/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/network/simple/Throttle.hh" #include #include "base/cast.hh" #include "base/cprintf.hh" #include "debug/RubyNetwork.hh" #include "mem/ruby/network/MessageBuffer.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/network/simple/Switch.hh" #include "mem/ruby/slicc_interface/Message.hh" #include "mem/ruby/system/RubySystem.hh" using namespace std; const int MESSAGE_SIZE_MULTIPLIER = 1000; //const int BROADCAST_SCALING = 4; // Have a 16p system act like a 64p systems const int BROADCAST_SCALING = 1; const int PRIORITY_SWITCH_LIMIT = 128; static int network_message_to_size(Message* net_msg_ptr); Throttle::Throttle(int sID, RubySystem *rs, NodeID node, Cycles link_latency, int link_bandwidth_multiplier, int endpoint_bandwidth, Switch *em) : Consumer(em), m_switch_id(sID), m_switch(em), m_node(node), m_ruby_system(rs) { m_vnets = 0; assert(link_bandwidth_multiplier > 0); m_link_bandwidth_multiplier = link_bandwidth_multiplier; m_link_latency = link_latency; m_endpoint_bandwidth = endpoint_bandwidth; m_wakeups_wo_switch = 0; m_link_utilization_proxy = 0; } void Throttle::addLinks(const vector& in_vec, const vector& out_vec) { assert(in_vec.size() == out_vec.size()); for (int vnet = 0; vnet < in_vec.size(); ++vnet) { MessageBuffer *in_ptr = in_vec[vnet]; MessageBuffer *out_ptr = out_vec[vnet]; m_vnets++; m_units_remaining.push_back(0); m_in.push_back(in_ptr); m_out.push_back(out_ptr); // Set consumer and description in_ptr->setConsumer(this); string desc = "[Queue to Throttle " + to_string(m_switch_id) + " " + to_string(m_node) + "]"; } } void Throttle::operateVnet(int vnet, int &bw_remaining, bool &schedule_wakeup, MessageBuffer *in, MessageBuffer *out) { if (out == nullptr || in == nullptr) { return; } assert(m_units_remaining[vnet] >= 0); Tick current_time = m_switch->clockEdge(); while (bw_remaining > 0 && (in->isReady(current_time) || m_units_remaining[vnet] > 0) && out->areNSlotsAvailable(1, current_time)) { // See if we are done transferring the previous message on // this virtual network if (m_units_remaining[vnet] == 0 && in->isReady(current_time)) { // Find the size of the message we are moving MsgPtr msg_ptr = in->peekMsgPtr(); Message *net_msg_ptr = msg_ptr.get(); m_units_remaining[vnet] += network_message_to_size(net_msg_ptr); DPRINTF(RubyNetwork, "throttle: %d my bw %d bw spent " "enqueueing net msg %d time: %lld.\n", m_node, getLinkBandwidth(), m_units_remaining[vnet], m_ruby_system->curCycle()); // Move the message in->dequeue(current_time); out->enqueue(msg_ptr, current_time, m_switch->cyclesToTicks(m_link_latency)); // Count the message m_msg_counts[net_msg_ptr->getMessageSize()][vnet]++; DPRINTF(RubyNetwork, "%s\n", *out); } // Calculate the amount of bandwidth we spent on this message int diff = m_units_remaining[vnet] - bw_remaining; m_units_remaining[vnet] = max(0, diff); bw_remaining = max(0, -diff); } if (bw_remaining > 0 && (in->isReady(current_time) || m_units_remaining[vnet] > 0) && !out->areNSlotsAvailable(1, current_time)) { DPRINTF(RubyNetwork, "vnet: %d", vnet); // schedule me to wakeup again because I'm waiting for my // output queue to become available schedule_wakeup = true; } } void Throttle::wakeup() { // Limits the number of message sent to a limited number of bytes/cycle. assert(getLinkBandwidth() > 0); int bw_remaining = getLinkBandwidth(); m_wakeups_wo_switch++; bool schedule_wakeup = false; // variable for deciding the direction in which to iterate bool iteration_direction = false; // invert priorities to avoid starvation seen in the component network if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) { m_wakeups_wo_switch = 0; iteration_direction = true; } if (iteration_direction) { for (int vnet = 0; vnet < m_vnets; ++vnet) { operateVnet(vnet, bw_remaining, schedule_wakeup, m_in[vnet], m_out[vnet]); } } else { for (int vnet = m_vnets-1; vnet >= 0; --vnet) { operateVnet(vnet, bw_remaining, schedule_wakeup, m_in[vnet], m_out[vnet]); } } // We should only wake up when we use the bandwidth // This is only mostly true // assert(bw_remaining != getLinkBandwidth()); // Record that we used some or all of the link bandwidth this cycle double ratio = 1.0 - (double(bw_remaining) / double(getLinkBandwidth())); // If ratio = 0, we used no bandwidth, if ratio = 1, we used all m_link_utilization_proxy += ratio; if (bw_remaining > 0 && !schedule_wakeup) { // We have extra bandwidth and our output buffer was // available, so we must not have anything else to do until // another message arrives. DPRINTF(RubyNetwork, "%s not scheduled again\n", *this); } else { DPRINTF(RubyNetwork, "%s scheduled again\n", *this); // We are out of bandwidth for this cycle, so wakeup next // cycle and continue scheduleEvent(Cycles(1)); } } void Throttle::regStats(string parent) { m_link_utilization .name(parent + csprintf(".throttle%i", m_node) + ".link_utilization"); for (MessageSizeType type = MessageSizeType_FIRST; type < MessageSizeType_NUM; ++type) { m_msg_counts[(unsigned int)type] .init(Network::getNumberOfVirtualNetworks()) .name(parent + csprintf(".throttle%i", m_node) + ".msg_count." + MessageSizeType_to_string(type)) .flags(Stats::nozero) ; m_msg_bytes[(unsigned int) type] .name(parent + csprintf(".throttle%i", m_node) + ".msg_bytes." + MessageSizeType_to_string(type)) .flags(Stats::nozero) ; m_msg_bytes[(unsigned int) type] = m_msg_counts[type] * Stats::constant( Network::MessageSizeType_to_int(type)); } } void Throttle::clearStats() { m_link_utilization_proxy = 0; } void Throttle::collateStats() { double time_delta = double(m_ruby_system->curCycle() - m_ruby_system->getStartCycle()); m_link_utilization = 100.0 * m_link_utilization_proxy / time_delta; } void Throttle::print(ostream& out) const { ccprintf(out, "[%i bw: %i]", m_node, getLinkBandwidth()); } int network_message_to_size(Message *net_msg_ptr) { assert(net_msg_ptr != NULL); int size = Network::MessageSizeType_to_int(net_msg_ptr->getMessageSize()); size *= MESSAGE_SIZE_MULTIPLIER; // Artificially increase the size of broadcast messages if (BROADCAST_SCALING > 1 && net_msg_ptr->getDestination().isBroadcast()) size *= BROADCAST_SCALING; return size; }