/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "debug/RubyNetwork.hh" #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/network/simple/PerfectSwitch.hh" #include "mem/ruby/network/simple/SimpleNetwork.hh" #include "mem/ruby/profiler/Profiler.hh" #include "mem/ruby/slicc_interface/NetworkMessage.hh" #include "mem/ruby/system/System.hh" using namespace std; const int PRIORITY_SWITCH_LIMIT = 128; // Operator for helper class bool operator<(const LinkOrder& l1, const LinkOrder& l2) { return (l1.m_value < l2.m_value); } PerfectSwitch::PerfectSwitch(SwitchID sid, SimpleNetwork* network_ptr) { m_virtual_networks = network_ptr->getNumberOfVirtualNetworks(); m_switch_id = sid; m_round_robin_start = 0; m_network_ptr = network_ptr; m_wakeups_wo_switch = 0; for(int i = 0;i < m_virtual_networks;++i) { m_pending_message_count.push_back(0); } } void PerfectSwitch::addInPort(const vector& in) { assert(in.size() == m_virtual_networks); NodeID port = m_in.size(); m_in.push_back(in); for (int j = 0; j < m_virtual_networks; j++) { m_in[port][j]->setConsumer(this); string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]", to_string(m_switch_id), to_string(port), to_string(j)); m_in[port][j]->setDescription(desc); m_in[port][j]->setIncomingLink(port); m_in[port][j]->setVnet(j); } } void PerfectSwitch::addOutPort(const vector& out, const NetDest& routing_table_entry) { assert(out.size() == m_virtual_networks); // Setup link order LinkOrder l; l.m_value = 0; l.m_link = m_out.size(); m_link_order.push_back(l); // Add to routing table m_out.push_back(out); m_routing_table.push_back(routing_table_entry); } void PerfectSwitch::clearRoutingTables() { m_routing_table.clear(); } void PerfectSwitch::clearBuffers() { for (int i = 0; i < m_in.size(); i++){ for(int vnet = 0; vnet < m_virtual_networks; vnet++) { m_in[i][vnet]->clear(); } } for (int i = 0; i < m_out.size(); i++){ for(int vnet = 0; vnet < m_virtual_networks; vnet++) { m_out[i][vnet]->clear(); } } } void PerfectSwitch::reconfigureOutPort(const NetDest& routing_table_entry) { m_routing_table.push_back(routing_table_entry); } PerfectSwitch::~PerfectSwitch() { } void PerfectSwitch::wakeup() { MsgPtr msg_ptr; // Give the highest numbered link priority most of the time m_wakeups_wo_switch++; int highest_prio_vnet = m_virtual_networks-1; int lowest_prio_vnet = 0; int decrementer = 1; NetworkMessage* net_msg_ptr = NULL; // invert priorities to avoid starvation seen in the component network if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) { m_wakeups_wo_switch = 0; highest_prio_vnet = 0; lowest_prio_vnet = m_virtual_networks-1; decrementer = -1; } // For all components incoming queues for (int vnet = highest_prio_vnet; (vnet * decrementer) >= (decrementer * lowest_prio_vnet); vnet -= decrementer) { // This is for round-robin scheduling int incoming = m_round_robin_start; m_round_robin_start++; if (m_round_robin_start >= m_in.size()) { m_round_robin_start = 0; } if(m_pending_message_count[vnet] > 0) { // for all input ports, use round robin scheduling for (int counter = 0; counter < m_in.size(); counter++) { // Round robin scheduling incoming++; if (incoming >= m_in.size()) { incoming = 0; } // temporary vectors to store the routing results vector output_links; vector output_link_destinations; // Is there a message waiting? while (m_in[incoming][vnet]->isReady()) { DPRINTF(RubyNetwork, "incoming: %d\n", incoming); // Peek at message msg_ptr = m_in[incoming][vnet]->peekMsgPtr(); net_msg_ptr = safe_cast(msg_ptr.get()); DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr)); output_links.clear(); output_link_destinations.clear(); NetDest msg_dsts = net_msg_ptr->getInternalDestination(); // Unfortunately, the token-protocol