/* * Copyright (c) 2011-2014 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi * Andreas Hansson * William Wang */ /** * @file * Definition of a crossbar object. */ #include "base/misc.hh" #include "base/trace.hh" #include "debug/AddrRanges.hh" #include "debug/CoherentXBar.hh" #include "mem/coherent_xbar.hh" #include "sim/system.hh" CoherentXBar::CoherentXBar(const CoherentXBarParams *p) : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter) { // create the ports based on the size of the master and slave // vector ports, and the presence of the default port, the ports // are enumerated starting from zero for (int i = 0; i < p->port_master_connection_count; ++i) { std::string portName = csprintf("%s.master[%d]", name(), i); MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); masterPorts.push_back(bp); reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", i))); snoopLayers.push_back(new SnoopLayer(*bp, *this, csprintf(".snoopLayer%d", i))); } // see if we have a default slave device connected and if so add // our corresponding master port if (p->port_default_connection_count) { defaultPortID = masterPorts.size(); std::string portName = name() + ".default"; MasterPort* bp = new CoherentXBarMasterPort(portName, *this, defaultPortID); masterPorts.push_back(bp); reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", defaultPortID))); snoopLayers.push_back(new SnoopLayer(*bp, *this, csprintf(".snoopLayer%d", defaultPortID))); } // create the slave ports, once again starting at zero for (int i = 0; i < p->port_slave_connection_count; ++i) { std::string portName = csprintf("%s.slave[%d]", name(), i); SlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); slavePorts.push_back(bp); respLayers.push_back(new RespLayer(*bp, *this, csprintf(".respLayer%d", i))); snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); } if (snoopFilter) snoopFilter->setSlavePorts(slavePorts); clearPortCache(); } CoherentXBar::~CoherentXBar() { for (auto l: reqLayers) delete l; for (auto l: respLayers) delete l; for (auto l: snoopLayers) delete l; for (auto p: snoopRespPorts) delete p; } void CoherentXBar::init() { // the base class is responsible for determining the block size BaseXBar::init(); // iterate over our slave ports and determine which of our // neighbouring master ports are snooping and add them as snoopers for (const auto& p: slavePorts) { // check if the connected master port is snooping if (p->isSnooping()) { DPRINTF(AddrRanges, "Adding snooping master %s\n", p->getMasterPort().name()); snoopPorts.push_back(p); } } if (snoopPorts.empty()) warn("CoherentXBar %s has no snooping ports attached!\n", name()); } bool CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) { // determine the source port based on the id SlavePort *src_port = slavePorts[slave_port_id]; // remember if the packet is an express snoop bool is_express_snoop = pkt->isExpressSnoop(); // determine the destination based on the address PortID master_port_id = findPort(pkt->getAddr()); // test if the crossbar should be considered occupied for the current // port, and exclude express snoops from the check if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } DPRINTF(CoherentXBar, "recvTimingReq: src %s %s expr %d 0x%x\n", src_port->name(), pkt->cmdString(), is_express_snoop, pkt->getAddr()); // store size and command as they might be modified when // forwarding the packet unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); // set the source port for routing of the response pkt->setSrc(slave_port_id); calcPacketTiming(pkt); Tick packetFinishTime = pkt->lastWordDelay + curTick(); // uncacheable requests need never be snooped if (!pkt->req->isUncacheable() && !system->bypassCaches()) { // the packet is a memory-mapped request and should be // broadcasted to our snoopers but the source if (snoopFilter) { // check with the snoop filter where to forward this packet auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); packetFinishTime += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x"\ " SF size: %i lat: %i\n", src_port->name(), pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), sf_res.second); forwardTiming(pkt, slave_port_id, sf_res.first); } else { forwardTiming(pkt, slave_port_id); } } // remember if we add an outstanding req so we can undo it if // necessary, if the packet needs a response, we should add it // as outstanding and express snoops never fail so there is // not need to worry about them bool add_outstanding = !is_express_snoop && pkt->needsResponse(); // keep track that we have an outstanding request packet // matching this request, this is used by the coherency // mechanism in determining what to do with snoop responses // (in recvTimingSnoop) if (add_outstanding) { // we should never have an exsiting request outstanding assert(outstandingReq.find(pkt->req) == outstandingReq.end()); outstandingReq.insert(pkt->req); } // Note: Cannot create a copy of the full packet, here. MemCmd orig_cmd(pkt->cmd); // since it is a normal request, attempt to send the packet bool success = masterPorts[master_port_id]->sendTimingReq(pkt); if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) { // The packet may already be overwritten by the sendTimingReq function. // The snoop filter needs to see the original request *and* the return // status of the send operation, so we need to recreate the original // request. Atomic mode does not have the issue, as