/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Ali Saidi */ #include #include #include #include #include #include #include #include #include "arch/isa_traits.hh" #include "base/misc.hh" #include "config/full_system.hh" #include "mem/packet_access.hh" #include "mem/physical.hh" #include "sim/eventq.hh" #include "sim/host.hh" using namespace std; using namespace TheISA; PhysicalMemory::PhysicalMemory(const Params *p) : MemObject(p), pmemAddr(NULL), lat(p->latency) { if (params()->range.size() % TheISA::PageBytes != 0) panic("Memory Size not divisible by page size\n"); int map_flags = MAP_ANON | MAP_PRIVATE; pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(), PROT_READ | PROT_WRITE, map_flags, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap!\n"); } //If requested, initialize all the memory to 0 if (p->zero) memset(pmemAddr, 0, p->range.size()); pagePtr = 0; } void PhysicalMemory::init() { if (ports.size() == 0) { fatal("PhysicalMemory object %s is unconnected!", name()); } for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) { if (*pi) (*pi)->sendStatusChange(Port::RangeChange); } } PhysicalMemory::~PhysicalMemory() { if (pmemAddr) munmap((char*)pmemAddr, params()->range.size()); //Remove memPorts? } Addr PhysicalMemory::new_page() { Addr return_addr = pagePtr << LogVMPageSize; return_addr += start(); ++pagePtr; return return_addr; } int PhysicalMemory::deviceBlockSize() { //Can accept anysize request return 0; } Tick PhysicalMemory::calculateLatency(PacketPtr pkt) { return lat; } // Add load-locked to tracking list. Should only be called if the // operation is a load and the LOCKED flag is set. void PhysicalMemory::trackLoadLocked(PacketPtr pkt) { Request *req = pkt->req; Addr paddr = LockedAddr::mask(req->getPaddr()); // first we check if we already have a locked addr for this // xc. Since each xc only gets one, we just update the // existing record with the new address. list::iterator i; for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) { if (i->matchesContext(req)) { DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n", req->getCpuNum(), req->getThreadNum(), paddr); i->addr = paddr; return; } } // no record for this xc: need to allocate a new one DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n", req->getCpuNum(), req->getThreadNum(), paddr); lockedAddrList.push_front(LockedAddr(req)); } // Called on *writes* only... both regular stores and // store-conditional operations. Check for conventional stores which // conflict with locked addresses, and for success/failure of store // conditionals. bool PhysicalMemory::checkLockedAddrList(PacketPtr pkt) { Request *req = pkt->req; Addr paddr = LockedAddr::mask(req->getPaddr()); bool isLocked = pkt->isLocked(); // Initialize return value. Non-conditional stores always // succeed. Assume conditional stores will fail until proven // otherwise. bool success = !isLocked; // Iterate over list. Note that there could be multiple matching // records, as more than one context could have done a load locked // to this location. list::iterator i = lockedAddrList.begin(); while (i != lockedAddrList.end()) { if (i->addr == paddr) { // we have a matching address if (isLocked && i->matchesContext(req)) { // it's a store conditional, and as far as the memory // system can tell, the requesting context's lock is // still valid. DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n", req->getCpuNum(), req->getThreadNum(), paddr); success = true; } // Get rid of our record of this lock and advance to next DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n", i->cpuNum, i->threadNum, paddr); i = lockedAddrList.erase(i); } else { // no match: advance to next record ++i; } } if (isLocked) { req->setExtraData(success ? 1 : 0); } return success; } #if TRACING_ON #define CASE(A, T) \ case sizeof(T): \ DPRINTF(MemoryAccess, A " of size %i on address 0x%x data 0x%x\n", \ pkt->getSize(), pkt->getAddr(), pkt->get()); \ break #define TRACE_PACKET(A) \ do { \ switch (pkt->getSize()) { \ CASE(A, uint64_t); \ CASE(A, uint32_t); \ CASE(A, uint16_t); \ CASE(A, uint8_t); \ default: \ DPRINTF(MemoryAccess, A " of size %i on address 0x%x\n", \ pkt->getSize(), pkt->getAddr()); \ } \ } while (0) #else #define TRACE_PACKET(A) #endif Tick PhysicalMemory::doAtomicAccess(PacketPtr pkt) { assert(pkt->getAddr() >= start() && pkt->getAddr() + pkt->getSize() <= start() + size()); if (pkt->memInhibitAsserted()) { DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n", pkt->getAddr()); return 0; } uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start(); if (pkt->cmd == MemCmd::SwapReq) { IntReg overwrite_val; bool overwrite_mem; uint64_t condition_val64; uint32_t condition_val32; assert(sizeof(IntReg) >= pkt->getSize()); overwrite_mem = true; // keep a copy of our possible write value, and copy what is at the // memory address into the packet std::memcpy(&overwrite_val, pkt->getPtr(), pkt->getSize()); std::memcpy(pkt->getPtr(), hostAddr, pkt->getSize()); if (pkt->req->isCondSwap()) { if (pkt->getSize() == sizeof(uint64_t)) { condition_val64 = pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val64, hostAddr, sizeof(uint64_t)); } else if (pkt->getSize() == sizeof(uint32_t)) { condition_val32 = (uint32_t)pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val32, hostAddr, sizeof(uint32_t)); } else panic("Invalid size for conditional read/write\n"); } if (overwrite_mem) std::memcpy(hostAddr, &overwrite_val, pkt->getSize()); TRACE_PACKET("Read/Write"); } else if (pkt->isRead()) { assert(!pkt->isWrite()); if (pkt->isLocked()) { trackLoadLocked(pkt); } memcpy(pkt->getPtr(), hostAddr, pkt->getSize()); TRACE_PACKET("Read"); } else if (pkt->isWrite()) { if (writeOK(pkt)) { memcpy(hostAddr, pkt->getPtr(), pkt->getSize()); TRACE_PACKET("Write"); } } else if (pkt->isInvalidate()) { //upgrade or invalidate if (pkt->needsResponse()) { pkt->makeAtomicResponse(); } } else { panic("unimplemented"); } if (pkt->needsResponse()) { pkt->makeAtomicResponse(); } return calculateLatency(pkt); } void PhysicalMemory::doFunctionalAccess(PacketPtr pkt) { warn("addr %#x >= %#x AND %#x <= %#x", pkt->getAddr(), start(), pkt->getAddr() + pkt->getSize(), start() + size()); assert(pkt->getAddr() >= start() && pkt->getAddr() + pkt->getSize() <= start() + size()); uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start(); if (pkt->cmd == MemCmd::ReadReq) { memcpy(pkt->getPtr(), hostAddr, pkt->getSize()); TRACE_PACKET("Read"); } else if (pkt->cmd == MemCmd::WriteReq) { memcpy(hostAddr, pkt->getPtr(), pkt->getSize()); TRACE_PACKET("Write"); } else { panic("PhysicalMemory: unimplemented functional command %s", pkt->cmdString()); } pkt->makeAtomicResponse(); } Port * PhysicalMemory::getPort(const std::string &if_name, int idx) { // Accept request for "functional" port for backwards compatibility // with places where this function is called from C++. I'd prefer // to move all these into Python someday. if (if_name == "functional") { return new MemoryPort(csprintf("%s-functional", name()), this); } if (if_name != "port") { panic("PhysicalMemory::getPort: unknown port %s requested", if_name); } if (idx >= ports.size()) { ports.resize(idx+1); } if (ports[idx] != NULL) { panic("PhysicalMemory::getPort: port %d already assigned", idx); } MemoryPort *port = new MemoryPort(csprintf("%s-port%d", name(), idx), this); ports[idx] = port; return port; } void PhysicalMemory::recvStatusChange(Port::Status status) { } PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name, PhysicalMemory *_memory) : SimpleTimingPort(_name), memory(_memory) { } void PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status) { memory->recvStatusChange(status); } void PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp, bool &snoop) { memory->getAddressRanges(resp, snoop); } void PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop) { snoop = false; resp.clear(); resp.push_back(RangeSize(start(), params()->range.size())); } int PhysicalMemory::MemoryPort::deviceBlockSize() { return memory->deviceBlockSize(); } Tick PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt) { return memory->doAtomicAccess(pkt); } void PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt) { if (!checkFunctional(pkt)) { // Default implementation of SimpleTimingPort::recvFunctional() // calls recvAtomic() and throws away the latency; we can save a // little here by just not calculating the latency. memory->doFunctionalAccess(pkt); } } unsigned int PhysicalMemory::drain(Event *de) { int count = 0; for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) { count += (*pi)->drain(de); } if (count) changeState(Draining); else changeState(Drained); return count; } void PhysicalMemory::serialize(ostream &os) { gzFile compressedMem; string filename = name() + ".physmem"; SERIALIZE_SCALAR(filename); // write memory file string thefile = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open physical memory checkpoint file '%s'\n", filename); } compressedMem = gzdopen(fd, "wb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMem, pmemAddr, params()->range.size()) != params()->range.size()) { fatal("Write failed on physical memory checkpoint file '%s'\n", filename); } if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } void PhysicalMemory::unserialize(Checkpoint *cp, const string §ion) { gzFile compressedMem; long *tempPage; long *pmem_current; uint64_t curSize; uint32_t bytesRead; const int chunkSize = 16384; string filename; UNSERIALIZE_SCALAR(filename); filename = cp->cptDir + "/" + filename; // mmap memoryfile int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Can't open physical memory checkpoint file '%s'", filename); } compressedMem = gzdopen(fd, "rb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); // unmap file that was mmaped in the constructor // This is done here to make sure that gzip and open don't muck with our // nice large space of memory before we reallocate it munmap((char*)pmemAddr, params()->range.size()); pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(), PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap physical memory!\n"); } curSize = 0; tempPage = (long*)malloc(chunkSize); if (tempPage == NULL) fatal("Unable to malloc memory to read file %s\n", filename); /* Only copy bytes that are non-zero, so we don't give the VM system hell */ while (curSize < params()->range.size()) { bytesRead = gzread(compressedMem, tempPage, chunkSize); if (bytesRead != chunkSize && bytesRead != params()->range.size() - curSize) fatal("Read failed on physical memory checkpoint file '%s'" " got %d bytes, expected %d or %d bytes\n", filename, bytesRead, chunkSize, params()->range.size() - curSize); assert(bytesRead % sizeof(long) == 0); for (int x = 0; x < bytesRead/sizeof(long); x++) { if (*(tempPage+x) != 0) { pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long)); *pmem_current = *(tempPage+x); } } curSize += bytesRead; } free(tempPage); if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } PhysicalMemory * PhysicalMemoryParams::create() { return new PhysicalMemory(this); }