/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "base/cast.hh" #include "base/stl_helpers.hh" #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/common/NetDest.hh" #include "mem/ruby/network/BasicLink.hh" #include "mem/ruby/network/simple/SimpleLink.hh" #include "mem/ruby/network/simple/SimpleNetwork.hh" #include "mem/ruby/network/simple/Switch.hh" #include "mem/ruby/network/simple/Throttle.hh" #include "mem/ruby/network/Topology.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/system/System.hh" using namespace std; using m5::stl_helpers::deletePointers; SimpleNetwork::SimpleNetwork(const Params *p) : Network(p) { m_buffer_size = p->buffer_size; m_endpoint_bandwidth = p->endpoint_bandwidth; m_adaptive_routing = p->adaptive_routing; // Note: the parent Network Object constructor is called before the // SimpleNetwork child constructor. Therefore, the member variables // used below should already be initialized. m_endpoint_switches.resize(m_nodes); m_in_use.resize(m_virtual_networks); m_ordered.resize(m_virtual_networks); for (int i = 0; i < m_virtual_networks; i++) { m_in_use[i] = false; m_ordered[i] = false; } // Allocate to and from queues m_toNetQueues.resize(m_nodes); m_fromNetQueues.resize(m_nodes); for (int node = 0; node < m_nodes; node++) { m_toNetQueues[node].resize(m_virtual_networks); m_fromNetQueues[node].resize(m_virtual_networks); for (int j = 0; j < m_virtual_networks; j++) { m_toNetQueues[node][j] = new MessageBuffer(csprintf("toNet node %d j %d", node, j)); m_fromNetQueues[node][j] = new MessageBuffer(csprintf("fromNet node %d j %d", node, j)); } } // record the routers for (vector::const_iterator i = m_topology_ptr->params()->routers.begin(); i != m_topology_ptr->params()->routers.end(); ++i) { Switch* s = safe_cast(*i); m_switch_ptr_vector.push_back(s); s->init_net_ptr(this); } } void SimpleNetwork::init() { Network::init(); // The topology pointer should have already been initialized in // the parent class network constructor. assert(m_topology_ptr != NULL); // false because this isn't a reconfiguration m_topology_ptr->createLinks(this, false); } void SimpleNetwork::reset() { for (int node = 0; node < m_nodes; node++) { for (int j = 0; j < m_virtual_networks; j++) { m_toNetQueues[node][j]->clear(); m_fromNetQueues[node][j]->clear(); } } for(int i = 0; i < m_switch_ptr_vector.size(); i++){ m_switch_ptr_vector[i]->clearBuffers(); } } SimpleNetwork::~SimpleNetwork() { for (int i = 0; i < m_nodes; i++) { deletePointers(m_toNetQueues[i]); deletePointers(m_fromNetQueues[i]); } deletePointers(m_switch_ptr_vector); deletePointers(m_buffers_to_free); // delete m_topology_ptr; } // From a switch to an endpoint node void SimpleNetwork::makeOutLink(SwitchID src, NodeID dest, BasicLink* link, LinkDirection direction, const NetDest& routing_table_entry, bool isReconfiguration) { assert(dest < m_nodes); assert(src < m_switch_ptr_vector.size()); assert(m_switch_ptr_vector[src] != NULL); if (isReconfiguration) { m_switch_ptr_vector[src]->reconfigureOutPort(routing_table_entry); return; } SimpleExtLink *simple_link = safe_cast(link); m_switch_ptr_vector[src]->addOutPort(m_fromNetQueues[dest], routing_table_entry, simple_link->m_latency, simple_link->m_bw_multiplier); m_endpoint_switches[dest] = m_switch_ptr_vector[src]; } // From an endpoint node to a switch void SimpleNetwork::makeInLink(NodeID src, SwitchID dest, BasicLink* link, LinkDirection direction, const NetDest& routing_table_entry, bool isReconfiguration) { assert(src < m_nodes); if (isReconfiguration) { // do nothing return; } m_switch_ptr_vector[dest]->addInPort(m_toNetQueues[src]); } // From a switch to a switch void SimpleNetwork::makeInternalLink(SwitchID src, SwitchID dest, BasicLink* link, LinkDirection direction, const NetDest& routing_table_entry, bool isReconfiguration) { if (isReconfiguration) { m_switch_ptr_vector[src]->reconfigureOutPort(routing_table_entry); return; } // Create a set of new MessageBuffers std::vector queues; for (int i = 0; i < m_virtual_networks; i++) { // allocate a buffer MessageBuffer* buffer_ptr = new