there the send // operation and the response happen instantaneously and don't need two // phase tracking. MemCmd tmp_cmd(pkt->cmd); pkt->cmd = orig_cmd; // Let the snoop filter know about the success of the send operation snoopFilter->updateRequest(pkt, *src_port, !success); pkt->cmd = tmp_cmd; } // if this is an express snoop, we are done at this point if (is_express_snoop) { assert(success); snoops++; } else { // for normal requests, check if successful if (!success) { // inhibited packets should never be forced to retry assert(!pkt->memInhibitAsserted()); // if it was added as outstanding and the send failed, then // erase it again if (add_outstanding) outstandingReq.erase(pkt->req); // undo the calculation so we can check for 0 again pkt->firstWordDelay = pkt->lastWordDelay = 0; DPRINTF(CoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); // update the layer state and schedule an idle event reqLayers[master_port_id]->failedTiming(src_port, clockEdge(headerCycles)); } else { // update the layer state and schedule an idle event reqLayers[master_port_id]->succeededTiming(packetFinishTime); } } // stats updates only consider packets that were successfully sent if (success) { pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; } return success; } bool CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) { // determine the source port based on the id MasterPort *src_port = masterPorts[master_port_id]; // determine the destination based on what is stored in the packet PortID slave_port_id = pkt->getDest(); assert(slave_port_id != InvalidPortID); assert(slave_port_id < respLayers.size()); // test if the crossbar should be considered occupied for the // current port if (!respLayers[slave_port_id]->tryTiming(src_port)) { DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } DPRINTF(CoherentXBar, "recvTimingResp: src %s %s 0x%x\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); // store size and command as they might be modified when // forwarding the packet unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); calcPacketTiming(pkt); Tick packetFinishTime = pkt->lastWordDelay + curTick(); // the packet is a normal response to a request that we should // have seen passing through the crossbar assert(outstandingReq.find(pkt->req) != outstandingReq.end()); if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches()) { // let the snoop filter inspect the response and update its state snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); } // remove it as outstanding outstandingReq.erase(pkt->req); // send the packet through the destination slave port bool success M5_VAR_USED = slavePorts[slave_port_id]->sendTimingResp(pkt); // currently it is illegal to block responses... can lead to // deadlock assert(success); respLayers[slave_port_id]->succeededTiming(packetFinishTime); // stats updates pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; return true; } void CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) { DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x\n", masterPorts[master_port_id]->name(), pkt->cmdString(), pkt->getAddr()); // update stats here as we know the forwarding will succeed transDist[pkt->cmdToIndex()]++; snoops++; // we should only see express snoops from caches assert(pkt->isExpressSnoop()); // set the source port for routing of the response pkt->setSrc(master_port_id); if (snoopFilter) { // let the Snoop Filter work its magic and guide probing auto sf_res = snoopFilter->lookupSnoop(pkt); // No timing here: packetFinishTime += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "recvTimingSnoopReq: src %s %s 0x%x"\ " SF size: %i lat: %i\n", masterPorts[master_port_id]->name(), pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), sf_res.second); // forward to all snoopers forwardTiming(pkt, InvalidPortID, sf_res.first); } else { forwardTiming(pkt, InvalidPortID); } // a snoop request came from a connected slave device (one of // our master ports), and if it is not coming from the slave // device responsible for the address range something is // wrong, hence there is nothing further to do as the packet // would be going back to where it came from assert(master_port_id == findPort(pkt->getAddr())); } bool CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) { // determine the source port based on the id SlavePort* src_port = slavePorts[slave_port_id]; // get the destination from the packet PortID dest_port_id = pkt->getDest(); assert(dest_port_id != InvalidPortID); // determine if the response is from a snoop request we // created as the result of a normal request (in which case it // should be in the outstandingReq), or if we merely forwarded // someone else's snoop request bool forwardAsSnoop = outstandingReq.find(pkt->req) == outstandingReq.end(); // test if the crossbar should be considered occupied for the // current port, note that the check is bypassed if the response // is being passed on as a normal response since this is occupying // the response layer rather than the snoop response layer if (forwardAsSnoop) { assert(dest_port_id < snoopLayers.size()); if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } } else { // get the master port that mirrors this slave port internally MasterPort* snoop_port = snoopRespPorts[slave_port_id]; assert(dest_port_id < respLayers.size()); if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", snoop_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } } DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); // store