/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Ali Saidi */ #include #include #include #include #include #include #include #include #include "arch/isa_traits.hh" #include "base/misc.hh" #include "config/full_system.hh" #include "mem/physical.hh" #include "sim/builder.hh" #include "sim/eventq.hh" #include "sim/host.hh" using namespace std; using namespace TheISA; PhysicalMemory::PhysicalMemory(Params *p) : MemObject(p->name), pmemAddr(NULL), port(NULL), lat(p->latency), _params(p) { if (params()->addrRange.size() % TheISA::PageBytes != 0) panic("Memory Size not divisible by page size\n"); int map_flags = MAP_ANON | MAP_PRIVATE; pmemAddr = (uint8_t *)mmap(NULL, params()->addrRange.size(), PROT_READ | PROT_WRITE, map_flags, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap!\n"); } pagePtr = 0; } void PhysicalMemory::init() { if (!port) panic("PhysicalMemory not connected to anything!"); port->sendStatusChange(Port::RangeChange); } PhysicalMemory::~PhysicalMemory() { if (pmemAddr) munmap(pmemAddr, params()->addrRange.size()); //Remove memPorts? } Addr PhysicalMemory::new_page() { Addr return_addr = pagePtr << LogVMPageSize; return_addr += params()->addrRange.start; ++pagePtr; return return_addr; } int PhysicalMemory::deviceBlockSize() { //Can accept anysize request return 0; } Tick PhysicalMemory::calculateLatency(PacketPtr pkt) { return lat; } // Add load-locked to tracking list. Should only be called if the // operation is a load and the LOCKED flag is set. void PhysicalMemory::trackLoadLocked(Request *req) { Addr paddr = LockedAddr::mask(req->getPaddr()); // first we check if we already have a locked addr for this // xc. Since each xc only gets one, we just update the // existing record with the new address. list::iterator i; for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) { if (i->matchesContext(req)) { DPRINTF(LLSC, "Modifying lock record: cpu %d thread %d addr %#x\n", req->getCpuNum(), req->getThreadNum(), paddr); i->addr = paddr; return; } } // no record for this xc: need to allocate a new one DPRINTF(LLSC, "Adding lock record: cpu %d thread %d addr %#x\n", req->getCpuNum(), req->getThreadNum(), paddr); lockedAddrList.push_front(LockedAddr(req)); } // Called on *writes* only... both regular stores and // store-conditional operations. Check for conventional stores which // conflict with locked addresses, and for success/failure of store // conditionals. bool PhysicalMemory::checkLockedAddrList(Request *req) { Addr paddr = LockedAddr::mask(req->getPaddr()); bool isLocked = req->isLocked(); // Initialize return value. Non-conditional stores always // succeed. Assume conditional stores will fail until proven // otherwise. bool success = !isLocked; // Iterate over list. Note that there could be multiple matching // records, as more than one context could have done a load locked // to this location. list::iterator i = lockedAddrList.begin(); while (i != lockedAddrList.end()) { if (i->addr == paddr) { // we have a matching address if (isLocked && i->matchesContext(req)) { // it's a store conditional, and as far as the memory // system can tell, the requesting context's lock is // still valid. DPRINTF(LLSC, "StCond success: cpu %d thread %d addr %#x\n", req->getCpuNum(), req->getThreadNum(), paddr); success = true; } // Get rid of our record of this lock and advance to next DPRINTF(LLSC, "Erasing lock record: cpu %d thread %d addr %#x\n", i->cpuNum, i->threadNum, paddr); i = lockedAddrList.erase(i); } else { // no match: advance to next record ++i; } } if (isLocked) { req->setScResult(success ? 1 : 0); } return success; } void PhysicalMemory::doFunctionalAccess(PacketPtr pkt) { assert(pkt->getAddr() + pkt->getSize() <= params()->addrRange.size()); if (pkt->isRead()) { if (pkt->req->isLocked()) { trackLoadLocked(pkt->req); } DPRINTF(MemoryAccess, "Performing Read of size %i on address 0x%x\n", pkt->getSize(), pkt->getAddr()); memcpy(pkt->getPtr(), pmemAddr + pkt->getAddr() - params()->addrRange.start, pkt->getSize()); } else if (pkt->isWrite()) { if (writeOK(pkt->req)) { DPRINTF(MemoryAccess, "Performing Write of size %i on address 0x%x\n", pkt->getSize(), pkt->getAddr()); memcpy(pmemAddr + pkt->getAddr() - params()->addrRange.start, pkt->getPtr(), pkt->getSize()); } } else if (pkt->isInvalidate()) { //upgrade or invalidate pkt->flags |= SATISFIED; } else { panic("unimplemented"); } pkt->result = Packet::Success; } Port * PhysicalMemory::getPort(const std::string &if_name, int idx) { if (if_name == "port" && idx == -1) { if (port != NULL) panic("PhysicalMemory::getPort: additional port requested to memory!"); port = new MemoryPort(name() + "-port", this); return port; } else if (if_name == "functional") { /* special port for functional writes at startup. And for memtester */ return new MemoryPort(name() + "-funcport", this); } else { panic("PhysicalMemory::getPort: unknown port %s requested", if_name); } } void PhysicalMemory::recvStatusChange(Port::Status status) { } PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name, PhysicalMemory *_memory) : SimpleTimingPort(_name), memory(_memory) { } void PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status) { memory->recvStatusChange(status); } void PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop) { memory->getAddressRanges(resp, snoop); } void PhysicalMemory::getAddressRanges(AddrRangeList &resp, AddrRangeList &snoop) { snoop.clear(); resp.clear(); resp.push_back(RangeSize(params()->addrRange.start, params()->addrRange.size())); } int PhysicalMemory::MemoryPort::deviceBlockSize() { return memory->deviceBlockSize(); } Tick PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt) { memory->doFunctionalAccess(pkt); return memory->calculateLatency(pkt); } void PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt) { // Default implementation of SimpleTimingPort::recvFunctional() // calls recvAtomic() and throws away the latency; we can save a // little here by just not calculating the latency. memory->doFunctionalAccess(pkt); } unsigned int PhysicalMemory::drain(Event *de) { int count = port->drain(de); if (count) changeState(Draining); else changeState(Drained); return count; } void PhysicalMemory::serialize(ostream &os) { gzFile compressedMem; string filename = name() + ".physmem"; SERIALIZE_SCALAR(filename); // write memory file string thefile = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open physical memory checkpoint file '%s'\n", filename); } compressedMem = gzdopen(fd, "wb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMem, pmemAddr, params()->addrRange.size()) != params()->addrRange.size()) { fatal("Write failed on physical memory checkpoint file '%s'\n", filename); } if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } void PhysicalMemory::unserialize(Checkpoint *cp, const string §ion) { gzFile compressedMem; long *tempPage; long *pmem_current; uint64_t curSize; uint32_t bytesRead; const int chunkSize = 16384; string filename; UNSERIALIZE_SCALAR(filename); filename = cp->cptDir + "/" + filename; // mmap memoryfile int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Can't open physical memory checkpoint file '%s'", filename); } compressedMem = gzdopen(fd, "rb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); // unmap file that was mmaped in the constructor // This is done here to make sure that gzip and open don't muck with our // nice large space of memory before we reallocate it munmap(pmemAddr, params()->addrRange.size()); pmemAddr = (uint8_t *)mmap(NULL, params()->addrRange.size(), PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap physical memory!\n"); } curSize = 0; tempPage = (long*)malloc(chunkSize); if (tempPage == NULL) fatal("Unable to malloc memory to read file %s\n", filename); /* Only copy bytes that are non-zero, so we don't give the VM system hell */ while (curSize < params()->addrRange.size()) { bytesRead = gzread(compressedMem, tempPage, chunkSize); if (bytesRead != chunkSize && bytesRead != params()->addrRange.size() - curSize) fatal("Read failed on physical memory checkpoint file '%s'" " got %d bytes, expected %d or %d bytes\n", filename, bytesRead, chunkSize, params()->addrRange.size()-curSize); assert(bytesRead % sizeof(long) == 0); for (int x = 0; x < bytesRead/sizeof(long); x++) { if (*(tempPage+x) != 0) { pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long)); *pmem_current = *(tempPage+x); } } curSize += bytesRead; } free(tempPage); if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } BEGIN_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory) Param file; Param > range; Param latency; END_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory) BEGIN_INIT_SIM_OBJECT_PARAMS(PhysicalMemory) INIT_PARAM_DFLT(file, "memory mapped file", ""), INIT_PARAM(range, "Device Address Range"), INIT_PARAM(latency, "Memory access latency") END_INIT_SIM_OBJECT_PARAMS(PhysicalMemory) CREATE_SIM_OBJECT(PhysicalMemory) { PhysicalMemory::Params *p = new PhysicalMemory::Params; p->name = getInstanceName(); p->addrRange = range; p->latency = latency; return new PhysicalMemory(p); } REGISTER_SIM_OBJECT("PhysicalMemory", PhysicalMemory)