MessageBuffer; buffer_ptr->setOrdering(true); if (m_buffer_size > 0) { buffer_ptr->resize(m_buffer_size); } queues.push_back(buffer_ptr); // remember to deallocate it m_buffers_to_free.push_back(buffer_ptr); } // Connect it to the two switches SimpleIntLink *simple_link = safe_cast(link); m_switch_ptr_vector[dest]->addInPort(queues); m_switch_ptr_vector[src]->addOutPort(queues, routing_table_entry, simple_link->m_latency, simple_link->m_bw_multiplier); } void SimpleNetwork::checkNetworkAllocation(NodeID id, bool ordered, int network_num) { assert(id < m_nodes); assert(network_num < m_virtual_networks); if (ordered) { m_ordered[network_num] = true; } m_in_use[network_num] = true; } MessageBuffer* SimpleNetwork::getToNetQueue(NodeID id, bool ordered, int network_num, std::string vnet_type) { checkNetworkAllocation(id, ordered, network_num); return m_toNetQueues[id][network_num]; } MessageBuffer* SimpleNetwork::getFromNetQueue(NodeID id, bool ordered, int network_num, std::string vnet_type) { checkNetworkAllocation(id, ordered, network_num); return m_fromNetQueues[id][network_num]; } const std::vector* SimpleNetwork::getThrottles(NodeID id) const { assert(id >= 0); assert(id < m_nodes); assert(m_endpoint_switches[id] != NULL); return m_endpoint_switches[id]->getThrottles(); } void SimpleNetwork::printStats(ostream& out) const { out << endl; out << "Network Stats" << endl; out << "-------------" << endl; out << endl; // // Determine total counts before printing out each switch's stats // std::vector total_msg_counts; total_msg_counts.resize(MessageSizeType_NUM); for (MessageSizeType type = MessageSizeType_FIRST; type < MessageSizeType_NUM; ++type) { total_msg_counts[type] = 0; } for (int i = 0; i < m_switch_ptr_vector.size(); i++) { const std::vector* throttles = m_switch_ptr_vector[i]->getThrottles(); for (int p = 0; p < throttles->size(); p++) { const std::vector >& message_counts = ((*throttles)[p])->getCounters(); for (MessageSizeType type = MessageSizeType_FIRST; type < MessageSizeType_NUM; ++type) { const std::vector &mct = message_counts[type]; int sum = accumulate(mct.begin(), mct.end(), 0); total_msg_counts[type] += uint64(sum); } } } uint64 total_msgs = 0; uint64 total_bytes = 0; for (MessageSizeType type = MessageSizeType_FIRST; type < MessageSizeType_NUM; ++type) { if (total_msg_counts[type] > 0) { out << "total_msg_count_" << type << ": " << total_msg_counts[type] << " " << total_msg_counts[type] * uint64(MessageSizeType_to_int(type)) << endl; total_msgs += total_msg_counts[type]; total_bytes += total_msg_counts[type] * uint64(MessageSizeType_to_int(type)); } } out << "total_msgs: " << total_msgs << " total_bytes: " << total_bytes << endl; out << endl; for (int i = 0; i < m_switch_ptr_vector.size(); i++) { m_switch_ptr_vector[i]->printStats(out); } m_topology_ptr->printStats(out); } void SimpleNetwork::clearStats() { for (int i = 0; i < m_switch_ptr_vector.size(); i++) { m_switch_ptr_vector[i]->clearStats(); } m_topology_ptr->clearStats(); } void SimpleNetwork::print(ostream& out) const { out << "[SimpleNetwork]"; } SimpleNetwork * SimpleNetworkParams::create() { return new SimpleNetwork(this); } /* * The simple network has an array of switches. These switches have buffers * that need to be accessed for functional reads and writes. Also the links * between different switches have buffers that need to be accessed. */ bool SimpleNetwork::functionalRead(Packet *pkt) { for (unsigned int i = 0; i < m_switch_ptr_vector.size(); i++) { if (m_switch_ptr_vector[i]->functionalRead(pkt)) { return true; } } for (unsigned int i = 0; i < m_buffers_to_free.size(); ++i) { if (m_buffers_to_free[i]->functionalRead(pkt)) { return true; } } return false; } uint32_t SimpleNetwork::functionalWrite(Packet *pkt) { uint32_t num_functional_writes = 0; for (unsigned int i = 0; i < m_switch_ptr_vector.size(); i++) { num_functional_writes += m_switch_ptr_vector[i]->functionalWrite(pkt); } for (unsigned int i = 0; i < m_buffers_to_free.size(); ++i) { num_functional_writes += m_buffers_to_free[i]->functionalWrite(pkt); } return num_functional_writes; }