size and command as they might be modified when // forwarding the packet unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); // responses are never express snoops assert(!pkt->isExpressSnoop()); calcPacketTiming(pkt); Tick packetFinishTime = pkt->lastWordDelay + curTick(); // forward it either as a snoop response or a normal response if (forwardAsSnoop) { // this is a snoop response to a snoop request we forwarded, // e.g. coming from the L1 and going to the L2, and it should // be forwarded as a snoop response if (snoopFilter) { // update the probe filter so that it can properly track the line snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], *masterPorts[dest_port_id]); } bool success M5_VAR_USED = masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); pktCount[slave_port_id][dest_port_id]++; pktSize[slave_port_id][dest_port_id] += pkt_size; assert(success); snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); } else { // we got a snoop response on one of our slave ports, // i.e. from a coherent master connected to the crossbar, and // since we created the snoop request as part of recvTiming, // this should now be a normal response again outstandingReq.erase(pkt->req); // this is a snoop response from a coherent master, with a // destination field set on its way through the crossbar as // request, hence it should never go back to where the snoop // response came from, but instead to where the original // request came from assert(slave_port_id != dest_port_id); if (snoopFilter) { // update the probe filter so that it can properly track the line snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], *slavePorts[dest_port_id]); } DPRINTF(CoherentXBar, "recvTimingSnoopResp: src %s %s 0x%x"\ " FWD RESP\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); // as a normal response, it should go back to a master through // one of our slave ports, at this point we are ignoring the // fact that the response layer could be busy and do not touch // its state bool success M5_VAR_USED = slavePorts[dest_port_id]->sendTimingResp(pkt); // @todo Put the response in an internal FIFO and pass it on // to the response layer from there // currently it is illegal to block responses... can lead // to deadlock assert(success); respLayers[dest_port_id]->succeededTiming(packetFinishTime); } // stats updates transDist[pkt_cmd]++; snoops++; return true; } void CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, const std::vector& dests) { DPRINTF(CoherentXBar, "%s for %s address %x size %d\n", __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize()); // snoops should only happen if the system isn't bypassing caches assert(!system->bypassCaches()); unsigned fanout = 0; for (const auto& p: dests) { // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) { // cache is not allowed to refuse snoop p->sendTimingSnoopReq(pkt); fanout++; } } // Stats for fanout of this forward operation snoopFanout.sample(fanout); } void CoherentXBar::recvRetry(PortID master_port_id) { // responses and snoop responses never block on forwarding them, // so the retry will always be coming from a port to which we // tried to forward a request reqLayers[master_port_id]->recvRetry(); } Tick CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) { DPRINTF(CoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n", slavePorts[slave_port_id]->name(), pkt->getAddr(), pkt->cmdString()); unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); MemCmd snoop_response_cmd = MemCmd::InvalidCmd; Tick snoop_response_latency = 0; // uncacheable requests need never be snooped if (!pkt->req->isUncacheable() && !system->bypassCaches()) { // forward to all snoopers but the source std::pair snoop_result; if (snoopFilter) { // check with the snoop filter where to forward this packet auto sf_res = snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); snoop_response_latency += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "%s: src %s %s 0x%x"\ " SF size: %i lat: %i\n", __func__, slavePorts[slave_port_id]->name(), pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), sf_res.second); snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, sf_res.first); } else { snoop_result = forwardAtomic(pkt, slave_port_id); } snoop_response_cmd = snoop_result.first; snoop_response_latency += snoop_result.second; } // even if we had a snoop response, we must continue and also // perform the actual request at the destination PortID master_port_id = findPort(pkt->getAddr()); // stats updates for the request pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; // forward the request to the appropriate destination Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt); // Lower levels have replied, tell the snoop filter if (snoopFilter && !pkt->req->isUncacheable() && !system->bypassCaches() && pkt->isResponse()) { snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); } // if we got a response from a snooper, restore it here if (snoop_response_cmd != MemCmd::InvalidCmd) { // no one else should have responded assert(!pkt->isResponse()); pkt->cmd = snoop_response_cmd; response_latency = snoop_response_latency; } // add the response data if (pkt->isResponse()) { pkt_size = pkt->hasData() ? pkt->getSize() : 0; pkt_cmd = pkt->cmdToIndex(); // stats updates pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; } // @todo: