/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ * * Description: see Throttle.hh * */ #include "mem/ruby/network/simple/Throttle.hh" #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/system/System.hh" #include "mem/ruby/slicc_interface/NetworkMessage.hh" #include "mem/protocol/Protocol.hh" const int HIGH_RANGE = 256; const int ADJUST_INTERVAL = 50000; const int MESSAGE_SIZE_MULTIPLIER = 1000; //const int BROADCAST_SCALING = 4; // Have a 16p system act like a 64p systems const int BROADCAST_SCALING = 1; const int PRIORITY_SWITCH_LIMIT = 128; static int network_message_to_size(NetworkMessage* net_msg_ptr); extern std::ostream * debug_cout_ptr; Throttle::Throttle(int sID, NodeID node, int link_latency, int link_bandwidth_multiplier) { init(node, link_latency, link_bandwidth_multiplier); m_sID = sID; } Throttle::Throttle(NodeID node, int link_latency, int link_bandwidth_multiplier) { init(node, link_latency, link_bandwidth_multiplier); m_sID = 0; } void Throttle::init(NodeID node, int link_latency, int link_bandwidth_multiplier) { m_node = node; m_vnets = 0; ASSERT(link_bandwidth_multiplier > 0); m_link_bandwidth_multiplier = link_bandwidth_multiplier; m_link_latency = link_latency; m_bash_counter = HIGH_RANGE; m_bandwidth_since_sample = 0; m_last_bandwidth_sample = 0; m_wakeups_wo_switch = 0; clearStats(); } void Throttle::clear() { for (int counter = 0; counter < m_vnets; counter++) { m_in[counter]->clear(); m_out[counter]->clear(); } } void Throttle::addLinks(const Vector& in_vec, const Vector& out_vec) { assert(in_vec.size() == out_vec.size()); for (int i=0; isetConsumer(this); string desc = "[Queue to Throttle " + NodeIDToString(m_sID) + " " + NodeIDToString(m_node) + "]"; m_in[m_vnets]->setDescription(desc); m_vnets++; } void Throttle::wakeup() { // Limits the number of message sent to a limited number of bytes/cycle. assert(getLinkBandwidth() > 0); int bw_remaining = getLinkBandwidth(); // Give the highest numbered link priority most of the time m_wakeups_wo_switch++; int highest_prio_vnet = m_vnets-1; int lowest_prio_vnet = 0; int counter = 1; bool schedule_wakeup = false; // invert priorities to avoid starvation seen in the component network if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) { m_wakeups_wo_switch = 0; highest_prio_vnet = 0; lowest_prio_vnet = m_vnets-1; counter = -1; } for (int vnet = highest_prio_vnet; (vnet*counter) >= (counter*lowest_prio_vnet); vnet -= counter) { assert(m_out[vnet] != NULL); assert(m_in[vnet] != NULL); assert(m_units_remaining[vnet] >= 0); while ((bw_remaining > 0) && ((m_in[vnet]->isReady()) || (m_units_remaining[vnet] > 0)) && m_out[vnet]->areNSlotsAvailable(1)) { // See if we are done transferring the previous message on this virtual network if (m_units_remaining[vnet] == 0 && m_in[vnet]->isReady()) { // Find the size of the message we are moving MsgPtr msg_ptr = m_in[vnet]->peekMsgPtr(); NetworkMessage* net_msg_ptr = dynamic_cast(msg_ptr.ref()); m_units_remaining[vnet] += network_message_to_size(net_msg_ptr); DEBUG_NEWLINE(NETWORK_COMP,HighPrio); DEBUG_MSG(NETWORK_COMP,HighPrio,"throttle: " + int_to_string(m_node) + " my bw " + int_to_string(getLinkBandwidth()) + " bw spent enqueueing net msg " + int_to_string(m_units_remaining[vnet]) + " time: " + int_to_string(g_eventQueue_ptr->getTime()) + "."); // Move