresh++; } void Profiler::profileMemRead() { m_memRead++; } void Profiler::profileMemWrite() { m_memWrite++; } void Profiler::profileMemWaitCycles(int cycles) { m_memWaitCycles += cycles; } void Profiler::profileMemInputQ(int cycles) { m_memInputQ += cycles; } void Profiler::profileMemBankQ(int cycles) { m_memBankQ += cycles; } void Profiler::profileMemArbWait(int cycles) { m_memArbWait += cycles; } void Profiler::profileMemRandBusy() { m_memRandBusy++; } void Profiler::profileMemNotOld() { m_memNotOld++; } //----------- ATMTP -------------------// void Profiler::profileTransactionTCC(NodeID id, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); const int ID_SPACES = 3; const int TIME_SPACES = 7; cout.flags(ios::right); cout << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; cout << setw(ID_SPACES) << id << " " << " XACT Aborting! Executed TCC " << " PC: " << pc << " *PC: 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionUnsupInsts++; } void Profiler::profileTransactionUnsupInst(NodeID id, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); const int ID_SPACES = 3; const int TIME_SPACES = 7; cout.flags(ios::right); cout << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; cout << setw(ID_SPACES) << id << " " << " XACT Aborting! Executed Unsupported Instruction " << " PC: " << pc << " *PC: 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionUnsupInsts++; } void Profiler::profileTransactionSaveInst(NodeID id, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); const int ID_SPACES = 3; const int TIME_SPACES = 7; cout.flags(ios::right); cout << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; cout << setw(ID_SPACES) << id << " " << " XACT Aborting! Executed Save Instruction " << " PC: " << pc << " *PC: 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionSaveRestAborts++; } void Profiler::profileTransactionRestoreInst(NodeID id, Address pc){ if(PROFILE_XACT || (ATMTP_DEBUG_LEVEL >= 1)){ physical_address_t myPhysPC = SIMICS_translate_address(id, pc); integer_t myInst = SIMICS_read_physical_memory(id, myPhysPC, 4); const char *myInstStr = SIMICS_disassemble_physical(id, myPhysPC); const int ID_SPACES = 3; const int TIME_SPACES = 7; cout.flags(ios::right); cout << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; cout << setw(ID_SPACES) << id << " " << " XACT Aborting! Executed Restore Instruction " << " PC: " << pc << " *PC: 0x" << hex << myInst << dec << " '" << myInstStr << "'" << endl; } m_transactionSaveRestAborts++; } void Profiler::profileTimerInterrupt(NodeID id, uinteger_t tick, uinteger_t tick_cmpr, uinteger_t stick, uinteger_t stick_cmpr, int trap_level, uinteger_t pc, uinteger_t npc, uinteger_t pstate, int pil){ if (PROFILE_EXCEPTIONS) { const int ID_SPACES = 3; const int TIME_SPACES = 7; cout.flags(ios::right); cout << setw(TIME_SPACES) << g_eventQueue_ptr->getTime() << " "; cout << setw(ID_SPACES) << id << " "; cout << hex << "Timer--(Tick=0x" << tick << ", TckCmp=0x" << tick_cmpr << ", STick=0x" << stick << ", STickCmp=0x" << stick_cmpr << ")--(PC=" << pc << ", " << npc << dec << ")--(TL=" << trap_level << ", pil=" << pil << hex << ", pstate=0x" << pstate << dec << ")" << endl; } }