Not setting first-word time pkt->lastWordDelay = response_latency; return response_latency; } Tick CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) { DPRINTF(CoherentXBar, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", masterPorts[master_port_id]->name(), pkt->getAddr(), pkt->cmdString()); // add the request snoop data snoops++; // forward to all snoopers std::pair snoop_result; Tick snoop_response_latency = 0; if (snoopFilter) { auto sf_res = snoopFilter->lookupSnoop(pkt); snoop_response_latency += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "%s: src %s %s 0x%x SF size: %i lat: %i\n", __func__, masterPorts[master_port_id]->name(), pkt->cmdString(), pkt->getAddr(), sf_res.first.size(), sf_res.second); snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, sf_res.first); } else { snoop_result = forwardAtomic(pkt, InvalidPortID); } MemCmd snoop_response_cmd = snoop_result.first; snoop_response_latency += snoop_result.second; if (snoop_response_cmd != MemCmd::InvalidCmd) pkt->cmd = snoop_response_cmd; // add the response snoop data if (pkt->isResponse()) { snoops++; } // @todo: Not setting first-word time pkt->lastWordDelay = snoop_response_latency; return snoop_response_latency; } std::pair CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, PortID source_master_port_id, const std::vector& dests) { // the packet may be changed on snoops, record the original // command to enable us to restore it between snoops so that // additional snoops can take place properly MemCmd orig_cmd = pkt->cmd; MemCmd snoop_response_cmd = MemCmd::InvalidCmd; Tick snoop_response_latency = 0; // snoops should only happen if the system isn't bypassing caches assert(!system->bypassCaches()); unsigned fanout = 0; for (const auto& p: dests) { // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id != InvalidPortID && p->getId() == exclude_slave_port_id) continue; Tick latency = p->sendAtomicSnoop(pkt); fanout++; // in contrast to a functional access, we have to keep on // going as all snoopers must be updated even if we get a // response if (!pkt->isResponse()) continue; // response from snoop agent assert(pkt->cmd != orig_cmd); assert(pkt->memInhibitAsserted()); // should only happen once assert(snoop_response_cmd == MemCmd::InvalidCmd); // save response state snoop_response_cmd = pkt->cmd; snoop_response_latency = latency; if (snoopFilter) { // Handle responses by the snoopers and differentiate between // responses to requests from above and snoops from below if (source_master_port_id != InvalidPortID) { // Getting a response for a snoop from below assert(exclude_slave_port_id == InvalidPortID); snoopFilter->updateSnoopForward(pkt, *p, *masterPorts[source_master_port_id]); } else { // Getting a response for a request from above assert(source_master_port_id == InvalidPortID); snoopFilter->updateSnoopResponse(pkt, *p, *slavePorts[exclude_slave_port_id]); } } // restore original packet state for remaining snoopers pkt->cmd = orig_cmd; } // Stats for fanout snoopFanout.sample(fanout); // the packet is restored as part of the loop and any potential // snoop response is part of the returned pair return std::make_pair(snoop_response_cmd, snoop_response_latency); } void CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) { if (!pkt->isPrint()) { // don't do DPRINTFs on PrintReq as it clutters up the output DPRINTF(CoherentXBar, "recvFunctional: packet src %s addr 0x%x cmd %s\n", slavePorts[slave_port_id]->name(), pkt->getAddr(), pkt->cmdString()); } // uncacheable requests need never be snooped if (!pkt->req->isUncacheable() && !system->bypassCaches()) { // forward to all snoopers but the source forwardFunctional(pkt, slave_port_id); } // there is no need to continue if the snooping has found what we // were looking for and the packet is already a response if (!pkt->isResponse()) { PortID dest_id = findPort(pkt->getAddr()); masterPorts[dest_id]->sendFunctional(pkt); } } void CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) { if (!pkt->isPrint()) { // don't do DPRINTFs on PrintReq as it clutters up the output DPRINTF(CoherentXBar, "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", masterPorts[master_port_id]->name(), pkt->getAddr(), pkt->cmdString()); } // forward to all snoopers forwardFunctional(pkt, InvalidPortID); } void CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) { // snoops should only happen if the system isn't bypassing caches assert(!system->bypassCaches()); for (const auto& p: snoopPorts) { // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) p->sendFunctionalSnoop(pkt); // if we get a response we are done if (pkt->isResponse()) { break; } } } unsigned int CoherentXBar::drain(DrainManager *dm) { // sum up the individual layers unsigned int total = 0; for (auto l: reqLayers) total += l->drain(dm); for (auto l: respLayers) total += l->drain(dm); for (auto l: snoopLayers) total += l->drain(dm); return total; } void CoherentXBar::regStats() { // register the stats of the base class and our layers BaseXBar::regStats(); for (auto l: reqLayers) l->regStats(); for (auto l: respLayers) l->regStats(); for (auto l: snoopLayers) l->regStats(); snoops .name(name() + ".snoops") .desc("Total snoops (count)") ; snoopFanout .init(0, snoopPorts.size(), 1) .name(name() + ".snoop_fanout") .desc("Request fanout histogram") ; } CoherentXBar * CoherentXBarParams::create() { return new CoherentXBar(this); }