the message m_out[vnet]->enqueue(m_in[vnet]->peekMsgPtr(), m_link_latency); m_in[vnet]->pop(); // Count the message m_message_counters[net_msg_ptr->getMessageSize()][vnet]++; DEBUG_MSG(NETWORK_COMP,LowPrio,*m_out[vnet]); DEBUG_NEWLINE(NETWORK_COMP,HighPrio); } // Calculate the amount of bandwidth we spent on this message int diff = m_units_remaining[vnet] - bw_remaining; m_units_remaining[vnet] = max(0, diff); bw_remaining = max(0, -diff); } if ((bw_remaining > 0) && ((m_in[vnet]->isReady()) || (m_units_remaining[vnet] > 0)) && !m_out[vnet]->areNSlotsAvailable(1)) { DEBUG_MSG(NETWORK_COMP,LowPrio,vnet); schedule_wakeup = true; // schedule me to wakeup again because I'm waiting for my output queue to become available } } // We should only wake up when we use the bandwidth // assert(bw_remaining != getLinkBandwidth()); // This is only mostly true // Record that we used some or all of the link bandwidth this cycle double ratio = 1.0-(double(bw_remaining)/double(getLinkBandwidth())); // If ratio = 0, we used no bandwidth, if ratio = 1, we used all linkUtilized(ratio); // Sample the link bandwidth utilization over a number of cycles int bw_used = getLinkBandwidth()-bw_remaining; m_bandwidth_since_sample += bw_used; // FIXME - comment out the bash specific code for faster performance // Start Bash code // Update the predictor Time current_time = g_eventQueue_ptr->getTime(); while ((current_time - m_last_bandwidth_sample) > ADJUST_INTERVAL) { // Used less bandwidth m_bash_counter--; // Make sure we don't overflow m_bash_counter = min(HIGH_RANGE, m_bash_counter); m_bash_counter = max(0, m_bash_counter); // Reset samples m_last_bandwidth_sample += ADJUST_INTERVAL; m_bandwidth_since_sample = 0; } // End Bash code if ((bw_remaining > 0) && !schedule_wakeup) { // We have extra bandwidth and our output buffer was available, so we must not have anything else to do until another message arrives. DEBUG_MSG(NETWORK_COMP,LowPrio,*this); DEBUG_MSG(NETWORK_COMP,LowPrio,"not scheduled again"); } else { DEBUG_MSG(NETWORK_COMP,LowPrio,*this); DEBUG_MSG(NETWORK_COMP,LowPrio,"scheduled again"); // We are out of bandwidth for this cycle, so wakeup next cycle and continue g_eventQueue_ptr->scheduleEvent(this, 1); } } bool Throttle::broadcastBandwidthAvailable(int rand) const { bool result = !(m_bash_counter > ((HIGH_RANGE/4) + (rand % (HIGH_RANGE/2)))); return result; } void Throttle::printStats(ostream& out) const { out << "utilized_percent: " << getUtilization() << endl; } void Throttle::clearStats() { m_ruby_start = g_eventQueue_ptr->getTime(); m_links_utilized = 0.0; for (int i=0; igetTime()-m_ruby_start)); } void Throttle::print(ostream& out) const { out << "[Throttle: " << m_sID << " " << m_node << " bw: " << getLinkBandwidth() << "]"; } // Helper function static int network_message_to_size(NetworkMessage* net_msg_ptr) { assert(net_msg_ptr != NULL); // Artificially increase the size of broadcast messages if (BROADCAST_SCALING > 1) { if (net_msg_ptr->getDestination().isBroadcast()) { return (RubySystem::getNetwork()->MessageSizeType_to_int(net_msg_ptr->getMessageSize()) * MESSAGE_SIZE_MULTIPLIER * BROADCAST_SCALING); } } return (RubySystem::getNetwork()->MessageSizeType_to_int(net_msg_ptr->getMessageSize()) * MESSAGE_SIZE_MULTIPLIER); }