/* * Copyright (c) 2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Andreas Hansson */ #include #include #include #include #include #include #include #include #include #include #include #include "base/trace.hh" #include "debug/BusAddrRanges.hh" #include "debug/Checkpoint.hh" #include "mem/abstract_mem.hh" #include "mem/physical.hh" using namespace std; PhysicalMemory::PhysicalMemory(const string& _name, const vector& _memories) : _name(_name), size(0) { // add the memories from the system to the address map as // appropriate for (vector::const_iterator m = _memories.begin(); m != _memories.end(); ++m) { // only add the memory if it is part of the global address map if ((*m)->isInAddrMap()) { memories.push_back(*m); // calculate the total size once and for all size += (*m)->size(); // add the range to our interval tree and make sure it does not // intersect an existing range if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end()) fatal("Memory address range for %s is overlapping\n", (*m)->name()); } else { DPRINTF(BusAddrRanges, "Skipping memory %s that is not in global address map\n", (*m)->name()); // this type of memory is used e.g. as reference memory by // Ruby, and they also needs a backing store, but should // not be part of the global address map // simply do it independently, also note that this kind of // memories are allowed to overlap in the logic address // map vector unmapped_mems; unmapped_mems.push_back(*m); createBackingStore((*m)->getAddrRange(), unmapped_mems); } } // iterate over the increasing addresses and create as large // chunks as possible of contigous space to be mapped to backing // store, also remember what memories constitute the range so we // can go and find out if we have to init their parts to zero AddrRange curr_range; vector curr_memories; for (AddrRangeMap::const_iterator r = addrMap.begin(); r != addrMap.end(); ++r) { // simply skip past all memories that are null and hence do // not need any backing store if (!r->second->isNull()) { // if the current range is valid, decide if we split or // not if (curr_range.valid()) { // if the ranges are neighbours, then append, this // will eventually be extended to include support for // address striping and merge the interleaved ranges if (curr_range.end + 1 == r->first.start) { DPRINTF(BusAddrRanges, "Merging neighbouring ranges %x:%x and %x:%x\n", curr_range.start, curr_range.end, r->first.start, r->first.end); // update the end of the range and add the current // memory to the list of memories curr_range.end = r->first.end; curr_memories.push_back(r->second); } else { // what we already have is valid, and this is not // contigious, so create the backing store and // then start over createBackingStore(curr_range, curr_memories); // remember the current range and reset the current // set of memories to contain this one curr_range = r->first; curr_memories.clear(); curr_memories.push_back(r->second); } } else { // we haven't seen any valid ranges yet, so remember // the current range and reset the current set of // memories to contain this one curr_range = r->first; curr_memories.clear(); curr_memories.push_back(r->second); } } } // if we have a valid range upon finishing the iteration, then // create the backing store if (curr_range.valid()) createBackingStore(curr_range, curr_memories); } void PhysicalMemory::createBackingStore(AddrRange range, const vector& _memories) { // perform the actual mmap DPRINTF(BusAddrRanges, "Creating backing store for range %x:%x\n", range.start, range.end); int map_flags = MAP_ANON | MAP_PRIVATE; uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE, map_flags, -1, 0); if (pmem == (uint8_t*) MAP_FAILED) { perror("mmap"); fatal("Could not mmap %d bytes for range %x:%x!\n", range.size(), range.start, range.end); } // remember this backing store so we can checkpoint it and unmap // it appropriately backingStore.push_back(make_pair(range, pmem)); // point the memories to their backing store, and if requested, // initialize the memory range to 0 for (vector::const_iterator m = _memories.begin(); m != _memories.end(); ++m) { DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n", (*m)->name()); (*m)->setBackingStore(pmem); // if it should be zero, then go and make it so if ((*m)->initToZero()) memset(pmem, 0, (*m)->size()); // advance the pointer for the next memory in line pmem += (*m)->size(); } } PhysicalMemory::~PhysicalMemory() { // unmap the backing store for (vector >::iterator s = backingStore.begin(); s != backingStore.end(); ++s) munmap((char*)s->second, s->first.size()); } bool PhysicalMemory::isMemAddr(Addr addr) const { // see if the address is within the last matched range if (addr != rangeCache) { // lookup in the interval tree AddrRangeMap::const_iterator r = addrMap.find(addr); if (r == addrMap.end()) { // not in the cache, and not in the tree return false; } // the range is in the tree, update the cache rangeCache = r->first; } assert(addrMap.find(addr) != addrMap.end()); // either matched the cache or found in the tree return true; } AddrRangeList PhysicalMemory::getConfAddrRanges() const { // this could be done once in the constructor, but since it is unlikely to // be called more than once the iteration should not be a problem AddrRangeList ranges; for (vector::const_iterator m = memories.begin(); m != memories.end(); ++m) { if ((*m)->isConfReported()) { ranges.push_back((*m)->getAddrRange()); } } return ranges; } void PhysicalMemory::access(PacketPtr pkt) { assert(pkt->isRequest()); Addr addr = pkt->getAddr(); AddrRangeMap::const_iterator m = addrMap.find(addr); assert(m != addrMap.end()); m->second->access(pkt); } void PhysicalMemory::functionalAccess(PacketPtr pkt) { assert(pkt->isRequest()); Addr addr = pkt->getAddr(); AddrRangeMap::const_iterator m = addrMap.find(addr); assert(m != addrMap.end()); m->second->functionalAccess(pkt); } void PhysicalMemory::serialize(ostream& os) { // serialize all the locked addresses and their context ids vector lal_addr; vector lal_cid; for (vector::iterator m = memories.begin(); m != memories.end(); ++m) { const list& locked_addrs = (*m)->getLockedAddrList(); for (list::const_iterator l = locked_addrs.begin(); l != locked_addrs.end(); ++l) { lal_addr.push_back(l->addr); lal_cid.push_back(l->contextId); } } arrayParamOut(os, "lal_addr", lal_addr); arrayParamOut(os, "lal_cid", lal_cid); // serialize the backing stores unsigned int nbr_of_stores = backingStore.size(); SERIALIZE_SCALAR(nbr_of_stores); unsigned int store_id = 0; // store each backing store memory segment in a file for (vector >::iterator s = backingStore.begin(); s != backingStore.end(); ++s) { nameOut(os, csprintf("%s.store%d", name(), store_id)); serializeStore(os, store_id++, s->first, s->second); } } void PhysicalMemory::serializeStore(ostream& os, unsigned int store_id, AddrRange range, uint8_t* pmem) { // we cannot use the address range for the name as the // memories that are not part of the address map can overlap string filename = name() + ".store" + to_string(store_id) + ".pmem"; long range_size = range.size(); DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n", filename, range_size); SERIALIZE_SCALAR(store_id); SERIALIZE_SCALAR(filename); SERIALIZE_SCALAR(range_size); // write memory file string filepath = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(filepath.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open physical memory checkpoint file '%s'\n", filename); } gzFile compressed_mem = gzdopen(fd, "wb"); if (compressed_mem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); uint64_t pass_size = 0; // gzwrite fails if (int)len < 0 (gzwrite returns int) for (uint64_t written = 0; written < range.size(); written += pass_size) { pass_size = (uint64_t)INT_MAX < (range.size() - written) ? (uint64_t)INT_MAX : (range.size() - written); if (gzwrite(compressed_mem, pmem + written, (unsigned int) pass_size) != (int) pass_size) { fatal("Write failed on physical memory checkpoint file '%s'\n", filename); } } // close the compressed stream and check that the exit status // is zero if (gzclose(compressed_mem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } void PhysicalMemory::unserialize(Checkpoint* cp, const string& section) { // unserialize the locked addresses and map them to the // appropriate memory controller vector lal_addr; vector lal_cid; arrayParamIn(cp, section, "lal_addr", lal_addr); arrayParamIn(cp, section, "lal_cid", lal_cid); for(size_t i = 0; i < lal_addr.size(); ++i) { AddrRangeMap::iterator m = addrMap.find(lal_addr[i]); m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i])); } // unserialize the backing stores unsigned int nbr_of_stores; UNSERIALIZE_SCALAR(nbr_of_stores); for (unsigned int i = 0; i < nbr_of_stores; ++i) { unserializeStore(cp, csprintf("%s.store%d", section, i)); } } void PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section) { const uint32_t chunk_size = 16384; unsigned int store_id; UNSERIALIZE_SCALAR(store_id); string filename; UNSERIALIZE_SCALAR(filename); string filepath = cp->cptDir + "/" + filename; // mmap memoryfile int fd = open(filepath.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Can't open physical memory checkpoint file '%s'", filename); } gzFile compressed_mem = gzdopen(fd, "rb"); if (compressed_mem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); uint8_t* pmem = backingStore[store_id].second; AddrRange range = backingStore[store_id].first; // unmap file that was mmapped in the constructor, this is // done here to make sure that gzip and open don't muck with // our nice large space of memory before we reallocate it munmap((char*) pmem, range.size()); long range_size; UNSERIALIZE_SCALAR(range_size); DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n", filename, range_size); if (range_size != range.size()) fatal("Memory range size has changed! Saw %lld, expected %lld\n", range_size, range.size()); pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if (pmem == (void*) MAP_FAILED) { perror("mmap"); fatal("Could not mmap physical memory!\n"); } uint64_t curr_size = 0; long* temp_page = new long[chunk_size]; long* pmem_current; uint32_t bytes_read; while (curr_size < range.size()) { bytes_read = gzread(compressed_mem, temp_page, chunk_size); if (bytes_read == 0) break; assert(bytes_read % sizeof(long) == 0); for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) { // Only copy bytes that are non-zero, so we don't give // the VM system hell if (*(temp_page + x) != 0) { pmem_current = (long*)(pmem + curr_size + x * sizeof(long)); *pmem_current = *(temp_page + x); } } curr_size += bytes_read; } delete[] temp_page; if (gzclose(compressed_mem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); }