sends some // zero-destination messages, so this assert isn't valid // assert(msg_dsts.count() > 0); assert(m_link_order.size() == m_routing_table.size()); assert(m_link_order.size() == m_out.size()); if (m_network_ptr->getAdaptiveRouting()) { if (m_network_ptr->isVNetOrdered(vnet)) { // Don't adaptively route for (int out = 0; out < m_out.size(); out++) { m_link_order[out].m_link = out; m_link_order[out].m_value = 0; } } else { // Find how clogged each link is for (int out = 0; out < m_out.size(); out++) { int out_queue_length = 0; for (int v = 0; v < m_virtual_networks; v++) { out_queue_length += m_out[out][v]->getSize(); } int value = (out_queue_length << 8) | (random() & 0xff); m_link_order[out].m_link = out; m_link_order[out].m_value = value; } // Look at the most empty link first sort(m_link_order.begin(), m_link_order.end()); } } for (int i = 0; i < m_routing_table.size(); i++) { // pick the next link to look at int link = m_link_order[i].m_link; NetDest dst = m_routing_table[link]; DPRINTF(RubyNetwork, "dst: %s\n", dst); if (!msg_dsts.intersectionIsNotEmpty(dst)) continue; // Remember what link we're using output_links.push_back(link); // Need to remember which destinations need this // message in another vector. This Set is the // intersection of the routing_table entry and the // current destination set. The intersection must // not be empty, since we are inside "if" output_link_destinations.push_back(msg_dsts.AND(dst)); // Next, we update the msg_destination not to // include those nodes that were already handled // by this link msg_dsts.removeNetDest(dst); } assert(msg_dsts.count() == 0); //assert(output_links.size() > 0); // Check for resources - for all outgoing queues bool enough = true; for (int i = 0; i < output_links.size(); i++) { int outgoing = output_links[i]; if (!m_out[outgoing][vnet]->areNSlotsAvailable(1)) enough = false; DPRINTF(RubyNetwork, "Checking if node is blocked ..." "outgoing: %d, vnet: %d, enough: %d\n", outgoing, vnet, enough); } // There were not enough resources if (!enough) { g_eventQueue_ptr->scheduleEvent(this, 1); DPRINTF(RubyNetwork, "Can't deliver message since a node " "is blocked\n"); DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr)); break; // go to next incoming port } MsgPtr unmodified_msg_ptr; if (output_links.size() > 1) { // If we are sending this message down more than // one link (size>1), we need to make a copy of // the message so each branch can have a different // internal destination we need to create an // unmodified MsgPtr because the MessageBuffer // enqueue func will modify the message // This magic line creates a private copy of the // message unmodified_msg_ptr = msg_ptr->clone(); } // Enqueue it - for all outgoing queues for (int i=0; i 0) { // create a private copy of the unmodified // message msg_ptr = unmodified_msg_ptr->clone(); } // Change the internal destination set of the // message so it knows which destinations this // link is responsible for. net_msg_ptr = safe_cast(msg_ptr.get()); net_msg_ptr->getInternalDestination() = output_link_destinations[i]; // Enqeue msg DPRINTF(RubyNetwork, "Enqueuing net msg from " "inport[%d][%d] to outport [%d][%d].\n", incoming, vnet, outgoing, vnet); m_out[outgoing][vnet]->enqueue(msg_ptr); } // Dequeue msg m_in[incoming][vnet]->pop(); m_pending_message_count[vnet]--; } } } } } void PerfectSwitch::storeEventInfo(int info) { m_pending_message_count[info]++; } void PerfectSwitch::printStats(std::ostream& out) const { out << "PerfectSwitch printStats" << endl; } void PerfectSwitch::clearStats() { } void PerfectSwitch::printConfig(std::ostream& out) const { } void PerfectSwitch::print(std::ostream& out) const { out << "[PerfectSwitch " << m_switch_id << "]"; }